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Université de Fribourg
Chemin du Musée 23

1700 Fribourg, Switzerland

anand.dessai@unifr.ch

MICHAEL WIEMELER∗∗

Institut für Mathematik
Universität Augsburg

86135 Augsburg, Germany

michael.wiemeler@math.uni-
augsburg.de

Abstract. We give the diffeomorphism classification of complete intersections with
S1-symmetry in dimension ≤ 6. In particular, we show that a 6-dimensional complete
intersection admits a smooth non-trivial S1-action if and only if it is diffeomorphic to
the complex projective space or the quadric. We also prove that in any odd complex
dimension only finitely many complete intersections can carry a smooth effective action
by a torus of rank > 1.

1. Introduction

The use of algebraic and differential topology in the study of compact smooth
transformation groups has a long history and many methods have been developed
over the years. Often the strength/limitation of these methods can already be seen
if one applies them to understand symmetries of manifolds of a particularly simple
topological type, for example homotopy spheres or homotopy complex projective
spaces. A prominent instance is a conjecture of Petrie [26] stating that among
homotopy complex projective spaces only the ones with standard total Pontrja-
gin class can possibly admit a smooth non-trivial action by the circle S1 (cf. for
example [11] and references therein for methods and partial results confirming
the conjecture). For a new result in this direction see Theorem 7.6, where the
conjecture is proven in complex dimension < 12 for rank two torus actions.

The main purpose of this paper is to study symmetries of complete intersections.
In particular, we consider the following

Question 1.1. Which complete intersections admit a smooth non-trivial S1-ac-
tion?

This question bears resemblance to Petrie’s conjecture although here the man-
ifolds are not considered up to homotopy. In fact, the characteristic classes of a
complete intersection live in a subring which is rationally isomorphic to the coho-
mology ring of a complex projective space and there is evidence that the Pontrjagin
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classes are relevant for the question above (see Theorem 3.3).
Complete intersections play an important rôle in algebraic geometry. According

to a conjecture of Hartshorne [14] smooth subvarieties in projective space are of
this kind provided their codimension is sufficiently small. In topology the classifica-
tion of complete intersections up to diffeomorphism, homeomorphism or homotopy
equivalence has been an active research area for many decades (see for example
[24], [23], [22, Sect. 8]).

Many results are known about the symmetries of complete intersections viewed
as complex manifolds. It is a classical fact that the automorphism group of a
complete intersection is finite if its first Chern class is negative (cf. [20, III.2]).
Moreover, as shown recently [5, Thm. 3.1] for complex dimension ≥ 2 the automor-
phism group is zero-dimensional except for the quadric and the projective spaces.
In other words only the homogeneous complete intersections admit a non-trivial
circle action preserving the complex structure. In contrast, only little seems to be
known about smooth symmetries. Understanding the symmetries of a complete
intersection (viewed as a smooth manifold) is a natural but difficult problem. We
believe that these manifolds are good candidates to test the strength/limitation of
methods from the theory of transformation groups.

In this paper we classify complete intersections with non-trivial smooth S1-
action in real dimension ≤ 6. We also prove that in any odd complex dimension
only finitely many complete intersections can carry a smooth effective action by a
torus of rank > 1.

Let us first recall that a complete intersection Xn(d1, . . . , dr) ⊂ CPn+r is a
smooth 2n-dimensional manifold given by a transversal intersection of r non-
singular hypersurfaces in complex projective space. The hypersurfaces are defined
by homogeneous polynomials whose degrees are given by an unordered r-tuple
d1, . . . , dr. In general, the induced complex structure of Xn(d1, . . . , dr) depends
on the choice of the polynomials (cf. [16, §2.1]). However, as noted by Thom, the
oriented diffeomorphism type of a complete intersection only depends on n and
the multi-degree (d1, . . . , dr).

The two-dimensional complete intersections with S1-symmetry are diffeomor-
phic to the sphere or the torus and are given by X1(1) ∼= X1(2) ∼= S2 and
X1(3) ∼= X1(2, 2) ∼= S1 × S1. This follows directly from the Lefschetz fixed point
formula for the Euler characteristic and the classification of surfaces. Note that
these complete intersections also admit holomorphic S1-actions with respect to
their natural complex structure (cf. [5, Thm. 3.1]).

In dimension four the classification of complete intersections with holomorphic
S1-symmetries does not coincide with the classification for smooth S1-symmetries.
Using the Seiberg–Witten theory one can show the following

Theorem 1.2 (Thm. 3.1). A 4-dimensional complete intersection X2(d1, . . . , dr)
admits a smooth non-trivial S1-action if and only if X2(d1, . . . , dr) is diffeomor-
phic to a complex projective plane X2(1), a quadric X2(2), a cubic X2(3) or an
intersection of two quadrics X2(2, 2).
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Note that the 4-dimensional complete intersections with smooth S1-symmetries
are precisely the ones with positive first Chern class. In dimension six we prove
that only the homogeneous complete intersections admit S1-symmetries.

Theorem 1.3. A 6-dimensional complete intersection X3(d1, . . . , dr) admits a
smooth non-trivial S1-action if and only if X3(d1, . . . , dr) is diffeomorphic to the
complex projective space X3(1) or the quadric X3(2).

In particular, some 6-dimensional complete intersections, like the cubic X3(3)
or the quartic X3(4), have positive first Chern class but do not admit a smooth
non-trivial S1-action (for higher dimensional examples w.r.t. torus actions see
Corollary 7.5). By Yau’s solution [33] of the Calabi conjecture these manifolds also
admit metrics of positive Ricci curvature. This answers a question of Wilderich
Tuschmann in the negative. He asked the following variant of a problem of Yau:
Does every manifold which admits a metric of positive Ricci curvature also admit
a smooth non-trivial circle action? Finding a counterexample to this question was
the original motivation for our investigation. The problem of Yau [34, Probl. 3,
p. 671], which asks whether a manifold of positive sectional curvature admits a
smooth effective S1-action, is still open.

Theorem 1.3 follows from a more general statement about 6-dimensional man-
ifolds (see Theorem 3.3) which we prove using methods from equivariant coho-
mology and equivariant index theory. For Hamiltonian circle actions Theorem 1.3
can also be deduced from work of Tolman [28] on the classification of Hamiltonian
circle actions on symplectic 6-dimensional manifolds with b2 = 1.

In higher dimensions only partial results towards a classification of complete
intersections with S1-symmetry are known (at least to the authors). Examples
with S1-symmetry, which come into mind, are of course the homogeneous ones,
i.e., the complex projective space and the quadric, which are diffeomorphic to
SU(n+1)/S(U(n)×U(1)) and SO(n+2)/SO(n)×SO(2), respectively. It is tempting
to conjecture that, as in the complex setting, these are the only ones.

By a theorem of Atiyah and Hirzebruch [3] the index of the Dirac opera-
tor, the Â-genus, vanishes on spin complete intersections with smooth non-trivial
S1-action. In dimension 2n = 4k the Â-genus of a spin complete intersection
Xn(d1, . . . , dr) vanishes if and only if n + r + 1 − ∑r

j=1 dj > 0, i.e., if the first
Chern class is positive. This was first shown by Brooks [8] who gave an explicit
formula for the Â-genus in terms of n and the multi-degree (d1, . . . , dr). In partic-
ular, the number of diffeomorphism types of complete intersections with smooth
non-trivial S1-action is finite if one restricts to spin complete intersections and
to a fixed even complex dimension. Also diffeomorphism finiteness is known for
complete intersections in odd complex dimensions for nice Pin(2)-actions (cf. also
[10, Thm. 5.1] for a related result for special S3-actions). Here the proof relies on
vanishing results for indices of twisted Spinc-Dirac operators and twisted elliptic
genera given in [9], [11, Sect. 4]. As shown recently by the second author [31] this
method can also be applied in the case of smooth effective torus actions provided
the rank of the torus is larger than the second Betti number of the manifold. For
complete intersections this gives the following finiteness theorem.
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Theorem 1.4 (Cor. 7.4). For each odd n, there are, up to diffeomorphism, only
finitely many complete intersections of complex dimension n which admit a smooth
effective action of a 2-dimensional torus.

More precise classification results have been obtained by Lev Kiwi for complex
5-dimensional complete intersections with circle action. His PhD thesis contains
an almost complete analysis of the possible fixed point data of circle actions in this
dimension. From this analysis it follows that a complex 5-dimensional complete
intersection which admits a smooth effective action of a two-dimensional torus is
diffeomorphic to the complex projective space or the quadric, i.e., is homogeneous
(cf. [19] for details).

The paper is structured as follows. In the next section we review basic properties
of complete intersections. In Section 3 we explain the aforesaid classification of
4-dimensional complete intersections with S1-symmetry and derive Theorem 1.3
from a more general theorem about certain 6-dimensional manifolds (see Theorem
3.3). In Section 4 we recall the Atiyah–Bott–Berline–Vergne localization formula
and derive a structural result for manifolds whose even degree rational cohomology
subring is like the one of a complex projective space (see Proposition 4.3). Section 5
contains some preliminary facts about 6-dimensional manifolds with S1-symmetry.
The proof of Theorem 3.3 consists of a case-by-case study of the possible S1-fixed
point configurations which is carried out in Section 6. In Section 7 we first discuss
vanishing theorems for twisted elliptic genera of Spinc-manifolds with torus action
and then prove Theorem 1.4 as well as a special case of the Petrie conjecture (see
Theorem 7.6). In the appendix we collect formulas from equivariant cohomology
and equivariant index theory which are used in the proof.

