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Abstract. A numerical model to compute the dynamics of glaciers is presented. Ice damage due

to cracks or crevasses can be taken into account whenever needed. This model allows simulations

of the past and future retreat of glaciers, the calving process or the break-off of hanging glaciers.

All these phenomena are strongly affected by climate change.

Ice is assumed to behave as an incompressible fluid with nonlinear viscosity, so that the velocity

and pressure in the ice domain satisfy a nonlinear Stokes problem. The shape of the ice domain

is defined using the volume fraction of ice, that is one in the ice region and zero elsewhere. The

volume fraction of ice satisfies a transport equation with a source term on the upper ice-air free

surface accounting for ice accumulation or melting. If local effects due to ice damage must be taken

into account, the damage function D is introduced, ranging between zero if no damage occurs and

one. Then, the ice viscosity μ in the momentum equation must be replaced by (1 − D)μ. The

damage function D satisfies a transport equation with nonlinear source terms to model cracks

formation or healing.

A splitting scheme allows transport and diffusion phenomena to be decoupled. Two fixed grids

are used. The transport equations are solved on an unstructured grid of small cubic cells, thus

allowing numerical diffusion of the volume fraction of ice to be reduced as much as possible. The

nonlinear Stokes problem is solved on an unstructured mesh of tetrahedrons, larger than the cells,

using stabilized finite elements.

Two computations are presented at different time scales. First, the dynamics of Rhonegletscher,

Swiss Alps, are investigated in 3D from 2007 to 2100 using several climatic scenarios and without

considering ice damage. Second, ice damage is taken into account in order to reproduce the calving
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process of a 2D glacier tongue submerged by water.

Key words: free surface flows, finite elements, volume of fluid, damage mechanics, glaciers,

calving
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1 Introduction
During the last century, a dramatic retreat of Alpine glaciers has been observed [8, 24]. This

phenomena is expected to last throughout the next century and will have severe impacts on the

landscape and tourism in the Alps, water supply in summer and hydropower production, but also on

risk management of natural hazards (e.g. ice avalanches or glacier floods). Numerical simulation

is a valuable tool to understand how climate change affects alpine glaciers and can provide answers

to practical questions, such as the speed of glacier retreat over the next century, or the timing of

the break-off of hanging glaciers and glacier tongues terminating in water.

In this paper, the free boundary problem that consists in finding the shape of a glacier over a

given period and under given climatic conditions is addressed. When considering the dynamics of

glaciers during years or decades, ice can be considered as an incompressible Non Newtonian fluid,

flowing along the bedrock since subject to gravity forces [10]. Ice accumulates at the top of the

glacier due to snowfall exceeding melt whereas melt dominates in the lower parts of the glacier.

When the goal is to reproduce the dynamics of a complete glacier as in Fig. 1a the formation of

ice cracks and crevasses does not need to be modelled. Indeed, for instance in [14, 15, 16], results

in good agreement with observations have been obtained for Alpine glaciers during centuries,

without modelling ice damage. However, when local effects have to be considered, such as the

collapse of a hanging glacier or the calving process [2] (see Fig. 1b), then the modelling of ice

damage cannot be avoided. In [19, 20, 21, 22] a model to account for the formation of ice cracks

has been proposed and solved numerically using the level set method. The goal of this study is to

incorporate this model into the numerical model presented in [14, 15, 16].

The model for undamaged glaciers has already been presented in [15, 16] and is based on the

following procedure: Given the shape of the glacier, the velocity and pressure in the ice region

satisfy a nonlinear Stokes problem. An Eulerian framework is considered and the ice region is

defined using the volume fraction of ice, one in the ice region, zero elsewhere, as for the Volume of

Fluid (VOF) method [23]. The volume fraction of ice satisfies a transport equation with a source

term on the ice-air free surface to account for snow accumulation or melting.

