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Subvarieties of $ with non-extendable 
automorphisms 

By Harm Derksen at Cambridge and Frank Kutzschebauch and Jörg Winkelmann at Basel 

Abstract. We investigate algebraic and analytic subvarieties of $ with auto¬ 
morphisms which cannot be extended to the ambient space. 

1. Introduction 

If Z is an afflne variety and n is a sufficiently large number, then any two embed-
dings $ are equivalent in the sense that there exists an automorphism $ of $ 
such that $ (see [14], [15], [20]). In particular, in this case every automorphism of 
Z extends to the whole of $. In the case where Z is smooth it suffices to take n > 2 dim Z + 1. 

Thus for an algebraic subvariety $ of high codimension every automorphism 
extends to an automorphism of $. 

This raises three questions: 

1. Is a similar statement true for subvarieties of low codimension, e.g. hypersurfaces? 

2. Does a similar statement hold in the holomorphic category? 

3. Assume that $ is a subvariety such that every single automorphism of Z 
extends to $. Does this imply that there is an extension of the action of the group Aut(Z) 
to an action on $? 

The purpose of this article is to provide negative answers to all three questions. 

First, we prove that there exist irreducible algebraic hypersurfaces admitting $-
action which does not extend. 

All authors were partially supported by Schweizerische Nationalfonds (SNF), the first author was also 
partially supported by the “Freiwillige Akademische Gesellschaft”. 
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Theorem 1. There exists a smooth irreducible algebraic hypersurface $ and an 
algebraic action μ of the additive group $ on H such that for all $ there exists neither 
an algebraic nor a holomorphic automorphism $ of $ with $. 

The key idea for our construction is to choose a hypersurface in $ such that the 
complement has a small automorphism group and then to construct an automorphism on 
the hypersurface based on something which does not extend from the hypersurface to the 
whole space. For this it is crucial that there are free actions of algebraic groups G on the 
affine space $ for which there exist G-invariant subvarieties W such that the restriction 
map $ is not surjective ([21]). 

It should be noted that this strategy cannot work for subvarieties of higher codimen-
sion on $, because for a subvariety Z in $ of codimension at least two the automorphism 
group of the complement is always quite large. In fact the group of all automorphisms of 
$ fixing every point in Z acts transitively on the complement $ as soon as 
$ (see [22]). 

In the second part, we prove that there does not exist any effective differentiable, 
holomorphic or algebraic action of the group $ on the affine space $. 

Theorem 2. Let k be an algebraically closed field, K a field,  $ and let G denote 
the group given by the semidirect product $ with 

$. 

Then there does not exist any injective group homomorphism from G either into the 
group $ of dijfeomorphisms of $ or into the group $ of K-automorphisms 
of the affine space $. 

Hence, whenever $ has the property that every automorphism of 
Z extends to $, there must be a non-trivial non-split short exact sequence of groups 

$ 

such that for every $ the restriction μ(g) | z coincides with the canonical action of 
$ on i(Z). 

Finally, in the third section, we discuss the situation in the analytic category. Unlike 
the algebraic situation there are analytic subvarieties of high codimension such that no 
non-trivial automorphism extends. 

The first such examples are due to Rosay and Rudin [16] who proved that for $ 
there exist discrete subsets S of $ such that no non-trivial permutation of S extends to 
an automorphism of $. 
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Buzzard and Fornæss [4] proved that given a hypersurface X in $ there exists an 
embedding $ such that the complement $ is hyperbolic. This implies that at 
most countably many automorphisms of X can be extended to automorphisms of $. 

Thus the existence of analytic subvarieties with non-extendable automorphisms is 
well-known for proper analytic subvarieties of maximal or minimal codimension. 

Our contribution is to provide a result about analytic subvarieties of arbitrary codi¬ 
mension. 

We prove the following: 

Theorem 3. For every non-finite analytic subvariety $, every Lie group G and 
every effective G-action on X there exists an embedding $ such that for no element 
$ the induced automorphism of j(X) can be extended to an automorphism of $. 

As a consequence we obtain the following result: 

Corollary 1. Let X be an infinite Stein manifold such that Aut(X) is a Lie group. 
Then there exists an embedding j of X into some $ such that no non-trivial automorphism 
of X extends to $. 

The condition that Aut(X) is a Lie group holds in particular if X is hyperbolic, e.g. 
if the universal covering of X is biholomorphic to a bounded domain. 

2. Hypersurfaces 

In this section we investigate the algebraic subvarieties of low codimension, concen¬ 
trating on hypersurfaces. Varieties, functions, maps, group actions etc. are assumed to be 
algebraic over some algebraically closed ground field k. Unless explicitly stated otherwise, 
this ground field k may have positive characteristic. 

2.1. Basic tools. We start with some basic observations wich will be used in later 
constructions. 

Lemma 1. Let π: X →Y be a separable surjective morphism between irreducible nor¬ 
mal algebraic varieties defined over some ground field k. Let $ and assume that 
$ is constant for every π-fiber F. 

Then $ induces a k-automorphism $ of Y such that $. 

Proof. Since π is separable and dominant, the function field k(Y) is isomorphic to 
the subfield L of k(X) containing all those rational functions on X which are constant 
along the π-fibers. Hence $ induces an automorphism of the function field k(Y). On the 
other hand, $ induces a permutation of the points of Y, because π is surjective, and $ 
is constant along the π-fibers. Since Y is normal, a rational function f on Y is regular in 
a given point y if and only if f has no pole in y. Using this fact, it follows that $ induces 
a regular automorphism of Y. □ 
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Lemma 2. Let H be an irreducible hypersurface in the affine space $ defined by a 
(regular) function f and $. 