Acknowledgements. The first author wants to thank Volker Puppe for stimu-
lating discussions on the subject and on a possible generalization to continuous
S1-actions. The second author wants to thank Nigel Ray and the University of
Manchester for hospitality while he was working on this paper. We also want to
thank Daniel Loughran for giving us the reference [5] and Matthias Franz for
helpful comments on an earlier version of this paper.

2. Basic properties of complete intersections

In this section we review relevant topological properties of complete intersec-
tions. Let M := Xn(d1, . . . , dr) be a complete intersection given by a transversal
intersection of r non-singular hypersurfaces in CPn+r of degree d1, . . . , dr. We
recall that the oriented diffeomorphism type of M only depends on n and the
multi-degree (d1, . . . , dr). Note that we may always assume dj ≥ 2 if r ≥ 2. In
fact, up to diffeomorphism, intersection with hypersurfaces of degree one amounts
to cutting down the dimension of the ambient complex projective space.

Let γ denote the restriction of the dual Hopf bundle over CPn+r to M and let
x := c1(γ) ∈ H2(M ;Z). For later reference we collect some properties of M which
follow from the Lefschetz hyperplane theorem, Poincaré duality and properties of
characteristic classes.
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Proposition 2.1.

(1) M is simply connected for n > 1.
(2) H∗(M ;Z) is torsion-free. The cohomology groups of M and CPn are iso-

morphic outside the middle dimension, i.e.,Hi(M ;Z) ∼= Hi(CPn;Z) for
i �= n. Moreover H2i(M ;Z) is generated by xi for 2i < n.

(3) [xn]M =
∏

j dj, where [ ]M denotes evaluation on the fundamental cycle.
(4) The total Chern class of M is given by

c(M) = (1 + x)n+r+1 ·
r∏

j=1

(1 + dj · x)−1.

In particular, c1(M) = (n+ r + 1−∑
j dj) · x.

(5) The total Pontrjagin class of M is given by

p(M) = (1 + x2)n+r+1 ·
r∏

j=1

(1 + d2j · x2)−1.

In particular, p1(M) = (n+ r + 1−∑
j d

2
j ) · x2.

(6) The Euler characteristic of M , χ(M), is equal to [cn(M)]M . For n = 1,
χ(M) = d1 · . . . · dr · (2 −

∑r
j=1(dj − 1)). For n = 3, χ(M) < 0 except for

M = X3(1) = CP 3 and M = X3(2) = SO(5)/(SO(3) × SO(2)) which have
Euler characteristic equal to 4.

For a proof of these properties see for example [16]. The inequality for the Euler
characteristic stated in (6) may be deduced from [16, formula (5), p. 465], see
also [12].

If a complete intersection comes with an action by a torus T one can consider
the Serre spectral sequence for H∗(MT ;Q), where MT := ET ×T M is the Borel
construction. It turns out that the spectral sequence degenerates at the E2-level.
We will explain this in the following more general situation:

Let M be a 2n-dimensional closed oriented manifold, n ≥ 2. If n is even we
assume that H∗(M ;Q) is concentrated in even degrees. If n is odd we assume
b1(M) = 0 and that the rational cohomology in even degrees, Hev(M ;Q), is gen-
erated by elements of degree 2. Note that these assumptions are satisfied by
complete intersections. Suppose a torus T acts on M . Then we have

Lemma 2.2. The Serre spectral sequence for H∗(MT ;Q) degenerates at the E2-
level, i.e.,M is equivariantly formal.

Proof. If n is even the cohomology of M is concentrated in even degrees. Hence,
the Serre spectral sequence degenerates in this case.

Therefore assume that n is odd. Since b1(M) = 0, all differentials dr vanish
on E∗,2

r . Since Hev(M ;Q) is generated by elements of degree 2 it follows by
the multiplicativity of dr that all differentials dr vanish on E∗,2∗

r . Suppose the
differentials ds, s < r, vanish on E∗,∗

s . To conclude that this also holds for dr we
need to show that the image of an element y ∈ E∗,2∗+1

r under dr is zero. Looking at
homogeneous parts we may assume that y ∈ E∗,2n−2k+1

r . By dimensional reasons
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we have E∗,2n+1
2 = E∗,2n+1

∞ = 0. Hence, it follows from the multiplicativity of the
differential that for classes xi ∈ E0,2

r
∼= H2(M ;Q), i = 1, . . . , k, one always has

dr(y)·
∏

i xi = dr(y ·
∏

i xi) = 0. Note that E∗,∗
r = E∗,∗

2
∼= H∗(BS1;Q)⊗H∗(M ;Q).

Therefore, by Poincaré duality, it follows that dr(y) = 0. Hence, the spectral
sequence degenerates at the E2-level. �

3. S1-actions on low dimensional complete intersections

In this section we discuss Question 1.1 in more detail for complete intersections
in low dimensions. We give a proof of Theorem 1.2 using Seiberg–Witten theory.
We also state a theorem about certain 6-dimensional manifolds and apply it to
obtain the classification of 6-dimensional complete intersections with S1-symmetry
mentioned in the introduction.

Let us start with the discussion for surfaces. By the classical Lefschetz fixed
point formula the Euler characteristic of a manifold with S1-action is equal to
the Euler characteristic of the S1-fixed point manifold. Combining this with the
classification of surfaces it follows that the only orientable closed 2-manifolds with
S1-symmetry are the sphere S2 and the torus S1 × S1. Applying the formula
for the Euler characteristic given in Proposition 2.1(6) one finds that among 2-
dimensional complete intersections only X1(1) ∼= X1(2) ∼= S2 and the elliptic
curves X1(3) ∼= X1(2, 2) ∼= S1 × S1 admit a smooth non-trivial S1-action.

In dimension four Seiberg–Witten theory leads to the following classification,
probably well-known to the experts. Since we couldn’t find a proof in the literature,
we give an argument below.

Theorem 3.1. A 4-dimensional complete intersection X2(d1, . . . , dr) admits a
smooth non-trivial S1-action if and only if X2(d1, . . . , dr) is diffeomorphic to a
complex projective plane X2(1), a quadric X2(2), a cubic X2(3) or an intersection
of two quadrics X2(2, 2).

Proof. We first explain why X2(1), X2(2), X2(3) and X2(2, 2) admit a smooth
non-trivial S1-action. For the complex projective space X2(1) and the quadric
X2(2), which are homogeneous, this is obvious. One knows that X2(3) (resp.
X2(2, 2)) is obtained by blowing up CP 2 at 6 (resp. 5) points in general position
(cf. [24, p. 653], [25], [21, Sect. 3.5]). Hence, X2(3) ∼= CP 2�6CP 2 and X2(2, 2) ∼=
CP 2�5CP 2. Since any connected sum of CP 2’s and CP 2’s admits a smooth non-
trivial S1-action, the same holds for X2(3) and X2(2, 2).

To show that no other complete intersection admits a smooth non-trivial S1-
action we combine certain facts about Seiberg–Witten invariants. For any 4-di-
mensional complete intersectionM different fromX2(1), X2(2), X2(3) andX2(2, 2)
one knows that b+2 (M) (the dimension of the maximal subspace of H2(M) on which
the intersection form is positive definite) is greater than one (cf. [24, page 650]).
Since M is Kähler with b+2 (M) > 1, the Seiberg–Witten invariant for M with its
preferred Spinc-structure is ±1 by the pioneering work of Witten [32]. On the
other hand, Baldridge showed in [4] that for any smooth closed 4-manifold with
b+2 > 1 the Seiberg–Witten invariant vanishes if the manifold admits a circle action
with fixed point. Since χ(M) > 0 any S1-action on M must have a fixed point.
Hence, M does not admit a smooth non-trivial S1-action. �
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Remarks 3.2. (1) By Freedman’s classification [13] of simply connected topological
4-dimensional manifolds and the classification of indefinite odd forms, any non-spin
complete intersection X2(d1, . . . , dr) is homeomorphic to a connected sum of CP 2’s
and CP 2’s and, hence, admits a continuous non-trivial S1-action.

(2) The only spin complete intersection with smooth non-trivial S1-action in
dimension 4 is the quadric X2(2). This follows directly from the Â-vanishing the-
orem of Atiyah–Hirzebruch [3] and the formula for the first Pontrjagin class given
in Proposition 2.1 (5). The Â-vanishing theorem does not apply in general to
continuous S1-actions. However, it is known that the signature vanishes on a 4-
dimensional spin complete intersection with continuous S1-action provided the
involution in S1 acts non-trivially and locally smoothly [27] or the number of orbit
types near every S1-fixed point is at most four [18]. It follows that among spin
complete intersections the quadric is the only one with such an action.