In order to model ice cracks, a damage field D, accounting for the progressive deterioration of

ice was introduced in [19, 20, 21, 22]. The damage ranges between zero (no damage) and one (full

damage). Given the velocity and pressure fields, D satisfies a transport equation with source terms

to account for the formation of cracks. Then, the viscosity μ in the momentum equation must be

replaced by (1 − D)μ when damage is considered.
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Two applications demonstrate the potential of the numerical model presented in this paper. In

a first study case, the dynamics of Rhonegletscher, a valley glacier in the Swiss Alps, is simulated

until 2100. using simple assumptions on future climate. Unlike [15], we consider new scenarios

that are independent of predictions based on climate model results. For this experiment damage

is not taken into account. The second application consists in simulating the calving process in a

simplified 2D ice slab.

This paper is organized as follows: the model corresponding to a damaged and undamaged ice

flow is presented in the next Section. Section 3 is devoted to the numerical method. Section 4

describes the simulation of Rhonegletscher without damage. Finally, a simulation of the calving

process is presented in Section 5.

2 Modelling
Let Λ be a cavity of R

d, d = 2, 3, containing the ice domain Ω(t) at time t, 0 ≤ t ≤ T . When

d = 2, Λ = [0, X] × [0, Z], when d = 3, Λ = [0, X] × [0, Y ] × [0, Z], see Fig. 1d and 1c,

respectively.

2.1 Undamaged glacier velocity
When considering the motion of a glacier during years, ice can be considered as an extremely vis-

cous and incompressible non-Newtonian fluid. The mass and momentum conservation equations

reduce at time t to a stationary nonlinear Stokes problem in the ice domain:

−2div(με(u)) + ∇p = ρg in Ω(t), (2.1)

div u = 0 in Ω(t), (2.2)

where u is the ice velocity, p the ice pressure, μ the ice viscosity, ε(u) = 1
2
(∇u + ∇uT ) the rate

of strain tensor, ρ the ice density and g the gravity. Here above, the viscosity μ is a function of

ε(u) and satisfies an implicit relation, the so-called Glen’s law [9, 10, 16]:

1

2μ
= A

(
τm−1
0 + (2μ|ε(u)|)m−1

)
, (2.3)

where A is a positive number known as the rate factor, m ≥ 1 is Glen’s exponent, τ0 > 0 is a small

regularization parameter and |ε(u)| :=
√

1
2
ε(u) : ε(u). When m > 1, it is shown in [14] that μ is

positive and strictly decreasing with respect to |ε(u)|. Note that τ0 = 0 in the original Glen’s law

yields to an infinite viscosity at 0. When τ0 > 0, the viscosity is finite at 0 and has the following

asymptotic behaviour when |ε(u)| goes to the infinity:

μ(|ε(u)|) = O(|ε(u)| 1
m
−1). (2.4)

When m = 1, then μ is constant and the problem (2.1) (2.2) corresponds to a Newtonian fluid.

In the framework of glaciology, m is often taken equal to 3, see [11], then equation (2.3) can
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Figure 1: (a) Rhonegletscher in 2008 (source: G. Kappenberger). (b) Ice breaking away occur-

ring during the calving process, picture taken at the front of the Perito Moreno glacier (source:

www.firststryke.com). (c) A three dimensional glacier with notations. (d) Section of a glacier’s

tongue submerged by water with notations.

be solved exactly using the Cardan formula. In practice, Newton’s method is used to solve (2.3),

which requires less than five iterations to converge, for any value of m. The function μ is displayed

with respect to |ε(u)| in Fig. 2 for fixed parameters A, m and τ0.

2.2 Damaged glacier velocity
The evolution of micro-cracks density before failure can be described using continuum damage

mechanics [17]. Consider a point x in the ice region, surrounded by a representative volume

element of cross-section S. Let S ′ be the cross-sectional area due to micro-cracks, see Fig. 3,

damage is a scalar function ranging from zero to one and defined by:

D(x) =
S ′

S
.
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0.02 0.04 0.06 0.08 0.1
Strain

Figure 2: Viscosity (unit: bar year) with respect to the strain’s norm |ε(u)| (unit: year−1). The

parameters are A = 0.08 bar−3 year−1, m = 3 and τ0 =
√

0.1 bar.

