Journal article

Local resilience of the $1T\text{\ensuremath{-}}{\mathrm{TiSe}}_{2}$ charge density wave to Ti self-doping

  • Hildebrand, Baptiste Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
  • Jaouen, Thomas Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
  • Didiot, Clément Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
  • Razzoli, Elia Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
  • Monney, Gaël Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
  • Mottas, Marie-Laure Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
  • Vanini, Fabiano Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
  • Barreteau, C. Department of Quantum Matter Physics, University of Geneva, Switzerland
  • Ubaldini, A. Department of Quantum Matter Physics, University of Geneva, Switzerland
  • Giannini, E. Department of Quantum Matter Physics, University of Geneva, Switzerland
  • Berger, Helmuth Institut de Génie Atomique, Ecole Polytechnique Fédérale de Lausanne, Switzerland
  • Bowler, D. R. London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, United Kingdom
  • Aebi, Philipp Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, Switzerland
Show more…
    02.02.2017
Published in:
  • Physical Review B. - 2017, vol. 95, no. 8, p. 081104
English In Ti-intercalated self-doped 1T−TiSe2 crystals, the charge density wave (CDW) superstructure induces two nonequivalent sites for Ti dopants. Recently, it has been shown that increasing Ti doping dramatically influences the CDW by breaking it into phase-shifted domains. Here, we report scanning tunneling microscopy and spectroscopy experiments that reveal a dopant-site dependence of the CDW gap. Supported by density functional theory, we demonstrate that the loss of the long-range phase coherence introduces an imbalance in the intercalated-Ti site distribution and restrains the CDW gap closure. This local resilient behavior of the 1T−TiSe2 CDW reveals an entangled mechanism between CDW, periodic lattice distortion, and induced nonequivalent defects.
Faculty
Faculté des sciences et de médecine
Department
Département de Physique
Language
  • English
Classification
Physics
License
License undefined
Identifiers
Persistent URL
https://folia.unifr.ch/unifr/documents/305565
Statistics

Document views: 41 File downloads:
  • aeb_lrc.pdf: 47