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A tipping point in refreezing accelerates mass
loss of Greenland’s glaciers and ice caps
B. Noël1, W.J. van de Berg1, S. Lhermitte2, B. Wouters1, H. Machguth3,4,5, I. Howat6, M. Citterio5, G. Moholdt7,

J.T.M. Lenaerts1 & M.R. van den Broeke1

Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs)

contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are

well studied, the spatial and temporal evolution of GICs mass loss and the acting processes

have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated

against in situ and remote sensing data, to identify 1997 (±5 years) as a tipping point for

GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the

GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than

meltwater production, tripling the post-1997 mass loss to 36±16 Gt� 1, or B14% of the

Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its

refreezing capacity for now, buffering 22% of the increased meltwater production. This

underlines the very different response of the GICs and GrIS to atmospheric warming.
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C
overing a total area of B90,000 km2, Greenland’s
peripheral glaciers and ice caps (GICs) represent B12%
of the world’s glacierized area outside of the Antarctic and

Greenland ice sheets1. Greenland’s GICs account for 14 to 20% of
total current Greenland glacial mass loss2, although they only
represent B5% of the area and B0.5% (B39 mm SLE) of the
volume of the Greenland ice sheet (GrIS). In a scenario of
continued global warming, Greenland’s GICs may lose 19–28%
(7.5–11 mm) of their volume by 2100 (ref. 3). Despite multiple
in situ observational campaigns since the early 1950s (ref. 4),
glacier modelling5 and satellite-based2,6 estimates, large
uncertainties remain in the spatial and temporal distribution of
Greenland’s GICs mass loss. To fill these gaps, regional climate
models (RCMs) are often used7–15, but their horizontal resolution
(typically 5–20 km) fails to resolve the steep surface mass balance
(SMB) gradients in the topographically complex regions in which
GICs are often situated16. To address this issue, we created a 1 km
data set, statistically downscaled from output of the regional
atmospheric climate model RACMO2.3 using regressions of SMB
components against elevation estimated at the model resolution
of 11 km. These regressions are then applied to a downsampled
1 km version of the topography and ice mask of the Greenland Ice
Mapping Project (GIMP) Digital Elevation Model (DEM)17.
The downscaling procedure also includes a bare ice albedo
correction based on a 1 km MODIS albedo product to avoid
underestimation of melt and runoff, especially on dark, low-lying
glacier tongues. Earlier, the downscaling method was successfully
applied to the GrIS16.

Here we use the novel SMB product at 1 km resolution to
quantify Greenland’s GICs mass loss, assuming changes in solid
ice discharge to be negligible18–20. The data set includes
individual SMB components (precipitation, sublimation, melt,
refreezing and runoff) for all GICs on a daily time scale
(1958–2015), which is crucial for evaluation using irregular
(in time and space) observations and to understand the drivers of
mass loss. Using this product, we identify 1997 (±5 years) as a
tipping point for the mass balance of Greenland’s GICs, which
marks the onset of a rapid deterioration of inland firn capacity to
refreeze meltwater, causing long-term mass loss.

Results
Evaluation against observations. Figure 1a shows average
(1958–2015) downscaled SMB for the whole of Greenland, and
Fig. 1b compares the downscaled SMB to 965 SMB measurements
from 101 GICs sites4 (yellow dots in Fig. 1a). With 77% of the
variance explained, the downscaled SMB agrees well with
observations, although significant deviations and a negative bias
of 240 mm w.e. yr� 1 (water equivalent) remain. We selected five
GICs regions (black boxes) to highlight the agreement and
differences of the downscaled SMB product with observations
(Fig. 1a). Supplementary Figure 1 shows and briefly discusses the
intricate patterns of SMB and its components over GICs in
four of these regions (Supplementary Discussion); sector five is
discussed below.

A direct comparison with mass loss estimates from indepen-
dent ICESat/CryoSat-2 measurements over the period 2004–2015
demonstrates that the downscaled SMB product with albedo
correction successfully reproduces GICs mass changes (Fig. 2),
including seasonal and interannual variability, for example, the
large difference in mass loss between the summers of 2012 and
2013. The uncertainty in downscaled SMB was estimated at
15.7 Gt yr� 1 (B40%, see Methods). Note that the Greenland’s
GICs area of B81,400 km2 used in this study is smaller by B8%
than previous estimates21,22 due to the omission of unresolved
small ice bodies (o1 km2) in the original GIMP DEM.