This definition is valid in two or three space dimensions, under the assumption that damage is an

isotropic process, that is when the orientation of cracks is uniform in all directions.

S ′

S

Figure 3: The progressive damage of a material. Left: no damage, D = 0. Middle and right:

partial damage, D = 0.1 and D = 0.5. The cross-section of the representative volume element is

S, while S ′ is the area of the micro-cracks.

When damage increases, the apparent fluid viscosity should decrease, consequently, the Stokes

problem with damage writes, see [21]:

−2div((1 − D)με(u)) + ∇p = ρg, in Ω(t), (2.5)

div u = 0, in Ω(t), (2.6)

where μ is still defined by (2.3). This nonlinear Stokes problem supplemented with boundary

conditions is well posed whenever the damage D < 1, which will be the case for the reasons

detailed hereafter.

Damage is assumed to be transported with the ice particles, and evolves according to a source

term depending on internal stresses, see [21]:

∂D

∂t
+ u · ∇D = f(D,u, p). (2.7)
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Here the source term f is given by:

f(D,u, p) = B
max(0, ψ(D,u, p))r − λ max(0,−ψ(D,u, p))r

(1 − D)k
χ[0,1−ε](D), (2.8)

where the function ψ is defined by:

ψ(D,u, p) =
c12μ|ε(u)| − c2p

1 − D
− σ̄. (2.9)

Here above k, λ, B, r, σ̄, c1 and c2 are positive parameters, χ[0,1−ε](D) is the characteristic function

of [0, 1 − ε], one in [0, 1 − ε] and zero otherwise, ε being a small positive parameter.

The term χ[0,1−ε](D) in (2.8) forces the variable D to remain in the interval [0, 1−ε], thus avoid-

ing μ(1 − D) to be zero in (2.5). The first term in the top of the fraction in (2.8) is a contribution

to damage whereas the second term is a contribution to healing. If c12μ|ε(u)| − c2p > (1 − D)σ̄,

then damage occurs, otherwise healing occurs.

Remark 1. In (2.9), the term
c12μ|ε(u)| − c2p (2.10)

corresponds to
ασ1 + β

√
3τII + (1 − α − β)σI , (2.11)

appearing in the model of [21], where σ1 is the maximal eigenvalue of the stress tensor σ, σI :=
tr(σ) is the first invariant of σ, τ := σ − 1

d
σII is the deviatoric stress tensor and τII := 1

2
τ : τ

is the second invariant of τ . Here above, α and β are positive parameters such that 1 − α − β is
positive. By using the relations σ = 2με(u) − pI , τ = 2με(u) and div(u) = 0, the quantities σ1,
τII and σI can be rewritten as functions of ε(u) and p:

σ1 = 2μ|ε(u)| − p, τII = (2μ|ε(u)|)2, σI = −d p. (2.12)

As a consequence, (2.11) is equal to (2.10) with

c1 = α +
√

3β, and c2 = α + d(1 − α − β). (2.13)

2.3 Volume fraction of ice
In [20, 22], the level set approach has been used to describe the changes of the ice domain during

the calving process. In this work, another Eulerian description, the Volume of Fluid (VOF) method

[23], is preferred.

The volume fraction of ice ϕ is defined inside the cavity Λ by:

ϕ(x, t) =

{
1 if x ∈ Ω(t),
0 else.

(2.14)
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Let b(x, t) be the mass balance function, that is the ice thickness added or removed during one year

by ice accumulation (snowfalls) and ice ablation (melting). From [15, 16], mass balance yields:

∂ϕ

∂t
(x, t) + u · ∇ϕ(x, t) = b(x, t)δΓS(t), (2.15)

where δΓS(t) is the delta Dirac function on the ice-air interface ΓS(t) and is defined by:∫
V

b δΓS(t) dV =

∫
V ∩ΓS(t)

bdS

for any domain V in the cavity Λ.