We now come to the classification of complete intersections with smooth S1-
action in dimension 6 stated as Theorem 1.3 in the introduction. This result is a
consequence of the following theorem which will be proved in Section 6.

Theorem 3.3. Let M be a smooth oriented closed 6-dimensional manifold with
torsion-free homology, b1(M) = 0, H2(M ;Z) = 〈x〉, p1(M) = ρ · x2 with ρ ≤ 0,
x3 �= 0 and χ(M) < 4. Then M does not support a smooth non-trivial circle
action.

Proof of Theorem 1.3. The complex projective space X3(1) and the quadric X3(2)
are homogeneous and, hence, admit a smooth non-trivial S1-action.

Now assume M := X3(d1, . . . , dr) is different from X3(1) and X3(2). Then,
either r = 1 and d1 ≥ 3 or r ≥ 2 and dj ≥ 2 ∀ j. In view of Proposition 2.1 M
satisfies all the conditions of Theorem 3.3 and, hence, M does not admit a smooth
non-trivial S1-action. �
Remark 3.4. Note that there are examples with nontrivial circle action and ρ = 1
which satisfy all the other conditions in Theorem 3.3. They can be constructed as
follows.

There are linear S1-actions on S3 which have one-dimensional fixed point sets.
For a fixed point the isotropy representation at this point is completely arbitrary.
By taking products of such actions we get an action of S1 on S3 × S3 with a
two-dimensional fixed point set and arbitrary isotropy representations at the fixed
points.

Moreover, we may restrict the action of SO(5) on the complete intersection
X3(2) = SO(5)/SO(3)×SO(2) to a subgroup of SO(5) isomorphic to S1 such that

X3(2)
S1

has a two-dimensional component.
Therefore we may form the S1-equivariant connected sum of S3×S3 and X3(2).

This connected sum satisfies all the assumptions of Theorem 3.3 except that the
first Pontrjagin class p1((S

3 × S3)�X3(2)) is equal to x2.

Remark 3.5. For a 6-dimensional manifold satisfying the cohomological assump-
tions in Theorem 3.3 there are, by surgery theory, infinitely many pairwise non-
diffeomorphic smooth manifolds inside its homotopy type with nonpositive first
Pontrjagin class (i.e., p1 = ρ ·x2 with ρ ≤ 0). By Theorem 3.3 none of these admit
a smooth non-trivial S1-action.
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4. Atiyah–Bott–Berline–Vergne localization formula

In this section we recall the Atiyah–Bott–Berline–Vergne localization formula
and illustrate its strength by a number of applications which will be used in the
subsequent sections. For more information on the localization formula as well
as some explicit formulas we refer to the appendix A.1. In the following we will
restrict to smooth S1-actions. However, many of the results also carry over to more
general situations. In particular, Proposition 4.3 below can be extended directly
to torus actions.

Let M be a smooth closed oriented connected m-dimensional manifold with
smooth S1-action and MS1 := ES1 ×S1 M the Borel construction.

Let [ ]M : Hm(M ;Z) → H0(pt;Z) ∼= Z denote evaluation on the funda-
mental cycle of M and let [ ]M also denote the integration over the fiber map
Hm(MS1 ;Z) → H0(ptS1 ;Z) = H0(BS1;Z) ∼= Z.

Let y ∈ Hm(M ;Z) and suppose ȳ ∈ Hm(MS1 ;Z) is an equivariant cohomology
class which restricts to y under H∗(MS1 ;Z) → H∗(M ;Z). Note that [y]M = [ȳ]M
since deg y = dimM . By the localization formula in equivariant cohomology of
Atiyah–Bott and Berline–Vergne [6], [1] the equivariant class [ȳ]M can be computed

in terms of local data at MS1

:

[y]M = [ȳ]M =
∑

Z⊂MS1

μ(ȳ, Z). (4.1)

Here the sum runs over the connected components Z of MS1

(with fixed orienta-
tion) and the local datum μ(ȳ, Z) at Z is given by

μ(ȳ, Z) = [(ȳ|Z) · eS1(νZ)
−1]Z ,

where ȳ|Z is the restriction of ȳ to Z and eS1(νZ) is the Euler class of the equiv-
ariant normal bundle of Z ⊂ M .

In the following we will assume that x ∈ H2(M ;Z) is a class which can be lifted
to an equivariant class x̄ ∈ H2(MS1 ;Z). A simple spectral sequence argument
shows that for b1(M) = 0 this is always the case. In more geometric terms this
means that the S1-action lifts to the complex line bundle γ over M with c1(γ) = x
and x̄ is the first Chern class of the equivariant line bundle [15, Cor. 1.2]. Moreover,
the choice of x̄ corresponds to the choice of the lift of the action to γ.

The restriction of x̄ to a component Z of MS1

takes the form x|Z +aZ ·z, where
z ∈ H2(BS1;Z) is the preferred generator and aZ ∈ Z is the weight of the S1-
representation given by restricting γ to a point in Z. Hence, the S1-equivariant first
Chern class x̄ at the connected components is given by {x|Z + aZ · z | Z ⊂ MS1}.
For any l ∈ Z we can choose as a lift the class x̄+ l · z or, more geometrically, we
can change the S1-action on γ by tensoring the line bundle with the complex one
dimensional representation with weight l. Note that for the new lift the restriction
to the connected components is given by {x|Z + (aZ + l) · z | Z ⊂ MS1}. In
particular, we can choose for a component Z a lift x̄Z ∈ H2(MS1 ;Z) of x such
that the restriction of x̄Z to Z is equal to x|Z (i.e., a fiber of γ over a point of Z
is a trivial S1-representation). For later use let us point out the following lemma
which follows directly.
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Lemma 4.1. Let y ∈ Hm(M ;Z) be divisible by xr and let ȳ ∈ Hm(MS1 ;Z) be an
equivariant lift of y which is divisible by x̄r

Z . Suppose x|rZ vanishes in H∗(Z;Q).
Then the local datum μ(ȳ, Z) in (4.1) vanishes. �

Next we apply the foregoing to the situation where M is of even dimension,
m = 2n, and [xn]M �= 0. Let Zi, i = 1, . . . , k, denote the connected components of

MS1

and let ri ≥ 0 be such that x|riZi
�= 0 and x|ri+1

Zi
= 0 in H∗(Z;Q). Then we

have

Lemma 4.2.
∑

i(ri + 1) ≥ n+ 1.

Proof. Let us assume to the contrary that
∑

i(ri + 1) ≤ n. Then we can choose
lifts ξj , j = 1, . . . , n, of x such that for each i at least ri + 1 of the ξj ’s have the
property that their restriction to Zi is equal to x|Zi .

Let ȳ :=
∏

j ξj ∈ H2n(MS1 ;Z). By the previous lemma the local datum μ(ȳ, Zi)
of [ȳ]M at Zi vanishes for every i. This contradicts [ȳ]M = [xn]M �= 0 in view of
(4.1). �

In terms of Betti numbers, the last lemma says that the sum of even Betti
numbers of MS1

, bev(M
S1

), is at least n + 1 (note that bev(M
S1

) =
∑

i bev(Zi)
and bev(Zi) ≥ ri + 1 for trivial reasons). In the case bev(M) = n + 1 one obtains
the following structural result.

Proposition 4.3. Let M be a smooth S1-manifold of dimension m = 2n with
b1(M) = 0 such that

Hev(M ;Q) = Q[x]/(xn+1) ∼= Hev(CPn;Q)

as algebras with deg x = 2. Let x̄ ∈ H2(MS1 ;Q) be a lift of x. Let Z1, . . . , Zk be

the components of MS1

and ni =
1
2 dimZi.

For i = 1, . . . , k let pti ∈ Zi and ai = x̄|pti ∈ H2(BS1;Q). Then we have:

(1) Hev(Zi;Q) ∼= Hev(CPni ;Q),
(2) x restricts to a generator of H2(Zi;Q),
(3)

∑
i(ni + 1) = n+ 1.

(4) The ai are pairwise distinct.

Note that, by Proposition 2.1, the assumptions on the cohomology ring are sat-
isfied by any complete intersection of odd complex dimension. The proposition can
be shown by adapting the classical arguments for cohomology complex projective
spaces with circle action (cf., e.g., [7, VII, Thm. 5.1] or [17, Thm. IV.3]) to the
situation above. Here we will give a proof based on the localization formula (4.1).