Then the map $ is equivariant for the whole (algebraic) automorphism 
group Aut(Ω). 

Proof. Let $ and let n denote the multiplicity of  g along H. Then 
$, hence g = αfn for some constant $. It follows that two points 
$ are in the same  f-fiber if and only if  g(p) = g(q) for all $. Thus the 
equivalence relation onΩdefined by f is natural and must be preserved by all automorphisms 
of Ω. Thus it follows from lemma 1 that every $ induces an automorphism $ 
of $ such that $. □ 

Lemma 3. Let P be a polynomial automorphism of $ stabilizing the set 

C={(x,y):xy = 0}. 

Then either P(x, y) = (αx, βy) or P(x,y) = (αy, βx) (with $). 

Proof. Let τ(x,y) = (y, x). Then eitherP or P ◦ Τ stabilize both irreducible compo¬ 
nents of  C. By the preceding lemma this implies that P resp. P ◦ Τ is simultaneously 
equivariant for both projections $ x and $. From this fact the statement is 
easily deduced. □ 

2.2. Basic examples. Here we collect some basic examples which are not irreducible. 

Example 1. Let k be a field, $ and S=(0,l,z). Then 

σ(0) = 0, σ(1) = z, σ(z) = l 

defines a permutation of S which does not extend to an automorphism of $. 

Proof. This is immediate, since every automorphism of $ is affine-linear. □ 

Example 2. Let $ be the reducible curve defined by 

C={(x,y):x(xy—1) = 0}. 

The action of the additive group Ga given by μt(x,y) = (x,y) for xy = 1 and 

μt(0,y) = (0,y+t) 

cannot be extended to an algebraic  Ga-action on $ although there does exist a holomorphic 
extension in the case $. 

Proof. Note that the two irreducible components of  C are non-isomorphic. Hence 
every automorphism of $ stabilizing  C must stabilize both irreducible components sepa¬ 
rately. It follows that such an algebraic automorphism must be equivariant for both 
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$ and $. From this it is easily deduced that any such automorphism is 

of the form $ for some $. 
But an automorphism of this form cannot restrict to $ on 

{(x,y):x = 0}. 

On the other hand, a holomorphic extension is given by 

$. □ 

Example 3. Let $ be the reducible curve defined by 

C={(x,y):xy(xy—1) = 0}. 

Let $ denote the algebraic automorphism of  C given by $ for xy = 1 and 
$. 

For $ there does not exist a homeomorphism $ of $ with $. 

Proof. Let D = {(x,y): xy = 0} and $. Consider ζε:S1→Ω given by 
ζε(z) = (z, ε) (with $). If $ is a homeomorphism of $ with $, then $ 

implies that $ stabilizes the element of  π1(Ω) corresponding to ζ ε. Now $ is 
generated by this element and similar curves around the {y = 0}-line. This implies that 
such a homeomorphism $ must induce the identity map on π1(Ω). Since π1(Q) embeds 
into π1(Ω) for Q = {(x,y): xy = 1}, it follows that $ must induce the identity map on 
π1(Q). Therefore $ can not equal the map $ on Q for any homeomorphism 
$ with $. □ 

Example 4. Let $ be a pair of coprime natural numbers, 

C={(x,y):xnym = 1} 

and $ be given by $. 

Then C is a smooth connected curve and $ is an automorphism of C which cannot 
be extended to an automorphism of $. 

Proof. Due to lemma 2 the map $ is equivariant for every auto¬ 
morphism $ which stabilizes C. In particular such an automorphism stabilizes 
the set { xnym = 0} = {xy = 0}, since this is the only reducible fiber of $. 
Hence lemma 3 implies that any automorphism of $ stabilizing C must be described as 
either (αx, βy) or (αy, βx). The second type does not stabilize C and the former does not 
restrict to $. □ 

Example 5.  Let H= {(x,y,z): xy = 1} and $. Then $ is an 
automorphism of  H which cannot be extended to an automorphism of $. 
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Proof. Assume that $ extends to a polynomial automorphism  P of $. Let 
$ and $ and consider the morphisms 

$ 

given by π(x, y, z) = (x, y) and $. By lemma 2 both $ and $ are equivariant 
for all automorphisms of  U resp. Ω. Now all the  π-fibers are lines and the generic $-fiber is 
$. Since every morphism from $ to $ is constant, it follows (with the help of lemma 
1) that π is equivariant as well. 

The map $ being equivariant implies in particular that the special fiber $ is 
invariant under all automorphisms $ stabilizing  U. It follows that any automorphism  Q 
of $ stabilizing U must also stabilize $. Lemma 3 thus implies that 
there exist $ such that either Q(x,y) = (αx, βy) or Q(x,y) = (βy, αx). 

However, Q is supposed to fix { xy = 1} pointwise. This forces α = β = 1 and $. 