2.4 Boundary conditions
The boundary of Ω(t) has four components, see Fig. 1d. Basal sliding under the glacier is ne-

glected. Thus, no slip conditions apply along the bedrock-ice interface ΓB(t):

u = 0 on ΓB(t), (2.16)

while zero force conditions apply on the ice-air interface ΓS(t):

2με(u)n − pn = 0 on ΓS(t), (2.17)

where n is the unit outer normal. If ice is submerged by water, an hydrostatic pressure applies on

the ice-water interface ΓF (t):

2με(u)n − pn = −ρw|g|(zwl − z)n on ΓF (t), (2.18)

where ρw and zwl denote the water density and the water level, respectively. On ΓI(t), the part of

the boundary where ice enters the cavity Λ, we have:

u = uI , ϕ = 1, D = 0 on ΓI(t), (2.19)

where uI is the given incoming ice flow velocity that satisfies uI · n < 0.

The whole problem consists in finding u, p, ϕ and D satisfying the partial differential equa-

tions (2.5) (2.6) (2.7) (2.15), the boundary conditions (2.16) (2.17) (2.18) (2.19) plus given initial

conditions for ϕ and D.

The well-posedness of the nonlinear Stokes problem (2.1) (2.2) with boundary conditions

(2.16) (2.17) is proved in [14]. The proof relies on the fact that the corresponding weak form

is nothing but Euler’s equation of a minimization problem, the functional being strictly convex due

to (2.4).

3 Numerical method
A time discretization scheme is proposed to decouple the transport problems (2.7) (2.15) and the

nonlinear Stokes problem (2.5) (2.6), as in [18, 5, 3, 16]. This allows transport and Stokes problems

to be solved on two different grids by using different numerical techniques.
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3.1 Time discretization
Let 0 = t0 < t1 < t2 < ... < tN = T be a subdivision of the time interval [0, T ], and τn = tn−tn−1

be the n-th time step, n = 1, 2, , ..., N . The largest time step is denoted by τmax. Assume that

(ϕn−1,un−1, pn−1, Dn−1), approximations of (ϕ,u, p, D) at time tn−1, are known. We now detail

how to compute (ϕn,un, pn, Dn).
The two advection problems (2.7) and (2.15) are solved using a one order splitting scheme

to decouple the advection and source terms. The first step consists in solving the two following

transport problems between tn−1 and tn:{
∂ϕ

∂t
+ un−1 · ∇ϕ = 0,

ϕ(tn−1) = ϕn−1,

{
∂D

∂t
+ un−1 · ∇D = 0,

D(tn−1) = Dn−1,
(3.1)

with boundary conditions (2.19). A one order approximation of the solution of (3.1) at time tn,

denoted by (ϕn− 1
2 , Dn− 1

2 ), can be obtained using the forward method of characteristics:

ϕn− 1
2 (x + τnun−1(x)) = ϕn−1(x), (3.2)

Dn− 1
2 (x + τnun−1(x)) = Dn−1(x). (3.3)

The ice region is then defined by:

Ωn− 1
2 = {x ∈ Λ; ϕn− 1

2 (x) = 1}, (3.4)

and the ice-air interface Γ
n− 1

2
S can be identified. The second step consists in solving the two next

problems between tn−1 and tn:⎧⎨
⎩

∂ϕ

∂t
= b(·, tn−1)δ

Γ
n− 1

2
S

,

ϕ(tn−1) = ϕn− 1
2 ,

⎧⎨
⎩

∂D

∂t
= f(Dn−1/2,un−1, pn−1),

D(tn−1) = Dn− 1
2 .

(3.5)

Finally, an order one approximation of ϕ and D at time tn is given by:

ϕn = ϕn−1/2 + τnb(x, tn−1)δ
Γ

n− 1
2

S

, (3.6)