Proof. Let us recall that one always has bev(M
S1

) ≤ bev(M). This follows from an
inspection of the spectral sequence for the Borel construction MS1 → BS1 (cf., for

example, [7, VII, Thm. 2.2]). Here we have bev(M
S1

) = bev(M) = n+ 1 since by
Lemma 2.2 the spectral sequence degenerates (cf. [7, VII, Thm. 1.6]). By the last

lemma, bev(M
S1

) =
∑

i bev(Zi) ≥
∑

i(ri +1) ≥ n+1 = bev(M). Thus we get ri =
ni, bev(Zi) = ni + 1 and Hev(Zi;Q) ∼= Q[x|Zi ]/(x|ni+1

Zi
)) ∼= Hev(CPni ;Q). This

proves the first three statements. For the last statement assume to the contrary
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that there exist components Zs �= Zt with as = at. For the other components Zi,
i �∈ {s, t}, let us choose lifts ξj , j = 1, . . . , n−ns −nt − 1, of x such that for each i
at least ni + 1 of the ξj ’s have the property that their restriction to Zi is equal to
x|Zi . Let ξ be the lift of x such that the restriction to Zs and Zt is equal to x|Zs

and x|Zt , respectively. Applying the localization formula to ξns+nt+1
∏

j ξj we get
using Lemma 4.1 the contradiction [xn]M = 0. Hence, the ai are pairwise distinct.
�

5. Preliminaries for the proof of Theorem 3.3

Let M be a smooth orientable closed 6-dimensional manifold with torsion-free
homology, b1(M) = 0 and b2(M) = 1.

Let x be a generator of H2(M ;Z). The manifolds we are interested in fulfill the
following conditions:

(1) The Euler characteristic of M satisfies χ(M) < 4.

(2) p1(M) = ρ · x2 with ρ ≤ 0.

(3) x3 �= 0.

We fix the orientation of M such that t := [x3]M > 0. Here [ ]N denotes, as
before, evaluation on the fundamental cycle of an oriented closed manifold N .

Note that b3(M) is even, since the intersection form is skew-symmetric. If M
is simply connected, then, by the structure result of Wall [29], M is diffeomorphic
to the connected sum of a twisted complex projective space (with twist number t)
and b3(M)/2 copies of S3 × S3.

We now assume that M admits a smooth effective S1-action. In the following
we identify Z/mZ with the cyclic subgroup of order m in S1. We use the short-
hand notation bodd =

∑
2k+1 b2k+1 and bev =

∑
2k b2k for the odd and even Betti

numbers, respectively.

Proposition 5.1. bev(M
S1

) = bev(M) = 4. For a prime p and l > 0,

bev(M
Z/pl

Z) = rk Hev(MZ/pl
Z;Z/pZ) = rk Hev(M ;Z/pZ) = 4.

The following type of argument is well known and only included for completeness
and for the convenience of the reader.

Proof. By Lemma 2.2 the spectral sequence for M ↪→ MS1 → BS1 degenerates
at the E2-level which implies bev(M

S1

) = bev(M) = 4 (cf. [7, Thm. 1.6, Thm. 2.1,
p. 374–375] or apply Proposition 4.3).

Note that S1 acts onMZ/pl
Z and (MZ/pl

Z)S
1

= MS1

. We fix a prime q 
 0 such

that the action of Z/qZ ⊂ S1 satisfies MZ/qZ = MS1

, bi(M) = rk Hi(M ;Z/qZ),

bi(M
Z/pl

Z) = rk Hi(MZ/pl
Z;Z/qZ) and bi(M

S1

) = rk Hi(MS1

;Z/qZ).

Recall from [7, Thm. 2.2, p. 376–377] that for any smooth S1-manifold Z and
any prime p one has the inequality rk Hev(ZZ/pZ;Z/pZ) ≤ rk Hev(Z;Z/pZ). By

induction we have rk Hev(ZZ/pl
Z;Z/pZ) ≤ rk Hev(Z;Z/pZ). Recall also that

bi(X) ≤ rk Hi(X;Z/pZ) for any space X. As an application of these properties
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one obtains

bev(M
S1

) = rk Hev(MS1

;Z/qZ) = rk Hev((MZ/pl
Z)Z/qZ;Z/qZ)

≤ rk Hev(MZ/pl
Z;Z/qZ) = bev(M

Z/pl
Z)

≤ rk Hev(MZ/pl
Z;Z/pZ) ≤ rk Hev(M ;Z/pZ).

Since the homology of M is torsion-free rk Hev(M ;Z/pZ) = rk Hev(M ;Z) =

bev(M) = 4. Since bev(M
S1

) = 4 all inequalities in the display formula above are
in fact equalities. In particular,

bev(M
Z/pl

Z) = rk Hev(MZ/pl
Z;Z/pZ) = rk Hev(M ;Z/pZ) = 4. �

Corollary 5.2. For any prime p and l > 0 the fixed point manifold MZ/pl
Z is

orientable.

Proof. If p is an odd prime this is trivial, since the action of Z/plZ on the normal
bundle of the fixed point manifold induces a complex structure. If p = 2 the claim

follows from Proposition 5.1. Let X be a connected component of MZ/2lZ. Since
Z/2lZ acts orientation preserving X is even-dimensional, say dimX = 2k.

Since b2i(X) ≤ rk H2i(X;Z/2Z) and bev(M
Z/2lZ) = rk Hev(MZ/2l

Z;Z/2Z),
by Proposition 5.1, we see that b2k(X) = rk H2k(X;Z/2Z) = 1. Hence, X is
orientable. �
Remark 5.3. Suppose F is a connected component of the fixed point manifold
MZ/nZ, n > 1. Then one can apply the corollary above for a prime power dividing
n to see that F is orientable.

Next we recall the classical results for the Euler characteristic and signature of
S1-manifolds. By the Lefschetz fixed point formula for the Euler characteristic

χ(M) = χ(MS1

) =
∑

Z⊂MS1

χ(Z), (5.1)

where the sum runs over the connected components Z of MS1

. An analogous
formula holds for the signature if one chooses orientations correctly. Recall that
the S1-action induces a complex structure and an orientation on the normal bundle
νZ of Z. For later reference we remark that with respect to this complex structure
on νZ the normal S1-weights at Z are all positive. We equip Z with the orientation
which is compatible with the orientations of νZ and M . It follows from the rigidity
of the equivariant signature (see (A.10)) that

sign(M) = sign(MS1

) =
∑

Z⊂MS1

sign(Z).

Note that if we replace the S1-action by the inverse action (by composing the
action with the isomorphism S1 → S1, λ �→ λ−1), the orientation of Z will change
if and only if Z has codimension ≡ 2 mod 4, i.e., if the dimension of Z is 0 or 4.
In order to simplify the discussion we will make the following
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Convention 5.4. If the S1-action has at least one isolated fixed point, then we
choose one of them, denoted by pt, and replace the action by the inverse action, if
necessary, so that pt has positive orientation.

Next consider the complex line bundle γ over M with c1(γ) = x. Since b1(M) =
0, we may lift the action to γ (cf. [15, Cor. 1.3]). We first consider a fixed lift of

the S1-action. Let Z be a connected component of MS1

. At a point in Z the fiber
of γ is a complex one-dimensional S1-representation whose isomorphism type is
constant on Z. We denote the weight of this representation by aZ ∈ Z. For any
l ∈ Z we can choose a lift of the S1-action to γ such that the S1-equivariant first
Chern class at the connected components is given by {x|Z+(aZ+l)·z | Z ⊂ MS1}
(see Section 4).

Theorem 3.3 will follow from a case-by-case study of the possible S1-fixed point
configurations. Since [x3]M �= 0 one gets from the localization formula (4.1) that

MS1

is not empty (see also A.1 in the appendix). Since the Euler characteristic
of M is < 4 the case of isolated S1-fixed points cannot occur (see Proposition 5.1

and equation (5.1)). Recall that any connected component of MS1

is an oriented
submanifold of even codimension. By Proposition 4.3 and Proposition 5.1 the
rational cohomology of each component is in even degrees isomorphic to the one
of a complex projective space. Thus, we are left with the following three cases:

• MS1

is the disjoint union of a connected 4-dimensional manifold N , with
Hev(N ;Q) ∼= Hev(CP 2;Q), and a point pt.

• MS1

is the disjoint union of two connected surfaces, MS1

= X ∪ Y .
• MS1

is the disjoint union of a connected surface X and two points pt and q.

We will show in the next section that none of these cases can occur.

6. Proof of Theorem 3.3

6.1. Four-dimensional fixed point components

The next lemma will be used in the proof.

Lemma 6.1. Let F ⊂ M be an oriented submanifold of codimension 2 and let
κ · x ∈ H2(M ;Z) be its Poincaré-dual. Then:

(1) p1(F ) = (ρ− κ2) · (x|F )2.
(2) If sign(F ) = 0, then (x|F )2 = 0, κ = 0 and the Euler class of the normal

bundle of F ↪→ M vanishes.

Proof. Consider the normal bundle ν of F in M equipped with the orientation
compatible with the orientations of F and M . Then the Euler class of ν is equal
to κ · (x|F ) (where x|F denotes the restriction of x to F ) and

ρ · (x|F )2 = p1(M)|F = p1(F ) + κ2 · (x|F )2.

This shows the first statement.
For the second statement, note that sign(F ) = 0 implies

(ρ− κ2) · (x|F )2 = p1(F ) = 0.
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Also
[(x|F )2]F = [(κ · x) · x2]M = t · κ.