A tipping point in GICs mass balance. Figure 3 shows time
series (1958–2015) of annual mean SMB components precipita-
tion (PR), melt (ME), refreezing (RF) and runoff (RU), all in
Gt yr� 1 and spatially integrated over (a) Greenland’s GICs and
(b) the GrIS. Figure 3c zooms in on the refreezing time series.
Using a breakpoint analysis (see Methods), we identify 1997
(±5 years) as the year after which the GICs refreezing regime
starts to decrease and diverges significantly from the GrIS
refreezing regime (black point in Fig. 3c). This marked reduction
in refreezing capacity is representative of a deteriorating firn
layer, the porous, multiyear snow layer between surface fresh
snow (B350 kg m� 3) and the underlying ice (B900 kg m� 3).
Decades of increased melt have reduced pore space to such a
degree that enhanced refreezing can no longer compensate for
increased meltwater production. Because it would take decades to
regrow a healthy firn layer, we interpret 1997 as a tipping point in
the mass balance of Greenland’s GICs.

Discussion
Prior to 1997, Greenland’s GICs average SMB was marginally
negative (� 11.3±15.7 Gt yr� 1; see Supplementary Tables 1 and
2 for numbers in mm w.e. yr� 1), with an insignificant trend of
� 0.01±0.22 Gt yr� 2. Note how, even in this earlier period, melt
(95 Gt yr� 1) persistently and significantly exceeded precipitation
(58 Gt yr� 1), stressing the importance of the refreezing process
for maintaining the mass balance of these Arctic GICs close to
zero (Supplementary Table 1). The situation is very different
for the GrIS, where pre-1997 precipitation (746 Gt yr� 1)
exceeded melt (556 Gt yr� 1) by a wide margin (Supplementary
Table 2). Coincidentally, before 1997 the GICs and the GrIS had a
similar refreezing fraction (RF/ME) of 38% and 43%, respectively.

Between 1997 and 2015, the integrated GICs SMB decreased
at a rate of 1.1±0.6 Gt yr� 2, signifying mass loss accele-
ration, resulting in an average SMB over this period of
� 36.2±15.7 Gt yr� 1. Previous estimates for different
periods2,5,6 (Supplementary Table 3) confirm this recent
increase of GICs mass loss. However, with the new SMB
product we are now able to identify the physical processes
responsible for the post-1997 mass loss acceleration. Figure 3a
unambiguously shows that the trend in SMB is almost exclusively
driven by increased runoff (1.1±0.6 Gt yr� 2), while precipitation
remains constant. A similar pattern emerges for the GrIS; here,
a negative trend in precipitation (� 3.5±2.6 Gt yr� 2) somewhat
reinforces the decrease in SMB (� 10.4±4.0 Gt yr� 2), but
again the latter is dominated by the increase in runoff
(6.9±3.7 Gt yr� 2). But Fig. 3 and Supplementary Tables 1 and
2 also reveal a striking difference in the responses of the GrIS and
Greenland’s GICs to atmospheric warming. On the GrIS (Fig. 3b
and Supplementary Table 2), an important fraction (22%) of the
excess meltwater produced since 1997 has been retained in the
extensive interior firn layer, driven by an increase in refreezing
(RF). In contrast, refreezing decreased on Greenland’s GICs
(Fig. 3c). As a result, runoff outpaces excess meltwater production
by 65% since 1997. It thus appears that the mass balance of
Greenland’s GICs crossed a tipping point in 1997 (Fig. 3c),
implying eventual long-term loss of the firn layer’s refreezing
capacity.