Dn = max
(
min

(
Dn−1/2 + τnf(Dn−1/2,un−1, pn−1), 1 − ε

)
, 0

)
, (3.7)

so that the computed damage Dn clearly remains between 0 and 1 − ε. The new ice domain Ωn

is defined as in (3.4) with ϕn in place ϕn− 1
2 . The incoming-flow interface Γn

I , the bedrock-ice

interface Γn
B, the water-ice interface Γn

F and the ice-air interface Γn
S can then be identified. Finally,

the weak formulation corresponding to the nonlinear Stokes problem (2.5) (2.6) consists in finding

un : Ωn → R
d and pn : Ωn → R such that un = 0 on Γn

B, un = uI on Γn
I , and

2

∫
Ωn

(1 − Dn)μ(|ε(un)|)ε(un) : ε(v)dV −
∫

Ωn

pndiv vdV +

∫
Ωn

div unqdV

− ρ

∫
Ωn

g · vdV + ρw|g|
∫

Γn
F

(zwl − z)(v · n)dS = 0, (3.8)

for all (v, q) such that v = 0 on Γn
B ∪ Γn

I .

8

ht
tp

://
do

c.
re

ro
.c

h



3.2 A two-grid method for space discretization
Two fixed meshes are used for solving the advection and diffusion problems, see [18, 4, 3, 16].

Formula (3.2) (3.3) (3.6) (3.7) are implemented on a fixed structured grid Th made of small cells

having size h, with goal to reduce the numerical diffusion of ϕ as much as possible. As the bedrock

topography can be rather complex, the Stokes problem (3.8) is solved using a fixed unstructured

mesh TH of tetrahedrons with typical size H , see Fig. 4. Note that TH can be non uniform, see the

numerical results of section 5; in that case, H is defined to be the smallest size of the tetrahedrons.

Since most of the CPU time is spent for solving Stokes problem, H is larger than h. A trade-off

between accuracy and efficiency is to choose H 	 5h, see [18].

Cavity Λ

Cavity Λ̃Ω(t)

Bedrock

Air Th

TH

Figure 4: Two dimensional example of the space discretisation: TH is an unstructured mesh that

fits the bedrock topography while Th is a grid overlapping TH .

The implementation of the formula (3.2) and (3.3) is an easy task on the structured mesh Th.

For each cell, ϕn−1 and Dn−1 are advected according to un−1, and then projected onto the grid Th,

see [18, 16]. Numerical diffusion in the variable ϕ is introduced during the projection step and

the volume fraction of ice is smeared, taking values between zero and one. The use of the SLIC

algorithm (Simple Line Interface Calculation) allows the width of the diffusion layer to be reduced

at low cost, see for instance [23]. On the other hand, the damage variable D varies smoothly but

rapidly from 0 to 1 − ε and thus does not require the use of the SLIC algorithm.

This transport algorithm is unconditionally stable and CFL numbers greater than one can be

used. The use of an adaptive time stepping is advocated in order to capture rapid changes in the

damage variable D. The current time step is computed using the formula:

τn = min

(
CFL × h

‖un‖L∞(Ωn)

, τmax

)
, (3.9)

where CFL and τmax are two given parameters, representing the maximal CFL number and the

maximal time step, respectively.
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The diffusion step consists in solving the Stokes problem (3.8) with standard finite element

techniques on the mesh of tetrahedrons TH . The use of unstructured tetrahedrons allows mesh

refinement whenever needed, crevasse formation for instance. Moreover, the tetrahedrons can be

distorded in order to have a finer mesh spacing along the vertical directions. Continuous, piecewise

linear stabilized finite elements are used as in [7]. A fixed point method is used to solve the

nonlinearity due to the viscosity, we refer to [18, 5, 3, 16] for details about the diffusion step. A

priori error estimates for the finite element approximation corresponding to (3.8) in a prescribed

domain are established in [14], using a quasi-norm technique [1]. Convergence of the fixed point

method is also discussed.

4 Three dimensional simulation of Rhonegletscher
Rhonegletscher is a medium-sized alpine valley glacier with a well developed tongue. It has a

length of about 8 km, and an area of more than 15 km2. The current ice volume is 2 km3 [6]. The

ice velocity at the surface reaches up to 100 meters per year [15]. As most Alpine glaciers, Rhone-

gletscher has significantly retreated since the end of the 19th century, and has decreased about 1.2

km in length since 1880 [8]. The numerical simulation of this glacier from 1874 to 2007 has repro-

duced observations with accuracy in [15]. Projections of the glacier retreat until 2100 have been

performed according to three realistic climate change scenarios based on the Swiss Advisory Body

on Climate Change, see occc.ch [15]. The goal of the present experiment is to explore other

simple scenarios that are independent of predictions based on climate model results. Projections

of climate over the next century show a large spread and are thus controversial. This is both due

to unknown future anthropogenic contribution and to climate model uncertainty. Therefore, we

define three scenarios that are based on observed climate conditions in the past, and just repeat

these over the entire modelling period 2007-2100.