Since ρ ≤ 0 and t �= 0, these two identities imply κ = 0 and (x|F )2 = 0. �
We now discuss the case involving a 4-dimensional connected S1-fixed point

component, i.e., MS1

is the disjoint union of a connected 4-dimensional manifold
N , with Hev(N ;Q) ∼= Hev(CP 2;Q), and a point pt. By Convention 5.4 pt has

positive orientation. Since 0 = sign(M) = sign(MS1

) = sign(pt) + sign(N) the
signature of N is −1 (see (A.10)). Hence, [x|2N ]N ≤ 0 and [p1(N)]N = −3 by
the signature theorem. From Lemma 6.1 (1) one now obtains the contradiction
−3 = (ρ− κ2) · [x|2N ]N ≥ 0. Hence, M does not support a smooth S1-action with
a 4-dimensional fixed point component.

6.2. Two 2-dimensional fixed point components

In this subsection we discuss the case that MS1

is the disjoint union of two con-
nected surfaces, MS1

= X ∪ Y . As before, let γ be the complex line bundle over
M with c1(γ) = x. We fix a lift of the S1-action to γ such that S1 acts trivially
on the fibers of γ over Y (i.e., aY vanishes). Since any other lift differs by a global
weight the S1-weights at the connected components X and Y for a general lift are
of the form aX + l and l, respectively, where l ∈ Z depends on the choice of the
lift.

Let xZ,1 (resp. yZ,i + nZ,i · z) denote the tangential root (resp. normal roots)

at a component Z ⊂ MS1

. We note that by Proposition 4.3 [x|X ]X �= 0 and
[x|Y ]Y �= 0.

To prove the non-existence of an S1-action with MS1

= X ∪ Y we first assume
that the S1-action is semi-free around X and Y , i.e., we assume nX,1 = nX,2 =
nY,1 = nY,2 = 1. In this case the S1-action on the normal bundles of X and Y
coincides with complex multiplication by S1 ⊂ C and the normal bundles of X
and Y each split off a trivial complex line bundle on dimensional grounds. Hence,
we may assume yX,2 = yY,2 = 0, i.e., the normal weights at X (resp. Y ) are
{yX,1 + z, z} (resp. {yY,1 + z, z}).

We first compute [x3]M locally. By formula (A.2)

t = [x3]M = −(aX + l)3 · [yX,1]X +3(aX + l)2 · [x|X ]X − l3 · [yY,1]Y +3 · l2 · [x|Y ]Y .

The left-hand side is constant in l which gives the relations

[yY,1]Y = −[yX,1]X , aX [yX,1]X = [x|X ]X + [x|Y ]Y , aX([x|X ]X − [x|Y ]Y ) = 0,

and t = [x3]M = a2X(−aX · [yX,1]X + 3 · [x|X ]X).

Next we compute [p1(M) · x]M locally. By formula (A.5)

ρ · t = [p1(M) · x]M = 2([x|X ]X + [x|Y ]Y ).

This leads to

aX

(ρ · t
2

− 2 · [x|X ]X

)
= −aX([x|X ]X − [x|Y ]Y ) = 0 and
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t = a2X(−aX · [yX,1]X + 3 · [x|X ]X) = a2X

(
− ρ · t

2
+ 3[x|X ]X

)
.

Hence,

aX �= 0, ρ · t/2 = 2 · [x|X ]X and

t = a2X

(
− ρ · t

2
+

3

2
· ρ · t

2

)
= a2X

(1
4
· ρ · t

)
.

Since t > 0 and ρ ≤ 0, the last equation gives a contradiction. Hence, the action
on M cannot be semi-free around X and Y .

Next assume the action is not semi-free around X and Y . Then there exists
a prime p and a 4-dimensional connected component F ⊂ MZ/pZ which contains
one of the connected components of MS1

, say X. Note that b2(F ) ≥ 1 and
rk H2(F ;Z/pZ) ≥ 1 since [x|X ]X �= 0.

Lemma 6.2. X ∪ Y ⊂ F

Proof. Suppose Y is contained in a connected component F̃ of MZ/pZ different
from F . Then rk Hev(MZ/pZ;Z/pZ) ≥ rk Hev(F ;Z/pZ) + rk Hev(F̃ ;Z/pZ) ≥ 5
which contradicts Proposition 5.1. Hence, X ∪ Y ⊂ F . �

By Corollary 5.2, F is orientable. We fix an orientation for F . Note that the
signature of F vanishes since sign(F ) = ±sign(X)± sign(Y ) = 0 (see (A.10)). By
Lemma 6.1, the Euler class of the normal bundle of F vanishes. From the spectral
sequence for π : FS1 → BS1 we conclude that the equivariant Euler class is in
the image of π∗. This implies that the S1-weights of the normal bundle at X and
Y coincide. Since the normal bundle of F ⊂ M restricted to X (resp. Y ) is a
summand of the normal bundle of X ⊂ M (resp. Y ⊂ M), we may assume that
the normal roots of X (resp. Y ) are given by {yX,1 + nX,1 · z, nX,2 · z} (resp.
{yY,1 + nY,1 · z, nX,2 · z}), i.e., yX,2 = yY,2 = 0 and nX,2 = nY,2.

To show that a smooth non-trivial S1-action does not exist we will first compute
the S1-equivariant signature with the Lefschetz fixed point formula of Atiyah–Bott-
Segal-Singer (see A.2 in the appendix for details).

By the rigidity of the signature the S1-equivariant signature of M is zero. Using
the Lefschetz fixed point formula we get (see formula (A.9)):

0 =
1 + λnX,2

1− λnX,2
· λnX,1

(1− λnX,1)2
· [yX,1]X +

1 + λnX,2

1− λnX,2
· λnY,1

(1− λnY,1)2
· [yY,1]Y .

By expanding the right-hand side around λ = 0, one sees that either [yX,1]X =
0 = [yY,1]Y or [yY,1]Y = −[yX,1]X �= 0 and nX,1 = nY,1.

If [yX,1]X = 0 = [yY,1]Y , then an inspection of the localization of [x3]M using
formula (A.2) gives the contradiction 0 �= t = [x3]M = 0.

If [yY,1]Y = −[yX,1]X �= 0, formula (A.2) gives the relations

[x|X ]X = [x|Y ]Y , aX
nX,1

· [yX,1]X = 2 · [x|X ]X and t =
a2X

nX,1 · nX,2
· [x|X ]X .

In particular, [x|X ]X is positive.
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Assuming these relations, the localization formula (A.5) for [p1(M) · x]M leads
to

ρ · t = 4 · nX,1 · [x|X ]X
nX,2

.

Now t > 0, ρ ≤ 0, [x|X ]X > 0, nX,i > 0 gives the desired contradiction. Hence, M

does not support a smooth S1-action with MS1

= X ∪ Y .

6.3. One 2-dimensional fixed point component and two isolated
fixed points

In this subsection we discuss the remaining case that MS1

is the disjoint union of
a connected surface X and two points pt and q. After dividing out the ineffective
kernel we may assume that the S1-action is effective.

By our convention pt has positive orientation. Since the signature of M is equal
to the sum of the signatures of the S1-fixed point components (see (A.10)), the
orientation εq of the fixed point q is −1.

Let nX,1, nX,2 > 0 be the local weights at X, npt,1, npt,2, npt,3 > 0 the local
weights at pt and nq,1, nq,2, nq,3 > 0 the local weights at q. Since S1 acts effectively
on M , we have gcd(nX,1, nX,2) = gcd(npt,1, npt,2, npt,3) = gcd(nq,1, nq,2, nq,3) = 1.

We fix a lift of the S1-action on M into the line bundle γ with c1(γ) = x such
that the weight aX of the S1-representation on the fibers of γ over X is zero.
Recall from Proposition 4.3 that the restriction of x to X is non-zero.

Lemma 6.3. Let F be the component of MZ/nX,1Z which contains X. Then F
contains both isolated fixed points. Moreover, F is orientable.

Proof. If nX,1 = 1 the statement is trivially true. So let nX,1 ≥ 2 and let p
be a prime divisor of nX,1. Because gcd(nX,1, nX,2) = 1, F is the component
of MZ/pZ which contains X. Moreover, F has dimension four. By Corollary 5.2
F is orientable. By Proposition 5.1, we have rk Hev(MZ/pZ;Z/pZ) = 4. By
Proposition 4.3 and Poincaré duality, we have rk Hev(F ;Z/pZ) ≥ 3. Therefore, if
MZ/pZ is disconnected, it is the union of F and a component F ′ with bev(F

′) =
rkHev(F ′;Z/pZ) = 1.

Assume that MZ/pZ is disconnected. It follows from the above discussion that
sign (F ) = ±1. This implies [p1(F )]F = ±3 and [x2

|F ]F = ±α with α ≥ 0. By
Lemma 6.1, we get the contradiction

3 = ±[p1(F )]F = ±(ρ− κ2)[x2
|F ]F = (ρ− κ2)α ≤ 0.

Therefore F = MZ/pZ is connected. �
Lemma 6.4. Let F be the connected fixed point component of the Z/npt,1Z-action
on M which contains pt. Then F also contains q and is orientable.