Thus an algebraic automorphism P of $ extending $ can only act along the 
π-fibers and therefore can be written in the form 

$ 

for some function g. The determinant of the Jacobian of such a map equals $. As a 

nowhere vanishing regular function it must be constant. This implies that  g can be written 
in the form  g(x, y,z) = go(x,y,zp) + αz with $, p = char (k) and $. 
But now g|{xy = 1} cannot equal xz and hence we obtained a contradiction to the assumption 
that $ extends to an algebraic automorphism P of $. □ 

2.3. Main hypersurface example. 

Theorem 1. There exists a smooth irreducible hypersurface $ and an algebraic 
action Μ of the additive group $ on H such that for all $ there exists neither an 
algebraic nor a holomorphic automorphism  $ of $ with $. 

Proof. In [21] it is shown that there exists an algebraic $-principal bundle $ 
with $, where Q is a smooth projective quadric, S is a smooth hypersurface 
and E a two-dimensional smooth subvariety of Q which intersects S transversally. Let  Q1 

denote the variety obtained by  Q blowing-up E. We may, if necessary, blow-upQ1 again 
and thereby assume that there is a projective manifold $, a divisor  D with simple normal 
crossings as its only singularities, an irreducible component  D0 of D and a birational 
connected surjective morphism $ with Τ(D0) =  E inducing an isomorphism 
$. Let F be a generic fiber of $ (i.e. F is smooth and connected). 
Now we fix a very ample line bundle $ on $ and choose $ such that $ is 
ample. By Bertini’s theorem, for every smooth submanifold $ there is a dense open 
subset in the linear system $ such that every divisor therein intersects  Z transversally. 
Let $ be the family of irreducible components of D. Applying Bertini’s theorem to 
all $ with $,  F and $ itself we may conclude that there is a very ample divisor H 
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on $ such that $ is again a divisor with only simple normal crossings as singularities 
and furthermore such that H intersects F transversally. Let $. Since H 
intersects F transversally, it is clear that $. Now H0\S is affine and E\S is a hyper-
surface in H0. It follows that there exist rational functions on H0 which are regular on 
$ and have poles of arbitrarily high multiplicity on E\S. Fix such a function f 
of a sufficiently high pole order. We will see later, at the end of the proof, how high this 
multiplicity has to be. Now let $ denote the principal right action on the 
$-principal bundle $ and let Y= π—1(H0). We define a $-action on Y by 

$ 

and claim that for $ the automorphism μf(t) of the hypersurface Y cannot be extended 
to an automorphism of $, neither algebraically nor holomorphically. 

Fix some $ and assume that $ is an extension of μf(t). There is no 
loss in generality in assuming t = 1. Then $ stabilizes $ and therefore induces a 
holomorphic map $. We recall that X\H0 embeds into $ in such a 
way that the complement is $ is a divisor with simple normal crossings and 
D + H + K is ample on $. By a theorem of Griffiths and King ([11], Prop. 8.8) this implies 
that $ is algebraic. Furthermore X\H0 is of log general type as defined by Iitaka [13]. 
We claim that $ must map π-fibers into π-fibers. Indeed, otherwise there would exist an 
irreducible algebraic subvariety R of codimension two in $ such that there is a dominant 
morphism $ given by 

$. 

Since X\H0 is of log general type, such a map cannot exist. It follows that π is equivariant 
for the automorphism $. However, being of log general type X\H0 admits only finitely 
many automorphisms [13], [18]. Therefore there is a number m such that $ induces the 
trivial action on the base, i.e. $ acts only along the π-fibers. 

Let $ denote a covering of X by open affine subsets. The $-principal bundle 
may be described in terms of transition functions $. With respect to the 
corresponding local trivialization $ is given by $ for 
$ with $ and $. An easy calculation shows that αi = αj and 
βi = βj + (αi — 1)ζij on $. Thus α = αi is a global holomorphic function defined on 
the whole X. Since codim(E) = 2, the function α can actually be defined on the affine 
variety Q* = Q\S. Recall that the transition functions ζij are algebraic functions on Uij 

and therefore extend to rational functions on the whole Q. It follows that (α — 1)ζij can 
be extended to a meromorphic function on Q for all i, j . Using βi = βj + (αi — 1)ζij, this 
implies that the functions βi can be extended to meromorphic functions on $. 

i 
Moreover, if h is a regular function on Q* such that none of the functions hζij has poles 
on Q*, then the functions hβi haven’t any poles in Q* either. 

Now observe that $ and $ for all i, because $ coincides 
with μ f(m) on $. It follows that, for h chosen as above, hf defines a holomorphic 
function on $. However, the condition which h has to fulfill (namely, that all 
the hζij are regular on Q*) does not depend on the choice of f. Hence it is possible to 
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choose f and h in such a way that hf has poles in E and in this case the assumption of 
the existence of $ leads to a contradiction. 

Thus it is possible to choose f such that the resulting group action μ f( t) on the 
hypersurface Y in $ cannot be extended to an algebraic or holomorphic automorphism 
of $. □ 

Remark. If one is interested only in the algebraic non-extendibility, then the last 
steps of the proof can be simplified substantially: 

If α is algebraic, it is necessarily constant. This implies $, since $. Hence 
β = βi is a global regular function and the non-extendibility of μf(t) follows directly from 
the fact that f does not extend to a regular function on X. 

Remark. Every $-principal bundle over a differentiable manifold is differentiably 
trivial. Using this fact, it is easy to see that the $-action on H does extend to a differentiable 
action on $. 

3. Extending actions of whole groups 

As mentioned above, every affine variety Z may be embedded into some affine space 
$ in such a way that every automorphism of Z extends to an automorphism of $. If 
$ denotes the group of all automorphisms of $ stabilizing Z (as a set, not 
pointwise), this is equivalent to the assertion that the natural group homomorphism 
$ is surjective. Thus there exists a short exact sequence 

$ 

one can ask if it splits. 