• Scenario ’cold’ is obtained by driving the model with air temperature and precipitation be-

tween October 1977 and September 1978, which resulted in the most positive annual mass

balance of glaciers in the European Alps during last century [12].

• Scenario ’current’ is obtained by randomly picking one year between 2000 and 2008 that

provides the climatic forcing. This is repeated for all years until 2100.

• Scenario ’hot’ is based on the meteorological conditions between October 2002 and Septem-

ber 2003 leading to extremely negative mass balance of Alpine glaciers. This year could be

a precursor of the coming decades.

The bedrock topography of Rhone glacier is reconstructed from measurements [6], and the

elevation of the ice surface is available for 2007. From these data, the meshes TH and Th can

be generated as described in [15]. The size of the final meshes is: H ∼ 50 meters and h = 10
meters. The time step is constant τn = 0.5 year. Glen’s exponent is set to m = 3, see [11] and

the regularisation parameters are fixed τ0 =
√

0.1 bar. As in [15], sliding effects are neglected
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over the period 2007-2100. The rate factor A has been calibrated such that it minimizes the mean-

square error between computed and measured ice surface velocities, see [15]. As a result, we set to

A = 0.08 bar−3 y−1 over the period 2007-2100. Since no ice enters the cavity Λ, we set ΓI(t) = ∅.

Moreover, we assume that the glacier does not reach water, thus ΓF (t) = ∅. At the glacier surface

a mass balance function b is prescribed to incorporate climatic forcing. b relies, among other

variables, on measured daily air temperature and precipitation and has been determined for Rhone

glacier in previous studies [12]. The model is driven using the three scenarios based on observed

meteorological conditions in the past (see above). The numerical simulations start in 2007 and end

in 2010. Since the whole glacier is considered, damage can be neglected, thus D = 0.

Snapshots and total ice volumes of the three simulations corresponding to the different scenar-

ios are displayed in Fig. 4. According to Scenario ’current’, Rhonegletscher will continue to decay

and lose 36% of the total ice volume by 2100 compared to 2007. This indicates that the size of

the glacier is too large to be stable in the current climate conditions. Thus, Rhonegletscher will

further retreat, also if future climate stabilizes on the level of the last decade. The simulation based

on Scenario ’hot’ results in an almost complete disappearance of the glacier by 2100. Only 11%

of the total ice volume will remain in this case. This underlines the extreme impact of the summer

heat waves of the year 2003 on the Alpine glaciers. If conditions like in 2003 prevail in the future

decades, glaciers in the European Alps would have bad chances of surviving. According to Sce-

nario ’cold’, however, Rhonegletscher could expand its size rapidly. In 2085, the ice volume would

be almost be multiplied by two (compared to 2007), and the glacier would be larger than during the

maximum of the Little Ice Age 150 years ago. Note that the simulation has finished in 2085 since

the glacier has extended beyond the cavity. This experiment shows that meteorological conditions

in individual years can be very favourable to glaciers. Indeed, many glaciers showed significant

advances in the 1970s [8], which were however stopped by rapidly rising air temperatures after the

mid-1980s.

5 Two dimensional simulation of calving
Break-off of ice and calving processes are often observed phenomenon on many glaciers world-

wide. Calving is especially important for the prediction of the dynamics of glaciers terminating in

the ocean (e.g. Antarctica or Greenland) [2], whereas break-off of ice blocks from hanging glaciers

in the Alps can be a serious natural hazard [21]. Calving contributes of mass loss from the con-

tinental ice sheets and therefore has the potential to rise the sea level [2]. The modelling of these

processes is highly important in order to anticipate some natural events such that the sudden glacier

rupture or a the sea level rise, and has a large potential for application in numerous glaciological

studies.