Figure 4 confirms these findings by comparing vertical profiles
of surface mass fluxes integrated over GICs and GrIS elevation
bins, scaled by the maximum height per region (hmax), prior to
and after 1997. Figure 4a,b shows that the equilibrium line
(SMB¼ 0) of the GICs moved significantly upward, that is, from
0.61 to 0.71 of hmax, and is now situated well above the peak in
the hypsometry (0.62, Fig. 4d). In combination with decades of
increased melt, which depleted firn pore space, the GICs firn layer
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is no longer capable of buffering the excess meltwater production.
As a result, runoff increases at the same rate as melt and fully
governs the GICs mass loss (Fig. 4c). Figure 4a,b also shows that
rainfall (RA) is a small (6%) fraction of the liquid water flux
available at the firn layer top, which is dominated by melt. For the
GrIS the equilibrium line has moved upwards from 0.33 to 0.40 of

hmax (Fig. 4e,f), but remains well below the maximum in the GrIS
hypsometry (0.73, Fig. 4h). Therefore, a significant part of the
excess melt is buffered by refreezing (Fig. 4g) and runoff remains
constant above 0.61 of hmax. Although formation of ice lenses
may reduce the retention efficiency in the lower accumulation
zone23,24, we conclude that the extensive and elevated inland firn
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Figure 1 | Greenland SMB patterns and evaluation. (a) Annual mean downscaled SMB (v1.0, see Methods) at 1 km resolution over the GrIS and

neighbouring GICs for 1958–2015. Yellow dots correspond to 331 SMB observation sites used for GrIS (230) and GICs (101) evaluation. Numbered black

boxes depict five regions including stake transects collected over GICs. For each transect, annual mean SMB is plotted from downscaled simulation v1.0

(bmod; dark blue dots) and in situ data (bobs; orange dots). The number of observations, observed and downscaled SMB gradients, r.m.s.e. and mean BIAS

are also listed for each transect. (b) Comparison of ablation measurements collected at 101 GICs sites with downscaled SMB at 1 km (v1.0). The orange

dashed line represents the regression including all measurements (y¼ b1þ b0� x).
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area of the GrIS (Fig. 4h) maintains its refreezing capacity for
now. As a result, the acceleration of GrIS surface mass loss is
less than half that of the GICs (6.1±2.4 mm w.e. yr� 2 versus
13.5±7.4 mm w.e. yr� 2).

To analyse spatial differences, we examined the changes in
runoff, refreezing fraction (RF/ME) and 2-m air temperature in
12 marginal regions of Greenland (1997–2015 minus 1958–1996),
covering 85% of all Greenland’s GICs (Supplementary Fig. 2).
All regions experienced warming and an increase in runoff, but a
marked contrast is found between GICs in north and south
Greenland. Northern GICs experienced a significantly greater
warming than southern GICs (þ 1.0 to 1.5 �C, orange boxes
versus þ 0.6 to 0.8 �C, black boxes)25,26 and a larger relative
increase in runoff (þ 50 to 74% versus þ 17 to 34%). The
reduction in refreezing fraction is also twice as large for northern
than for southern GICs (9 to 14% versus 5 to 7%; Supplementary
Fig. 2). To further investigate the mechanisms involved,
Fig. 5a zooms in on the region of Hans Tausen ice cap in
north Greenland (region 5 in Fig. 1a). The Hans Tausen
region shows a small steady mass loss (2.6±1.4 Gt yr� 1) before
1997 and a tripling in mass loss (7.6±1.4 Gt yr� 1) afterwards
(Supplementary Fig. 3). Figure 5b shows that the change in runoff
(1997–2015 minus 1958–1996) is largest in the narrow ablation
zone along the margins (300–500 mm w.e. yr� 1), but with a
significant contribution from the interior (B100 mm w.e. yr� 1).
This implies that all but the very highest parts of the GICs
accumulation zones now regularly experience runoff, that is, the
firn layer is no longer capable of refreezing all meltwater that is
produced in summer. Figure 5c confirms that the upper firn area
of northern Greenland GICs has experienced the largest negative
changes, up to 50%, in the refrozen meltwater fraction (RF/ME).
Figure 5d relates these changes, as well as changes in rainfall,
to annual mean (downscaled) 2-m air temperature anomalies.
The strong correlation proves that the recent warming has
reduced the refreezing capacity of the firn layer in these high
northern GICs: in warm years, enhanced dry snow densification
and surface melt quickly saturate the pore space of the firn layer.
In addition, the fraction of rainfall doubles from B5 to B10% in
warm compared to cold years, further limiting the formation
of firn. The resulting reduced refreezing capacity means that
continuous warming in the future is likely to further accelerate
Greenland’s GICs mass loss and rapidly erode these highly
sensitive northern ice masses.