Here we will show that there is an affine variety, namely $, such that this 
sequence never splits. More precisely we will prove the following theorem. 

Theorem 2. Let k be an algebraically closed field, K afield, $ and let G denote 
the group given by the semidirect product $ with 

$. 

Then there does not exist any injective group homomorphism from G either into the 
group $ of dijfeomorphisms of $ or into the group $ of K-automorphisms 
of the affine space $. 

Corollary 2. Let either Z denote the complex manifold $ and H be the group 
of holomorphic automorphisms of Z or let k be an algebraically closed field, 
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$ 

and H denote the group of k-automorphisms of Z. 

Then for every holomorphic resp. regular H-action on $ resp. An there does not exist 
any non-constant H-equivariant holomorphic resp. regular map from Z to $ resp. $. 

Proof. Thanks to the theorem there is no injective group homomorphism from G 
into $ resp. $. Since $, it follows that an equivariant map F must 
have non-trivial fibers such that a non-trivial normal subgroup of G acts only in fiber 
direction. Now Z is homogeneous under the G-action and it is easy to check that every 
non-trivial G-equivariant fibration of Z is of the form ΤN : Z → Z with 

$. 

In this case the kernel of the induced group homomorphism F* from G to $ resp. 
$ is just 

$. 

But $ for every $. Thus there is no injective group homomorphism from 
G/KN into $ or $ and therefore there is no non-constant equivariant holo¬ 
morphic map resp. morphism from Z to $ resp. $. □ 

As a first step towards theorem 2 we need the following well-known result on the 
existence of fixed points. 

Proposition 1. Letp be a prime and let Γ be a finite abelian p-group acting differ entiable 
on $ or algebraically on an affine space $ defined over afield k with char $. 

Then Γ has a fixed point. 

Proof. In the first case this follows from Smith theory [12], in the second case a 
proof may be sketched as follows: Every $ induces an automorphism of $ given by 
a polynomial map. Let $ be the ring generated by all the coefficients of these poly¬ 
nomials for all $. Let p be a prime ideal in R and consider reduction modulo p. Then 
R/p is a finite field. If char $, then p does not divide the number of points in 
$. This implies that there must be a fixed point modulo p. Finally, the existence of 
fixed points for almost all prime ideals in R implies that there is a fixed point in $. □ 

Lemma 4. Let p be a prime and let Γ be a finite p-group. Let V be a connected dif¬ 
fer entiable manifold or an irreducible variety defined over a field k with $, assume 
that Γ acts effectively on X and let v be a fixed point. 

15 Journal für Mathemaiik. Band 508 
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Then Γ acts effectively on the (Zariski-) tangent space TvV. 

Proof. In the differentiable case finiteness of Γ permits us to construct an invariant 
Riemannian metric. Then Γ acts by isometries. Hence if $ fixes a point $ and acts 
trivially on the tangent space, it preserves all the geodesies emanating from v and therefore 
induces the identity map on V. 

In the algebraic case we note that, if $ fixes v and acts trivially on the Zariski 
tangent space $, then γ acts trivially on $ for all $. Let $ 
with $. Then $ for some $. But this implies that 
$ modulo $. This contradicts our assumption that γ is of finite 
order coprime to the characteristic of k. Hence the assertion. □ 

Now we are in a position to prove the theorem. 

Proof. If there would be such an injective group homomorphism, we would obtain 
an effective G-action on $ resp. $. 

Fix a prime p, $, char(K), let $ resp. $ and let 
Γr = A [pr ] denote the subgroup of torsion elements of order  pr in A. Let NG(Γr) resp. 
ZG(Fr) denote the normalizer resp. centralizer of Γr in G. Note that 

$ 

and that NG(Γr) / ZG(Γr) acts effectively on Γr by group automorphisms. 

Let Vr denote the fixed point set of the induced Γr-action on $ resp. $. We claim 
that there exists some uniform (i.e. independent of r) upper bound C< ∞ for the number 
of (Zariski-)connected components of Vr. In the differentiable case it follows from Smith 
theory (see e.g. [12]) that Vr is connected. In the algebraic case the sequence Vr is a des¬ 
cending sequence of subvarieties of $ and hence there is some R such that Vr = VR for all 
$. This yields the desired bound C for the number of Zariski connected components 
of V r. 

On the other hand, proposition 1 implies that none of the Vr can be empty. Lemma 
4 implies that Γr acts effectively on Tx for every $. The type of the representation of 
Γr on Tx is determined by the trace function trx defined by $ where $ denotes 
the action of Γr on Tx. This trace function must depend continuously resp. regularly on x. 
However, there are only finitely many possible values. Hence, the trace function is locally 
constant with respect to x, i.e., on each (Zariski-) connected component of Vr all the 
representations $ of Γr are isomorphic. 

For every number $ fix a point $ and let $ denote the subgroup of those 
elements of NG(Γr) which stabilize the connected component of Vr containing xr. For every 
$, the representations of $ and γ on $ are isomorphic, because 
$ and xr lie in the same connected component of Vr. It follows that the representations 
differ only by a permutation of the irreducible Γr-submodules of $. It follows that 
$. Thus $. 
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But $ goes to infinity for increasing  r, because $. 
Thus we deduced a contradiction from the assumption that there exists such an injective 
group homomorphism. □ 

4. The analytic case 

Here and in the rest of our paper holomorphic embedding means a proper holomor-
phic embedding, i.e., a proper holomorphic map which is injective and immersive. 