Proof. If F is orientable then it contains X or q, because there is no orientable
manifold which admits an S1-action with exactly one fixed point (see A.2 in the
appendix). In the first case npt,1 divides a local weight at X, say nX,1. Then F
contains also the component of MZ/nX,1Z which contains X. Therefore it follows
from Lemma 6.3 that F also contains q.
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In the following we will show that F is always orientable. Let

k = gcd(npt,1, npt,2) and k′ = gcd(npt,1, npt,3).

Note that

gcd(k, npt,3) = gcd(k′, npt,2) = gcd(npt,1, npt,2, npt,3) = 1.

Therefore there are c1, c2, c3 ∈ Z such that

npt,1 = c1kk
′, npt,2 = c2k, npt,3 = c3k

′.

If npt,1 is odd or c1 > 2, then the normal bundle of F admits a complex structure.
Therefore, F is orientable in this case.

If c1 = 2, then there is some l > 0 such that F is a component of MZ/2lZ.
Therefore, it is orientable by Corollary 5.2.

Hence, we may assume that c1 = 1, k is even and k′ is odd. Then F is a
component of (MZ/2Z)Z/k

′
Z. Therefore, it is orientable by Corollary 5.2. �

Lemma 6.5. The normal weights at pt and q are equal up to ordering.

Proof. Up to ordering there are the following three cases:

(1) npt,1|npt,2, npt,3 � npt,2, gcd(npt,1, npt,3) = 1, npt,1 �= 1,
(2) npt,1|npt,2, npt,3|npt,2, gcd(npt,1, npt,3) = 1, npt,1 �= 1,
(3) if npt,i �= 1, then we have, for j �= i, npt,i � npt,j .

Before we consider these cases we prove the following two claims.
Claim 1: If npt,i1 � npt,i2 and npt,i1 � npt,i3 , then there is exactly one j ∈ {1, 2, 3}

such that npt,i1 |nq,j . Moreover, we have npt,i1 = nq,j .
By Lemma 6.4, the component of MZ/npt,i1Z which contains pt also contains

q. Moreover, this component has dimension two. Therefore, npt,i1 divides exactly
one of the local weights at q, say nq,j . Again by Lemma 6.4, the component of
MZ/nq,jZ which contains q also contains pt. Hence, nq,j divides one of the local
weights at pt. It follows from the assumptions in the claim that this weight must
be npt,i1 . Therefore npt,i1 = nq,j follows. This proves Claim 1.

Claim 2: If npt,i1 |npt,i2 and npt,i1 � npt,i3 , then there are exactly two j1, j2 ∈
{1, 2, 3} such that npt,i1 |nq,j1 and npt,i1 |nq,j2 . Moreover, we have (npt,i1 , npt,i2) =
(nq,j1 , nq,j2) up to ordering.

By Lemma 6.4, the component of MZ/npt,i1Z which contains pt also contains
q. Moreover, this component has dimension four. Therefore npt,i1 divides exactly
two of the local weights at q, say nq,j1 and nq,j2 .

At first assume npt,i1 �= npt,i2 . Then, by Claim 1, applied to npt,i2 , we know
that exactly one of these weights is equal to npt,i2 . Denote this weight by nq,j2 .
By Lemma 6.4, the component of MZ/nq,j1Z which contains q also contains pt.
Therefore, nq,j1 divides npt,i1 or npt,i2 . In the second case this component has
dimension four. Hence, nq,j1 divides also npt,i1 . This implies npt,i1 = nq,j1 .

Now assume that npt,i1 = npt,i2 . Then, by Lemma 6.4, the component of
MZ/nq,j1Z which contains q also contains pt. Therefore nq,j1 divides npt,i1 . Hence,
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nq,j1 = npt,i1 and by the same argument npt,i1 = nq,j2 . This proves the second
claim.

Now consider the three cases mentioned above. In the first case the statement
of the lemma follows from Claim 1 applied to npt,i1 = npt,3 and Claim 2 applied
to npt,i1 = npt,1.

In the situation of the second case at first assume that npt,3 �= 1. Then the
statement of the lemma follows from Claim 2 applied to both npt,i1 = npt,1 and
npt,i1 = npt,3. Now assume that npt,3 = 1. Then it follows from Claim 2 applied
to npt,i1 = npt,1 that there are two weights nq,1 and nq,2 such that (npt,1, npt,2) =
(nq,1, nq,2) up to ordering. If we assume that nq,3 �= 1, we get from Claim 1 or
Claim 2 applied to npt,i1 = nq,3 that there is a npt,j which is equal to nq,3. This
leads to a contradiction because only two of the local weights at q are divisible by
npt,1. Therefore the local weights at pt and q are the same up to ordering.

In the third case first apply Claim 1 to all npt,i �= 1 to show that each of
these weights is equal to exactly one local weight at q. As in the previous case it
follows from an application of the Claims 1 and 2 to the local weights at q that
#{i; nq,i = 1} = #{i; npt,i = 1}. Therefore, the lemma follows in this case. �
Lemma 6.6. The case (npt,1, npt,2, npt,3) = (nq,1, nq,2, nq,3) does not occur.

Proof. Assume that we are in this case. Since the lift of the S1-action into γ is
not unique, we get from the localization formulas for [x3]M and [p1(M) · x]M two
polynomials in a variable l which are equal to [x3]M and [p1(M) ·x]M , respectively.
By comparing coefficients we get the following equations (see appendix):

0 =
3

nX,1nX,2
[x]X +

3apt
npt,1npt,2npt,3

− 3aq
npt,1npt,2npt,3

, (6.1)

0 =
3a2pt

npt,1npt,2npt,3
− 3a2q

npt,1npt,2npt,3
, (6.2)

[x3]M =
a3pt

npt,1npt,2npt,3
− a3q

npt,1npt,2npt,3
and (6.3)

[p1(M) · x]M =
n2
X,1 + n2

X,2

nX,1nX,2
[x]X + (apt − aq)

n2
pt,1 + n2

pt,2 + n2
pt,3

npt,1npt,2npt,3
. (6.4)

Because of (6.2) we have apt = ±aq. Then (6.3) and [x3]M > 0 implies apt =
−aq > 0.

From (6.1) and (6.4) we get

[p1(M) · x]M = −2apt
n2
X,1 + n2

X,2

npt,1npt,2npt,3
+ 2apt

n2
pt,1 + n2

pt,2 + n2
pt,3

npt,1npt,2npt,3
.

Now, using the divisibility properties implied by Lemma 6.3, it follows that the
right-hand side of this equation is always positive. This is a contradiction to our
assumption. �

By combining the above lemmas we see that there is no S1-action on M with a
fixed point set consisting of a two-dimensional component and two isolated fixed
points.
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7. Complete intersections with T 2-action

In this section we will extend the vanishing results for indices of twisted Spinc-
Dirac operators and twisted elliptic genera given in [9], [11, Sect. 4] to prove that
there are only finitely many complete intersections which admit an effective action
of a two-dimensional torus T 2 in each odd complex dimension. As a corollary we
exhibit in each odd complex dimension ≥ 3 complete intersections with a metric
of positive Ricci-curvature (in fact with positive first Chern class) but no effective
action of a two-dimensional torus. We also give a proof of the Petrie conjecture for
T 2-actions in complex dimension < 12. The main new technical ingredient which
is needed to prove these claims is the following lemma.

Lemma 7.1. Let T be a torus. Let M be a T -manifold with rkT > b2(M)
and a ∈ H4(MT ;Q) such that the restriction of a to H4(M ;Q) vanishes. Then
there is a non-trivial homomorphism ρ(S1, T ) : S1 → T such that ρ(S1, T )∗(a) ∈
π∗
S1(H4(BS1;Q)).

Here πS1 : MS1 → BS1 is the projection in the Borel construction.

Proof. From the Serre spectral sequence for the fibration M → MT → BT we
have the following direct sum decomposition of the Q-vector space H4(MT ;Q),

H4(MT ;Q) ∼= E0,4
∞ ⊕ E2,2

∞ ⊕ E4,0
∞ .

Moreover, we have

E0,4
∞ ⊂ H4(M ;Q), E2,2

∞ ⊂ E2,2
2 /d2(E

0,3
2 ), E4,0

∞ = π∗
S1H4(BT ;Q).

Let a0,4, a2,2, a4,0 be the components of a according to this decomposition. Then

a0,4 = 0 by assumption. Moreover, there is an ã2,2 ∈ E2,2
2 such that a2,2 = [ã2,2].

Now it is sufficient to find a non-trivial homomorphism ρ(S1, T ) : S1 → T such
that ρ(S1, T )∗(ã2,2) = 0. We have the following isomorphisms:

E2,2
2

∼= H2(BT ;Q)⊗H2(M ;Q)

∼= (
H2(BT ;Q)

)b2(M)
.