Methods
Regional climate model. Output of the Regional Atmospheric Climate Model
(RACMO2.3) is used as input for the downscaling procedure14,16. RACMO2.3
combines the atmospheric dynamics from the High-Resolution Limited Area
Model (HIRLAM) and the physics from the European Centre for Medium-range
Weather Forecasts Integrated Forecast System (ECMWF-IFS)27. The polar version
of RACMO2.3 is developed by the Institute for Marine and Atmospheric Research
Utrecht University (IMAU), to simulate the evolution of SMB over ice sheets
and surrounding smaller glacierized regions. Polar RACMO2.3 incorporates a
multi-layer snow module to simulate firn compaction, meltwater retention and
percolation, refreezing and runoff9. In RACMO2.3, the excess energy available at
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the surface, resulting from closure of the surface energy budget, is used to melt
snow and ice. Liquid water from melt and rain percolates through the firn column,
and is either held as irreducible water or refreezes, progressively reducing pore
space from bottom to top layers until the entire firn column turns into ice
(900 kg m� 3) and no additional water can be stored. At this point, any additional
water is assumed to run off. The model also includes a snow albedo scheme using
prognostic snow grain size28; a drifting snow routine accounting for sublimation
and snow erosion29. For the contemporary Arctic simulation, RACMO2.3 was run
at 11 km and forced on a six-hourly basis by ERA-40 (ref. 30; 1958–1978) and
ERA-Interim31 (1979–2015) re-analyses. The ice mask and topography at 11 km
are based on a 5 km Greenland DEM32. For more information about RACMO2.3,
recent updates and evaluation see refs 14,33,34.

Topography and ice mask. We used a downsampled version of the GIMP DEM17

to downscale the output of RACMO2.3 to a 1 km topography and ice mask
(Supplementary Fig. 4a,b), obtained by averaging the original GIMP DEM at 90-m
resolution. To distinguish between the ice sheet, including glaciers strongly
connected to the ice sheet (corresponding to connectivity level CL2 in ref. 21), and

GICs that are physically or dynamically separated from the ice sheet (respectively
CL0 and CL1 in ref. 21), we used the Programme for Monitoring of the Greenland
Ice Sheet (PROMICE) ice classes projected on the 1 km GIMP ice mask
(Supplementary Fig. 4b). In addition, floating glacier tongues were eliminated using
a 1 km ice grounding line35. This results in a GICs area of B81,400 km2, B8% less
than previous estimates22, owing to unresolved small glaciers in the original GIMP
DEM at 90-m (ref. 17).

Bare ice albedo. To correct for the systematic bare ice albedo overestimation of
RACMO2.3 in low-lying glaciated regions at 11 km, we used a 1 km version of the
500 m MODerate-resolution Imaging Spectroradiometer (MODIS) 16-day Albedo
product (MCD43A3). Bare ice albedo is defined as the average of the 5% lowest
surface albedos recorded for 2000–2015. At 1 km, bare ice albedo values range from
0.15 for dark ice surfaces at the ablation zone edges and local glacier tongues,
to 0.55 under persistent snow cover in the accumulation zone16 (Supplementary
Fig. 4c). In RACMO2.3, bare ice albedo is prescribed from a similar 11 km product
(2001–2010) with a lower threshold of 0.30 (ref. 14). A value of 0.47 is assigned to
glaciated pixels showing no valid MODIS estimate.
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In-situ measurements. A total of 965 SMB measurements collected at 101 stake
sites4 was used to evaluate the downscaled GICs SMB product at 1 km. These
records were combined with another 1,073 observations from 230 sites on the GrIS
(yellow dots in Fig. 1a) to adjust runoff and melt in the downscaling procedure.
The ablation data set4 was compiled as part of the PROMICE36. For consistency,
we only selected data with a temporal overlap with RACMO2.3 (1958–2015), and
rejected sites with a 4100 m height difference relative to the GIMP DEM at 1 km.
To compare downscaled and observed SMB (Fig. 1b), we selected the grid cell with
the smallest elevation bias among the closest pixel and its eight neighbours.