We will use the ideas developed in [16] together with the techniques for interpolation 
by automorphisms of $ developed in [3], [4], [9], [7], [10] to construct our more com¬ 
plicated embeddings for a complex subspace X of $ of any dimension. 

If X is a Stein manifold of dimension n, then X can be embedded into $ with 

$. This bound is optimal, except possibly for n = 1 (see [19]). 

We want to point out that we give no results about existence of embeddings of a 
given Stein space into $. 

Instead we consider the question which further properties of such an embedding can 
be prescribed, if there already exists an embedding in the given dimension. Further results 
in this direction can be found in [7], [4], [5], [17]. 

4.1. Results.  Let T be a topological space. By a continuous family of holomorphic 
selfmaps of a complex space X parameterized by T we mean a continuous map $ 
such that for every fixed $ the map α (t, ·): X → X is holomorphic. If T is a real Lie 
group such that α describes a group action, then the map α is automatically real analytic 
(see for instance [2]). We will call a holomorphic map $ nondegenerate if the 
Jacobian JF of F does not vanish identically. Our main result is the following theorem, 
which will be proved in the next paragraph. 

Theorem 4. Let X be a proper complex analytic subvariety of $ which consists of 
infinitely many points and $ a continuous family of holomorphic selfmaps of X 
parametrized by a locally compact topological space T with countable topology. Then there 
exists an embedding $ with the following property: If $ is a nondegenerate 
holomorphic map such that 

1. $ and 

2. φ—1◦ F ◦ φ = α (t, ·) for some $, 

then F=id. 

Theorem 3 stated in the introduction then arises as a corollary. 
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Corollary 3. Let X be a complex space of dimension m which can be embedded into 
$ and such that the holomorphic automorphism group Authol(X) is a Lie group. Also assume 
that m< n and X is not a finite set of points. Then there exists an embedding $ of 
X into $ such that the only holomorphic automorphism of $ leaving φ(X) invariant is the 
identity. If furthermore $, then $ can be chosen so that the holomorphic 
automorphism group $ of the complement is trivial. 

Proof. By definition, a Lie group is locally compact and of countable topology. 
Hence we can apply the theorem to X with T= Authol(X). Let $ be the embedding 
given by theorem 4. Any holomorphic automorphism $ of $ leaving φ(X) invariant is 
clearly a nondegenerate holomorphic map from $ to $ with $ 
and the restriction of $ to φ(X) is a holomorphic automorphism of X, hence an element 
of our family. This imply that $ is the identity map. 

For the last statement of the corollary observe that, since φ(X) has at least codi-
mension 2 in $, any holomorphic automorphism $ of the complement 
extends to a holomorphic automorphism $ of $ and which leaves φ(X) invariant. □ 

Corollary 4. Let X be a Stein manifold and let G be a Lie group acting effectively 
and by biholomorphic transformations on X. 

Then there exists a natural number N and an embedding $ such that for no 
$ the induced automorphism of X can be extended to an automorphism of $. 

If k = 1, then $ is a Lie group. Hence we obtain the following corollary. 

Corollary 5. For every $ there exists an embedding $ such that the only 
holomorphic automorphism of $ leaving $ invariant is the identity. If $, then $ can 
be chosen such that $ is trivial. 

Question 1. Does there exist an embedding $ with 

$ 

for every 0 < k< n? 

Proposition 2. Let $ be a complex analytic hyper surface. 

Then there exists an embedding $ such that $ is countable. 

Proof In [4] Buzzard and Fornæss proved (see also [7], Theorem 5.1 for a more 
general statement) that there is an embedding $ such that the complement 
$ is Kobayashi-hyperbolic. Hence the result follows from the lemma below. □ 

Lemma 5. Let V be an affine algebraic manifold (e.g. $) and $ be a com¬ 
plex analytic subvariety such that the complement V\Y is Kobayashi-hyperbolic. Then 
Authol(V\Y) is countable and discrete in the compact-open topology. 
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Proof. The group of holomorphic automorphisms of a Kobayashi-hyperbolic mani¬ 
fold is a closed subgroup of the isometry group with respect to the Kobayashi distance 
and is isomorphic to a real Lie group. We must show that the identity component of 
Authol(V\Y) is zero-dimensional. If Authol(V\Y) were positive dimensional, then any 
nonzero vector v in the Lie algebra would give rise to a non-trivial action of the additive 
group $ on V\Y given by the map $. Since V\Y is Stein and has no 
non-constant bounded plurisubharmonic functions we can apply Cor. 2.2. in [8] to conclude 
that our action of $ extends to an $ action on V\Y. This contradicts the fact 
that every holomorphic map from $ into the Kobayashi-hyperbolic manifold V\Y is 
constant. □ 

Question 2. Given a complex analytic hypersurface $, does there exist an 
embedding $ such that the automorphism group of $ is trivial? 

More generally, one may pose the following question. 

Question 3. Given a complex analytic hypersurface $ and a connected complex 
Lie group G, under which conditions is it true that there exists an embedding $ 
such that $? 

One may also ask the same question for $ instead 
of $. 