Since rkT > b2(M), we can find a non-trivial homomorphism φ : H2(BT ;Q) →
H2(BS1;Q) = Q such that all components of ã2,2 according to the above decom-

position of E2,2
2 are mapped to zero by φ. After scaling, we may assume that φ

is induced by a surjective homomorphism H2(BT ;Z) → H2(BS1;Z). By dualiz-

ing, we get a homomorphism φ̂ : H2(BS1;Z) → H2(BT ;Z). Since for any torus
H2(BT ;Z) is naturally isomorphic to the integer lattice in the Lie algebra LT of

T , φ̂ defines the desired homomorphism. �
We shall now combine this lemma with the methods developed in [9], [11] to

study T -actions on certain manifolds with rk T > b2(M). Since we are mainly
interested in application for manifolds which are cohomologically complete inter-
sections we will restrict to the case that b2(M) = 1 and rkT = 2 (see [31] for other
results).
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Let M be a 2n-dimensional Spinc-manifold with b1(M) = 0 and H2(M ;Z) ∼= Z
generated by x. Note that this situation applies to any integral cohomology CPn

and, also, to any integral cohomology complete intersection of complex dimension
n > 2. Let γ be the complex line bundle with c1(γ) = x.

Suppose a torus T 2 of rank two acts effectively and smoothly on M . Then we
can lift the T 2-action to the Spinc-structure [30, Lem. 2.1] and to γ [15, Cor. 1.2].
We fix a lift to the Spinc-structure. Note that for a given T 2-fixed point we may
choose the lift to γ such that the restriction of the line bundle to the point is a
trivial T 2-representation.

Let us for a moment restrict the T 2-action to S1 with respect to a homomor-
phism S1 → T 2 and consider a connected S1-fixed point component Z. The fiber
of the normal bundle of Z ⊂ M at a point pt ∈ Z is a real S1-representation. We
denote its weights by ±mZ,j . The fiber of γ over pt is a complex one-dimensional
S1-representation. Its weight will be denoted by aZ . Note that the normal weights
±mZ,j and aZ only depend on Z but not on the chosen point pt.

Let Z0, . . . , Zk1 be the components of MS1

and ni =
1
2 dimZi. We will choose

the lift of the T 2-action to γ such that the weight vanishes at one of the components,
say Z0, i.e., aZ0 = 0.

Proposition 7.2. Let M and γ be as above. Suppose Hev(M ;Q) = Q[x]/(xn+1).

If the equivariant first Pontrjagin class p1(TM⊕⊕k
i=1 γ)S1 is in π∗

S1(H4(BS1;Q))
then we have k < n.

Proof. At first we replace the S1-action by the two-fold action. Recall from Propo-
sition 4.3 that Hev(Zi;Q) ∼= Hev(CPni ;Q) and that

∑
i(ni + 1) = n+ 1.

Let V be the S1-equivariant complex vector bundle given by

V = n0γ ⊕
k1⊕
i=1

(ni + 1)γ ⊗C W−ai ,

where Wa denotes the one-dimensional unitary S1-representation of weight a and
ai := aZi . Let

UV :=
∞⊗

n=1

Sqn(T̃M ⊗R C)⊗ Λ−1(V
∗)⊗

∞⊗
n=1

Λ−qn(Ṽ ⊗R C).

Here q is a formal variable, Ẽ denotes the reduced vector bundle E − dim(E) and
Λt :=

∑
Λi · ti (resp. St :=

∑
Si · ti) denotes the exterior (resp. symmetric) power

operation. We now consider the equivariant Spinc-Dirac operator twisted with UV .
Its index is a q-power series of virtual S1-representations and will be denoted by

indS1(∂c ⊗ UV ) ∈ R(S1)[[q]].

Using the Atiyah-Singer index theorem one computes that the non-equivariant
index ind(∂c⊗UV ) is equal to [xn]M for q = 0. In particular, ind(∂c⊗UV ) is non-
zero. Using [11, Prop. 3.1] one can show that the equivariant index indS1(∂c⊗UV )
converges for q = e2πiτ , τ ∈ H, and λ = e2πiz̃ a topological generator of S1 ⊂ C
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to a holomorphic function f(τ, z̃) on the product H × C where H is the upper
half plane (for details on this argument see the proof of Proposition 4.1 in [11]).
Moreover, one can show that

f(τ, z̃) = e(z̃)F (τ, z̃),

where e(z̃) is a holomorphic function and F is a holomorphic Jacobi function for
SL2(Z)� Z2 of index

I = 1
2

( k1∑
i=1

(ni + 1)a2i −
n∑

j=1

m2
Z0,j

)
.

Note that I is an integer because we are looking at the two-fold action.
Since ind(∂c ⊗ UV ) �= 0, F does not vanish identically. Because a holomophic

Jacobi function with negative index vanishes identically, we have

n∑
j=1

m2
Z0,j ≤

k1∑
i=1

(ni + 1)a2i .

Next note that the restriction of p1(TM ⊕⊕k
i=1 γ)S1 to a point in Zi is equal

to
(∑n

j=1 m
2
Zi,j

+ ka2i
) · z2 ∈ H4(BS1;Z) and is independent of the choice of Zi

since

p1

(
TM ⊕

k⊕
i=1

γ

)
S1

∈ π∗
S1(H4(BS1;Q)).

We may assume that a21 = maxi{a2i }. Then we get

n∑
j=1

m2
Z1,j + ka21 =

n∑
j=1

m2
Z0,j ≤

k∑
i=1

(ni + 1)a2i ≤ na21.

Hence the claim follows. �
Let us call a smooth manifold M with H∗(M ;Z) ∼= H∗(Xn(d1, . . . , dr);Z) an

integral cohomology Xn(d1, . . . , dr). With the ingredients above we can prove the
following theorem:

Theorem 7.3. Let M be an integral cohomology Xn(d1, . . . , dr) with n ≥ 3 odd,
x a generator of H2(M ;Z) and p1(M) = −kx2. Suppose M admits an effective
action of a two-dimensional torus. Then we have k < n.

Proof. We may assume that k > 0. We lift the T 2-action into γ in such a way that
the action on the fibers over one of the T 2-fixed points in M is trivial.

Note that p1(TM ⊕⊕k
i=1 γ) = 0. By Lemma 7.1, there is a non-trivial homo-

morphism S1 → T 2 such that p1(TM ⊕⊕k
i=1 γ)S1 ∈ π∗

S1(H4(BS1;Q)). Therefore
the claim follows from Proposition 7.2. �

As an immediate corollary of the above theorem and Proposition 2.1 we get:
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Corollary 7.4. For each odd n, there are, up to diffeomorphism, only finitely
many complete intersections of complex dimension n which admit an effective ac-
tion of a two-dimensional torus. �

We also get the following corollary:

Corollary 7.5. For each m = 4k+2, k ≥ 1, there is a manifold M of dimension
m which admits a metric of positive Ricci-curvature but no effective action of a
two-dimensional torus.

Proof. Let M = X2k+1(d1, . . . , dr) with∑
i

di < (2k + 1) + r + 1 and
∑
i

d2i ≥ 2(2k + 1) + r + 1.

Then M is a Kähler manifold with positive first Chern-class. Therefore M admits
a Kähler metric with positive Ricci-curvature [33]. But by Theorem 7.3 there is
no effective T 2-action on M . �

In [11] it has been shown that if a homotopy complex projective space M of
dimension 2n < 24 admits a non-trivial SU(2)-action with fixed point, then the
Pontrjagin classes of M are standard. Using Lemma 7.1 and arguments similar to
the above discussion and the proofs in [9], [11], one can also prove the following
theorem about homotopy complex projective spaces.

Theorem 7.6. Let M be homotopy equivalent to CPn with n < 12. If M admits
an effective action of a two-dimensional torus, then the Pontrjagin classes of M
are standard, i.e., p(M) = (1 + x2)n+1 where x ∈ H2(M ;Z) is a generator of the
cohomology ring of M .

Proof. Let b ∈ Z be such that p1(M) = bx2 and let γ be the line bundle over M
with c1(M) = x. Then, by [15, Cor. 1.3], the T 2-action on M lifts into γ in such

a way that the T 2-action on the fiber of γ over a fixed point pt ∈ MT 2

is trivial.
By combining Proposition 7.2 and Lemma 7.1, we have b > −n. By combining

Lemma 7.1 with the proof of Theorem 4.2 of [9], we see that b ≤ n+1. Moreover,
in the case of equality we have p(M) = (1 + x2)n+1 (cf. loc. cit.). Since p1(M)
mod 24 is determined by the homotopy type of M , it follows that for n < 12 the
Pontrjagin classes of M are standard. �

A. Localization formulas for equivariant cohomology classes and
equivariant signatures

In the appendix we provide the local formulas for equivariant cohomology classes
and equivariant signatures which are used in the proof.

Let M be a closed smooth oriented m-dimensional manifold with smooth S1-
action. Let Z be a connected component of the fixed point manifold MS1

. We
denote the tangential formal roots of Z by ±xZ,j . Hence, the total Pontrjagin
class of Z is given by p(Z) =

∏
j(1 + x2

Z,j).
Let νZ be the normal bundle of Z. We orient νZ via the complex structure

induced by the S1-action and fix the orientation for Z which is compatible to the
orientation of M and νZ .
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We denote the S1-equivariant Euler class of the normal bundle νZ by eS1(νZ).
The normal bundle νZ decomposes as a direct sum of complex vector bundles
corresponding to the S1-representations. Applying the splitting principle to these
we can associate to νZ S1-equivariant roots yZ,i+nZ,i ·z, where the yZ,i’s are non-
equivariant formal roots of the corresponding bundle, the weights nZ,i ∈ Z are
positive by our convention, and z is a formal variable which one should think of as
a fixed generator of the integral lattice of S1 or a fixed generator of H2(BS1;Z).
With this notation the S1-equivariant Euler class of the normal bundle νZ is given
by eS1(νZ) =

∏
i(yZ,i + nZ,i · z).