Remote sensing. Elevation changes for 2003–2009 and 2010–2014 were derived
from ICESat and CryoSat-2 measurements, following the methods described in
refs 6,37. For ICESat, observations were grouped every 700 m along repeated
ground tracks, whereas for CryoSat-2, neighbouring observations are collected
within 1 km of each individual echo location. To these clusters of elevation
observations, a model is fitted to estimate the local surface topography and
elevation rate at the central point, where outliers are removed in an iterative
procedure. For full details, see ref 37. After estimating the local topography and
elevation rate for the ICESat and CryoSat-2 periods, local elevation anomalies at
the echo locations can be estimated by adding back the constant elevation rate of
the fitted model to the residuals. These anomalies are subsequently used to
compute monthly volume anomalies for selected regions. We do so by
parameterizing the elevation anomalies as a function of absolute elevation using a
third-order polynomial. The resulting fit is then used to derive regional volume
anomalies within 100 m elevation intervals, by multiplying the polynomial value at
each interval’s midpoint with the total glaciated area within this elevation bin38.
We perform the polynomial fit for nine regions individually6 and sum the results to
obtain the GICs volume anomaly. Finally, volume anomalies are converted to mass
anomalies by assuming a constant density profile, using the density of ice below the
equilibrium line altitude (ELA), and a density of 600±250 kg m� 3 above the ELA.
Figure 2 shows the cumulative GICs mass change; using cumulative values
suppresses noise in the ICESat and CryoSat-2 time series.

Downscaling procedure. The daily, 1 km SMB product is statistically downscaled
from the output of RACMO2.3 at 11 km resolution (1958–2015) to the 1 km GIMP

topography and ice mask (Supplementary Fig. 4a,b), using elevation dependence.
Elevation correction is only applied to SMB components showing a significant
correlation with height: runoff (RU), melt (ME) and sublimation (SU)16; total
precipitation (PR), that is, rainfall (RA) and snowfall (SF), and snowdrift erosion
(ER) are bi-linearly interpolated to the 1 km ice mask, without elevation correction.
Daily SMB is then reconstructed as:

SMB ¼ PR�RU� SU�ER ð1Þ

Elevation dependence. Daily regression parameters are calculated for the
dependence of modelled SMB components on the 11 km RACMO2.3 topography.
A local regression slope, b11 km (mm w.e. per m, Supplementary Fig. 5), is estimated
for each glacierized 11 km pixel using at least five adjacent ice-covered pixels.
By applying the obtained b11 km to the current pixel, the SMB component is
approximated at mean sea level, a11 km (mm w.e., Supplementary Fig. 5). To fully
cover the GrIS and detached GICs, the latter regression parameters are extrapolated
outwards by averaging b11 km from at least three glaciated pixels. An estimate of
a1 km and b1 km is then obtained by interpolating bi-linearly the 11 km regression
parameters to the 1 km ice mask. Runoff, melt and sublimation (Xv0.2) are
calculated using a linear function of the high-resolution topography (h1 km) as:

Xv0:2 ¼ a1 km þ b1 km�h1 km ð2Þ
The downscaled product based on elevation dependence only is hereafter

referred to as version v0.2.

Runoff and melt adjustments. To correct for bare ice albedo overestimation in
RACMO2.3 at 11 km, melt and runoff (v0.2) are adjusted to account for additional
ice melt (MEadd) observed in low-lying regions compared to the downscaled
product v0.2.

MEadd ¼ Da�0:5� SWdirect 1 km

Lf
� 1þ xð Þ ð3Þ

where MEadd (mm w.e. per day) is the additional amount of ice melt calculated
at 1 km (Supplementary Fig. 4c); Da (dimensionless) is the difference between the
averaged bare ice albedo retrieved from the set of regression cells used to downscale
runoff at 11 km and the MODIS albedo product at 1 km; SWdirect 1 km is the
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modelled daily cumulated downward shortwave radiation bi-linearly interpolated
to 1 km; Lf is the latent heat of fusion (3.337� 105 J kg� 1). To account for the slope
of the glacier surface, the dimensionless correction factor for a tilted plane x is
applied to the direct component of modelled downward shortwave radiation. This
correction is required as RACMO2.3 models radiation assuming a horizontal
surface. This factor ranges from 0 for north sloping glaciers to values larger than
1 for south-oriented slopes.

A daily ratio G, between downscaled runoff and melt in v0.2, is applied to
MEadd to calculate the additional runoff (RUadd).