4.2. Proofs. As already mentioned above, in the proof of theorem 4 we will use the 
techniques developed in [7], [16] (see also [9], [4]). For the convenience of the reader 
we state here all results from these papers which will be used in the sequel. 

Proposition 3 (see [7], Prop. 1.1). Let n > 1. Assume that 

(a) $ is a compact polynomially convex set, 

(b) $ is a finite subset of K, 

(c) p and q are arbitrary points in $ (not necessarily distinct), 

(d) N is a nonnegative integer, and 

(e) $ is a holomorphic polynomial map of degree at most $ with P(0) = 0 
and $. 

Then for each ε > 0 there exists an automorphism $ satisfying 

(i) F(p) = q and F(z) = q + P(z—p) + O(|z—p|m+1) as z →p, 

(ii) F(z) = z + O (| z — aj |n) as z → aj for each j = 1, 2 , . . . , s and 

(iii) F(z)—z | + |F—1(z)—z|<ε $. 
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00 

Propos i t ion 4  (see [ 7 ] , P r o p . 4 .1 a n d 4 . 2 ) . $ be 

compact sets such that $ for each $. Suppose εj (j = 1, 2, 3,...)  are real 
numbers such that 

(1) $. 

Suppose that for each j  = 1,2,3,... Ψj is a holomorphic automorphism of  $ satisfying 

(2) |Ψj—(z)—z|<εj, $. 

Set Φm = Ψm◦ Ψm_1 ◦ ∙∙∙ ◦ Ψ1. Then there is an open set  $ such that $ exists 

on Ω (uniformly on compacts), and Φ is a biholomorphic map of Ω onto $. In fact, 

$. Also Ω can be characterized as the set of points  $ such that the 

sequence $ is bounded. 

As usual Br denotes the (open) ball of radius r > 0 in $ and $ denotes its boundary. 

L e m m a 6  ( s e e [ 1 6 ] , L e m m a 4 . 3 ) . L e t 0 < a 1 < a 2 , 0 < r 1 < r 2 , c > 0 b e r e a l n u m b e r s 

and $ a dense subset. Then there exists a finite subset $ such that 

$ 

for all holomorphic maps  $ with $, $ and $ 
$. 

Remark. Lemma 1 is proved in [16] with $. The proof starts with an arbitrary 
countable dense subset x1, x2,... of $ and the desired finite set is constructed as a subset 
of x1,x2, . . . . So the only minor modification to be made in the proof is to start with 
x1,x2,... being a subset of A which is dense in $. 

The proof of theorem 4 consists of two steps. The first step is to construct an embed¬ 
ding in such a way that conditions 1. and 2. of the theorem force a nondegenerate holo¬ 
morphic map $ to be afflne, i.e., an affine automorphism of $. The second 
point is to ensure that the only affine automorphism of $ leaving the embedded variety 
X invariant is the identity. To be accurate in the second point we need one more technical 
result to be explained now: 

By a submanifold $ we shall mean an injectively immersed holomorphic sub-
manifold (not necessarily closed). 

Definition 1. Let $ be a natural number. We say that a submanifold X of $ 
osculates of order k at some point $ if  X has contact order k with the tangent space 
$. 
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In local coordinates this condition can be expressed in the following way: 

Let $ be a holomorphic coordinate chart for the m-dimensional 
manifold X around x (i.e. φ(0) = x). Then X osculates of order k at x if and only if 

$ for every multiindex α = (αl, α2 , . . . , αm) with $. 

The property to osculate of order k is evidently preserved by affine coordinate changes 
on $, i.e., if $ is an affine automorphism of $, then a submanifold $ 
osculates of order k at $ iff the submanifold ψ(X) osculates ofk at $. 

Lemma 7. Let $ be an m-dimensional  (m < n) submanifold. Suppose we are given 

(a) a compact subset KM of M, 

(b) a compact subset K of $, 

(c) finitely many points a1,a2,..., ar in $, 

(d) finitely many points bl,b2, . . . , b q in M\KM, 

(e) a natural number $, if m = 1 and n = 2 then $ and 

(f) a real number ε>0. 

Then there exists a holomorphic automorphism $ with the following pro¬ 
perties: 

1. $, 

2. $, 

3. $, 

4. //iere is no point $ such that the submanifold ψ(M) of $ osculates of order 
k at ψ(m). 

Before we can prove lemma 7 we need a sublemma. The notations used in the sub-
lemma are the same as those in lemma 7. 

Sublemma. For each point $ there is an open neighborhood U p of p in M and a 
family ψι of automorphisms of $ parametrized by $ with 

$ 

such that: 

1. ψ0 = id. 
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2. Every ψt fulfills conditions 1. and 2. of lemma 7. 

3. There exists an open neighbourhood Tof  0 in $ such that 

$ 

is a set of Lebesgue measure zero. 

Proof. If M does not osculate of order k at p, then ψt = id for all t does the job. 
Hence we may assume that M osculates of order k at p. 

Without loss of generality we may assume that  p = 0, TpM = {(z1,..., zm, 0 , . . . , 0}. 
Let $ denote the map given by projection onto the first  m coordinates. After a 
linear change of coordinates we may assume that $ for all $. 

To examine whether ψ(M) osculates of orderk at some point ψ(p') with $ for 
a given $ we consider the map $ whose coordinate functions $ 
are enumerated by pairs (α,  u) where a is a multiindex  α = (α 1, α2 , . . . , αm) with $ 
and $ satisfies $, these are given by 

$ 

Here (ψt)i denotes the  i-th coordinate function of the map $ and $ is 
some fixed system of local coordinates on M near p. Then ψ(M) osculates of order k at 
w if and only if Fψ(w) = 0. 