A.1. Equivariant cohomology classes

Let [ ]M denote the push forwards H∗(MS1 ;Z)→H∗−n(ptS1 ;Z)=H∗−n(BS1;Z)
and H∗(M ;Z) → H∗−n(pt;Z). Note that the first is also called integration over
the fiber and the latter can also be described by evaluation on the fundamental
cycle of M . Let ȳ ∈ H∗(MS1 ;Z) be an equivariant cohomology class and y its
image under the restriction map H∗(MS1 ;Z) → H∗(M ;Z). Then, by naturality,
[y]M is equal to the zero degree part of [ȳ]M . In particular, if y is homogeneous of
degree m then [y]M can be computed by integrating its equivariant lift ȳ over the
fiber, i.e., [y]M = [ȳ]M . If ȳ is homogeneous of degree > m then [y]M vanishes for
dimensional reasons but [ȳ]M may be non-trivial. This may also lead to interesting
applications. However, we will only need the case deg y = m.

By the localization formula (4.1) in equivariant cohomology of Atiyah–Bott and
Berline–Vergne [6], [1], the class [ȳ]M can be computed in terms of local data at

MS1

:
[y]M = [ȳ]M =

∑
Z⊂MS1

μ(ȳ, Z).

We will now apply the localization formula for the 6-dimensional manifold M
considered in Section 5 and to the classes x3 and p1(M) · x. Note that x can be
lifted to an equivariant class since b1(M) = 0 and p1(M) lifts canonically to the
first Pontrjagin class of the equivariant tangent bundle TMS1 → MS1 .

Fix a lift of the S1-action to the complex line bundle γ with c1(γ) = x. Then

at a connected component Z ⊂ MS1

the S1-equivariant first Chern class of γ has
the form x|Z + aZ · z.

The lift is not unique. For any l ∈ Z we can choose a lift of the S1-action such
that the S1-equivariant first Chern class at the connected components is given by
{x|Z + (aZ + l) · z | Z ⊂ MS1}.

The localization formula for x3 with respect to such a lift takes the form

[x3]M =
∑

Z⊂MS1

μ(x3, Z),

where the local datum μ(x3, Z) at Z is given by

μ(x3, Z) = [(x|Z + (aZ + l) · z)3 · eS1(νZ)
−1]Z .

Note that the sum
∑

Z⊂MS1 μ(x3, Z) is independent of the parameter l.
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Depending on the dimension of Z the local datum μ(x3, Z) for x3 at Z takes
the form:

If Z is a point, then

μ(x3, Z) = εZ · ((aZ + l) · z)3
nZ,1 · nZ,2 · nZ,3 · z3 = εZ · (aZ + l)3

nZ,1 · nZ,2 · nZ,3
, (A.1)

where εZ ∈ {±1} is +1 if and only if the point Z is positively oriented.

If Z is 2-dimensional, then

μ(x3, Z)

=
[
(x|Z + (aZ + l) · z)3 · ((yZ,1 + nZ,1 · z) · (yZ,2 + nZ,2 · z)

)−1]
Z

=
1

nZ,1 ·nZ,2
·
(
−(aZ+l)3

nZ,1
·[yZ,1]Z− (aZ+l)3

nZ,2
·[yZ,2]Z+3(aZ+l)2 ·[x|Z ]Z

)
.

(A.2)

If Z is 4-dimensional, then

μ(x3, Z) =
[
(x|Z + (aZ + l) · z)3 · (yZ,1 + nZ,1 · z)−1

]
Z

=
3(aZ + l)

nZ,1
· [x|2Z ]Z − 3(aZ + l)2

n2
Z,1

[x|Z · yZ,1]Z +
(aZ + l)3

n3
Z,1

[y2Z,1]Z .
(A.3)

Note that, if aZ + l = 0, then the local data in (A.1), (A.2), (A.3) vanish. Note
also that the local datum in (A.3) vanishes for any l if b2(Z) = 0.

Next we provide formulas for p1(M) · x. Note that the Pontrjagin classes lift
canonically to S1-equivariant Pontrjagin classes. Thus, we may use the localization
formula to compute [p1(M) · x]M .

Depending on the dimension of Z the local datum μ(p1(M) ·x, Z) for p1(M) ·x
at Z takes the form:

If Z is a point, then the local datum is equal to

εZ · (aZ + l) · z · (n2
Z,1 + n2

Z,2 + n2
Z,3) · z2

nZ,1 · nZ,2 · nZ,3 · z3 , i.e.

μ(p1(M) · x, Z) = εZ · (aZ + l) · (n2
Z,1 + n2

Z,2 + n2
Z,3)

nZ,1 · nZ,2 · nZ,3
, (A.4)

where εZ ∈ {±1} is +1 if and only if Z is positively oriented.

If Z is 2-dimensional, then the local datum is equal to

[
(x2

Z,1 + (yZ,1 + nZ,1z)
2 + (yZ,2 + nZ,2z)

2) · (x|Z + (aZ + l)z)

· ((yZ,1 + nZ,1z)(yZ,2 + nZ,2z))
−1

]
Z
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which gives

μ(p1(M) · x, Z)

= − (aZ + l)

nZ,1 · nZ,2
(n2

Z,1 + n2
Z,2)

(
1

nZ,1
· [yZ,1]Z +

1

nZ,2
· [yZ,2]Z

)

+
n2
Z,1 + n2

Z,2

nZ,1 · nZ,2
· [x|Z ]Z + 2

(aZ + l)

nZ,1 · nZ,2
(nZ,1 · [yZ,1]Z + nZ,2 · [yZ,2]Z).

(A.5)

If Z is 4-dimensional, then μ(p1(M) · x, Z) is equal to[
(p1(Z) + (yZ,1 + nZ,1 · z)2) · (x|Z + (aZ + l) · z) · (yZ,1 + nZ,1 · z)−1

]
Z

= [x|Z · yZ,1]Z +
aZ + l

nZ,1
· [p1(Z)]Z .

(A.6)

Note that, if aZ + l = 0, then the local datum at Z vanishes if Z is a point.
Note also that the local datum at Z vanishes for any l if the dimension of Z is 4
and b2(Z) = 0.

A.2. Equivariant signatures

In this section we recall the Lefschetz fixed point formula for the equivariant sig-
nature and provide some formulas used in the paper.

Let M be an oriented closed manifold with smooth S1-action and let signS1(M)
denote the S1-equivariant signature. A priori signS1(M) is an element of the
representation ring R(S1) which we identify via the character with the ring of
finite Laurent polynomials Z[λ, λ−1].

By the Lefschetz fixed point formula of Atiyah–Bott–Segal–Singer (cf. [2]), the
S1-equivariant signature can be computed locally at the S1-fixed point compo-
nents. More precisely, for any topological generator λ ∈ S1,

signS1(λ) =
∑

Z⊂MS1

μZ(λ), (A.7)

where the local datum μZ(λ) at a connected component Z ⊂ MS1

is given by

μZ(λ) =

[∏
j

xZ,j · 1 + e−xZ,j

1− e−xZ,j
·
∏
i

1 + λ−nZ,i · e−yZ,i

1− λ−nZ,i · e−yZ,i

]
Z

.

For example, if M is 6-dimensional and Z is a point, then the local datum is
given by

μZ(λ) = εZ ·
3∏

i=1

1 + λ−nZ,i

1− λ−nZ,i
. (A.8)

If Z is 2-dimensional, then the local datum is given by

μZ(λ)

=

[
xZ,1 · 1+e−xZ,1

1−e−xZ,1
·

2∏
i=1

1+λ−nZ,i · e−yZ,i

1−λ−nZ,i · e−yZ,i

]
Z

= 4·
(
1+λnZ,2

1−λnZ,2
· λnZ,1

(1−λnZ,1)2
·[yZ,1]Z+

1+λnZ,1

1−λnZ,1
· λnZ,2

(1−λnZ,2)2
· [yZ,2]Z

)
.

(A.9)
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By homotopy invariance the S1-equivariant signature is rigid, i.e., constant in λ.
Hence, the sum

∑
Z⊂MS1 μZ(λ) does not depend on λ (this can be shown also

by comparing both sides of (A.7) and observing that poles of the left-hand side
can only occur in 0,∞, whereas a pole of the right-hand side must be on the unit
circle). In particular, in view of equation (A.8) S1 cannot act on M with only one
fixed point.

Recall from the beginning of the appendix that all nZ,i are positive. Taking the
limit λ → ∞ in the right-hand side of (A.7) one sees that

sign(M) =
∑

Z⊂MS1

sign(Z). (A.10)
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