RUadd ¼ G�MEadd ð4Þ
Assuming that the residual misfit between reconstructed and observed SMB

(DSMB) for the different GICs ablation sites is ascribable to underestimated runoff
in narrow ablation zones, RUadd is then scaled by a factor fscale (0.682), obtained by
computing a least-squares fit minimizing DSMB using both GICs and GrIS ablation
measurements. The justification for including GrIS observations is that GICs SMB
is not independent of the GrIS as the regression parameters were extrapolated from
the ice sheet margins onto the GICs. The fact that fscaleo1 indicates a slight
overestimation of the melt adjustment calculated in equation (3), which could be
due to the uncertainties in clouds39 and/or ice albedo underestimation at the ice
caps margins.

fscale

P
DSMB�RUaddP

RUaddð Þ2
ð5Þ

The adjusted amount of runoff (RUv1.0) is obtained by adding RUadd to the
downscaled runoff (RUv0.2):

RUv1:0 ¼ RUv0:2 þ fscale�RUadd ð6Þ
The corrected melt (MEv1.0) is obtained in a similar manner:

MEv1:0 ¼ MEv0:2 þMEadd ð7Þ
Refreezing (RFv1.0) is estimated as a residual between adjusted melt, runoff and

rainfall:

RFv1:0 ¼ RAþMEv1:0 �RUv1:0 ð8Þ
The downscaled SMB data set resulting from the combined elevation correction

and runoff adjustment is referred to as version v1.0.

Precipitation correction. To eliminate the systematic negative SMB bias of
RACMO2.3 in Greenland’s accumulation zones16 (� 37.5 mm w.e. yr� 1), daily
precipitation totals from v0.2 were adjusted in regions presenting a positive annual
cumulative SMB in v1.0:

PRv1:0¼ PRv0:2� 1þ sSMB

PRa
v0:2

� �
ð9Þ

where PRv1.0 is the daily adjusted total precipitation v1.0, PRv0.2 is the daily bi-
linearly interpolated total precipitation v0.2, PRv0.2

a is the annual cumulative bi-
linearly interpolated total precipitation v0.2 and sSMB is the accumulation zone
SMB bias in the downscaled product v1.0.

Product uncertainty. Assuming that the remaining discrepancies in Fig. 1b consist
of a systematic bias due to model uncertainty, combined with additional random
scatter, attributed to observations, a product uncertainty can be obtained by
integrating the average accumulation and ablation zone biases and adding them as
if they were independent. To that end, SMB measurements (Fig. 1b) were binned in
500 mm w.e. bins for which the mean bias was estimated, that is, modelled minus
measured SMB. The average uncertainty that results is 247 mm w.e. for the ablation
zones (8 bins) and 135 mm w.e. for the accumulation zones (6 bins). The product
SMB uncertainty of 15.7 Gt yr� 1 (B40%) is obtained by summing the mean
ablation bias integrated over the GICs ablation zones (45,600 km2) and the mean
accumulation bias over the whole GICs area (81,400 km2), to account for a
potential precipitation bias in the ablation zones.

Uncertainty ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
biasablation�areaablationð Þ2 þ biasaccumulation�areaGICsð Þ2

q
ð10Þ

Average biases for the GrIS accumulation (22 mm w.e.) and ablation zones
(170 mm w.e.) have been calculated in a similar fashion and provided a product
SMB uncertainty of 52.5 Gt yr� 1 (B20%). These calculations were repeated for
250 mm w.e. SMB bins, which yielded similar results.

Breakpoint analysis. We applied the segmented regression method described in
ref. 40 to retrieve breakpoints, that is, structural changes, in the GICs-integrated
refreezing time series. To detect a break point, the technique fits a regression
function, consisting of segments with different slopes, to the studied data set. The
algorithm calculates multiple continuous regressions before and after the break
points and determines an optimized solution. A confidence interval can be
estimated for the resulting break point by using the 95% Wald-based statistics. In
this study, we used the segmented regression method to identify a tipping point in
the GICs refreezing capacity at 1997±5 years.

Data availability. The daily, 1 km SMB data set v1.0 presented in this study is
freely available from the authors without conditions. The background in
Supplementary Fig. 1 stems from Landsat satellite imagery freely available at
https://landsat.usgs.gov/.
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