By restricting our attention to a small enough neighbourhood of $ we may 
choose $. 

Now we come to the explicit construction of our family (ψt)t of automorphisms of $. 

For each pair (α, u) with α and u as above we choose a holomorphic function hα,u 

on $ such that 

1. hα,u — za vanishes of order at least k + 1 in 0, 

2. hα,u vanishes of order at least  k + 1 for all $, 

3. hα,u vanishes at all $. 

Next we define a map $ by 
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$. 

Here eu denotes the u-th unit vector and the coordinates of $ are indexed by pairs 
(α,u) as above. For every $ the map ψt = ψ(t,·) is an automorphism of $ 
fulfilling (because of 2. and 3.) conditions 1. and 2. of lemma 7. Furthermore ψ0 = id. 

Easy calculations (using 1.) show that 

$ 

and 
$ 

whenever $ or whenever u = u', $ and $. 
This implies that the map $ denned by $ has 

maximal rank near 0. Thus there exists an open neighborhood Ωp of the form $ 
of (0,p) in $ such that $ is transversal to $. This implies that for 
almost all $ the map $ is transversal to 0. Since m < N(m, n, k) (here 
we need k > 2 if n = 2 and m = 1, in all other cases k = 2 is already sufficient) this means 
that for almost all $ the image $ does not meet 0, i.e. ψt(M) does not osculate 
of order k for any $. □ 

Proof of lemma 7. Choose finitely many open subsets Ui of M together with families 
$ of automorphisms i = 1, 2 , . . . , l as in the sublemma and choose compact 
subsets $ of the Ui which cover KM. Since $ is the identity, fort sufficiently small 

the automorphism $, moves no point of KM more than $. So we find a $ such that 

$ and the submanifold $ does not osculate of order k at any 

point of $. 

Observe that the property of not osculating of order k at some point is preserved 
under small perturbations, i.e., for each compact subset L of a submanifold M of $ which 
does not osculate of order k at any point of L there exists some ε such that for each auto¬ 
morphism Ψ of $ the property $ implies that Ψ(M) remains non-
osculating of order k at any point of Ψ(L) (for holomorphic maps small perturbations in 
values imply small perturbations in derivatives). Hence we find a sufficiently small $ 

such that first $, second the submanifold $ does not 

osculate of order k at any point of $ and third $ remains non osculating 
of order k at any point of $. Proceeding by induction we find an automorphism 
$ moving no point of K more than ε and such that ψ(M) does not 

osculate of order k at any point of $. Since all automorphisms $ satisfy 

properties 1. and 2., ψ satisfies them as well. □ 
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Proof of theorem 3. In the case that X is a countable set of points the theorem is 
proved in [16] where these sets are called rigid. So we will deal only with the case where 
X is of positive dimension. 

Let $ be a continuous exhaustion function, i.e., $ is a com¬ 
pact subset of  X for all $. Also let us denote by $ the union of all components of the 
smooth part of  X which have maximal dimension, say  m, 0 < m < n. We fix a natural 
number $. If  n = 2 and m = 1 we require $.  Let $ be points 
such that no affine automorphism of $ except the identity can permute these points. 
Choose $ to be mutually distinct points. Applying Prop. 3 several times 
(see also [7], Corollary 1.2), we find an automorphism $ which maps xi to 
bi with the property that the submanifold $ of $ osculates of order  k at the points 
Ψ(xi) = bi for eachi = 1, 2, . . . ,n + 2. We denote the embedding $. 

Our aim is to construct a Fatou-Bieberbach domain $ containing φ0 (X) together 
with a biholomorphic map $ onto $ such that the embedding $ has 
the desired property. The map Φ will be constructed as a limit of automorphisms 
$. 

We start with an exhaustion $ of the topological space T by compact subsets 

$. Also we choose a sequence of open relatively compact neighbor-

hoods Ui (i = 1,2, 3,...) of the set $ in X with $. 

We will now inductively define real numbers εm, Rm > 0, natural numbers k(m), finite 

subsets $, finite subsets $ of X, and automorphisms Φm of $ for 

m = 0 , 1 , . . . . The beginning point is $, R0 = 1, k(0) = 0 and Φ0 = id. For $ these 

data are recursively constructed in such a way that the following conditions are fulfilled: 

(1m) $. 
(2m) If $ is a holomorphic map with $ and 

$ then $. 

(3m) $. 

(4m) $. 

(5m) $. 

(6m) $. 

(7m) $ as z → bi for each i = 1, 2 , . . . ,n + 2. 
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(8m) The submanifold $ of $ does not osculate of order k at any point 
$. 

(9m) $. 

(10m) Rm>Rm—1 + 1. 

We will now confirm that such a recursive construction is possible. For step 1 of the 

induction we first choose $ and, using lemma 1, let $ be a finite subset of 

∂B2\φ0(X) fulfilling (21) (for the set A in lemma 1 take ∂B2\φ0(X)). Consider the compact 
set $. By Lemma 7 in [9] the polynomially convex hull $ of K is con¬ 
tained in $; in particular it does not contain any of the points $. We can choose 
distinct points $ in $ such that 

$, i = 1,2,..., k(1) 

and use k(1) times proposition 3 to find an automorphism $ with $ 

f o r $,j = 1 , 2 , . . . ,k ( 1 ) a n d $ a s z→bi 

i = 1, 2,.. . ,n + 2. By lemma 7 we find another automorphism $ which moves the compact 

set $ less than $, fixes the points $, j = 1,2, . . . , k(1), matches the identity up to 

order k at the points bi, i = 1, 2 , . . . , n + 2 and has the property that the submanifold 
$ does not osculate of order k at any point $ with 

$. The composition $ (together with the set $) satisfies 

all properties from (31) to (81). Finally we choose R1 big enough to satisfy (91). 

The description of the m-th step is similar to the first step. To be accurate we carry 

it out in detail. Suppose we have already constructed εi, Ri > 0, finite subsets $ of 

∂Bi + 1, finite subsets $ of X t oge the r wi th a u t o m o r p h i s m s Φi satisfying (1 i) u p to 

(9i) for all i from 1 to m — 1. Again we first choose $ so small that any pertur¬ 
bation of the embedding $ which is smaller than 3εm on the compact set 
$ does not destroy the property that $ does not osculate of 
order k at any point in the image of $. Next, using lemma 1, we choose 

a finite subset $ of ∂Bm +1 \Φm—1◦f0(X) fulfilling (2m). Consider the compact set 

$. Again by lemma 7 in [9] the polynomially convex hull $ of 
K is contained in $. Hence it does not contain any of the points $. We 
choose distinct points $ in $ such that 

$ 
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and use  k(m) times proposition 3 to find an automorphism $ with $ for 

$, $,j = 1 , 2 , . . . , k ( m ) , $, j = 1, 2, . . . , k (l ) $, and 
$ as z → bi, i = 1, 2 , . . . , n + 2. By lemma 7 we find another auto-

morphism $ which moves the compact set $ less than $, fixes the points 

$, j = 1,2,...,  k(l), $, matches the identity up to order  k at the points bi, 
i = 1,2,...,n + 2, and has the property that the submanifold $ does not 
osculate of order  k at any point in the image of $. We set $ and 
Φm =Ψm ◦ Φm—1. Now all conditions (3m) to (8m) are also satisfied. Finally we choose Rm 

big enough to satisfy (9m) and (10m). 

By proposition 2, the properties (5 m) together with the fact that $ imply that 

$ exists (uniformly on compacts)  on $ and defines a biholomorphic 

map from Ω onto $. 

If $, then we find an  m such that $. So properties (4m) imply: 

$. 

This shows that the set $ is bounded in $. By proposition 2 
this means $. We have proved $. This shows that $ is a (proper 
holomorphic) embedding $. 

We now show that φ satisfies the conclusion of the theorem. First observe that (6m) 
for all m implies 

$. 

We set $ we have $. Next we show: 
$. 

Let $ be an arbitrary point. Since this means $, we may 
choose k0> m and ε = l — 2 α > 0 , such that 

$. 

By (5m + 1) and Rouche's theorem (see [6], p. 110) we have $ , i.e., 
$. Hence $. By induc¬ 
tion, using (5m + 2 ) , . . . , (5k) we find 

$. 
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Together with ( $ ) this implies by our choice of ε that $ and hence 
$. So ($) is proved. 

Now suppose $ is a nondegenerate holomorphic map with 

$ and φ—1 ◦ F ◦ φ : X → X 

is the element $ of the given family of selfmaps of X. By moving the origin by 

an arbitrarily small translation, we can assume $. We set $ and 
choose m0 big enough so that for all $ it follows that 

(A) $. 

We fix a number $ and claim that 

(B) $. 

Suppose the contrary, i.e., there exists $ with $ for some $ and 
$. Since $, we have $. Let $, 
i.e., $. This means $. But by ($) we have 
$ and, since $, it follows that 

$. 

Hence, since $, we have 

$. 

According to (3i) this, together with the choice of $, implies $ which con¬ 
tradicts $. Thus property (B) is proved. 

There exists a natural number k such that $. Suppose k > m + 2. We 
consider the holomorphic maps 

$. 

For j = m + 2 , . . . , k we have: 

First, $. Hence, from (B) it follows that Fj(B1) does 

not contain any point $, l = 1, 2 , . . . , k(j). 

Second, $ is a consequence of (A). 
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And third, also by (A), we have $. 

Using (lk) for the holomorphic map Fk, these three properties imply, 

$. 

Proceeding by induction from k down to m + 2 and using property (1j) for the holo¬ 
morphic map Fj we find in the same way that $. For j = m + 2 this means 

$. 

This growth restriction forces F to be an affine map. Since F is a non-degenerate map, it 
must be an affine automorphism. 

From (9m) and the fact that $ osculates of order k at the points φ0(xi) = bi, 
i= 1, 2, . . . ,n + 2 it follows that the submanifold $ osculates of order k at the points 
φ(xi), i = 1, 2, . . . ,n + 2. From (8m) (and the accurate choice of εm in the beginning of the 
m-th step) it follows that φ(X) does not osculate of order k at any other point. Since the 
affine automorphism F leaves φ(X) invariant, it is clear that $ (the union of the 
components of maximal dimension of the smooth part of φ(X)) is F-invariant as well. 
Furthermore an affine automorphism preserves the property of osculating of order k at 
some point. Thus F permutes the points $. But no affine automorphism 
except the identity permutes these points. Hence F= id. □ 
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