Pralong and Funk have demonstrated in [21] the ability of the local damage evolution law (2.7)

applied to Glen’s law to model the breaking-off of ice masses from glaciers. Good agreements

between observations and simulations have confirmed the relevance of the model. However, their

approach is based on a level set description of the glacier geometry and requires a remeshing

procedure, see [19], which may artificially influence the behaviour of cracks. Moreover, the mesh-
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dependence of their results has not been investigated.

Here, we present a simulation of the calving of a two-dimensional glacier. The study case is

inspired from the simulation of Gruben glacier presented in [21] but can also represent the end of

any glacier terminating in water. We consider the terminus of a glacier flowing from left to right

and finishing with a vertical ice front against a lake. The bedrock contains two flat parts: a slightly

inclined part at an angle ω on the glacier (left) side and an horizontal part on the water (right) side,

see Fig. 1d. The presence of water at glacier margins induces a force on the ice-water interface

due to hydrostatic pressure. Since calving results from local damage effects of ice, there is no need

to consider the entire volume of ice. The glacier is then truncated, see Fig. 1d, and the incoming

ice flow at ΓI(t) is given by the formula:

uI(z) =

(
cos(ω)
− sin(ω)

)
C(Sm+1(0) − (S(0) − z)m+1), (5.1)

where S(x) is the ice thickness, ω is the angle of inclination of the inflow-side bedrock, and C > 0.

Note that the velocity profile given by (5.1) is an exact solution of the Shallow Ice Approximation

equation, see [13, 10].

At initial time, a nearly rectangular ice domain is considered, see Fig. 1d, damage being

zero. The physical and numerical parameters used in the paper are reported in Table 1. The

parameters B, r, k and λ arising in equations (2.8) (2.9) are taken from [19], see [21] for more

details concerning the calibration procedure. The parameters c1 and c2 are deduced from the values

of α and β given in [19] via the relations (2.13). The coefficient σ̄ is computed according to

equation (18) of [21]. The parameters ε and τmax are taken from [14]. The coefficient C is chosen

so that the maximum of the velocity profile is about 2.5 meters per year. Since the simulation time

is only one year, ice accumulation and ablation is neglected, i.e. b = 0. The mesh Th is a grid with

600×800 squared cells overlapping the cavity Λ while the mesh TH contains about 16,000 nodes

which are not uniformly distributed. Indeed, TH is finer in the expected damaged zone, see Fig.

1d, and coarser elsewhere in order to save memory and to reduce the computational time. The size

of the smallest triangle is about 0.25 m. With meshes Th and TH , the recommended ratio H
h
∼ 5

holds in the finest zone and is higher elsewhere. Unlike Section 4, the time unit is a second.

The choice of ε (here, taken to be 10−3) is delicate. Indeed, if ε is too small, then the matrix cor-

responding to (2.5) (2.6) becomes ill-conditioned. Since the problem is in two space dimensions,

a direct solver can be used and fails only when ε < 10−5.

The evolution of ice calving is presented in Fig. 6. Until day 172, the ice flow is very slow and

the time step - computed using (3.9) - equals τmax. Then, the stress and the pressure are such that

damage initiates and propagates rapidly. A crevasse appears in the most damaged region and an

ice block breaks apart. The crack propagates, the damaged zone behaves as a thin viscous liquid

layer and the motion of ice increases. Due to (3.9), the time step significantly decreases. When the

ice block detaches from the glacier, it falls down and exits the cavity Λ.

The influence of the mesh size on the result is investigated. Three meshes TH are considered

with several levels of refinement: meshes 1, 2 and 3, respectively, from the coarsest one to the finest

one. The results displayed in Fig. 6 have been obtained by using mesh 3. For any mesh, the main

crack initializes at the same location and propagates in the same direction with a comparable size,
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see Fig. 7. Nevertheless, the finest mesh displays small cracks that are ignored by the two coarsest

meshes. For meshes 1, 2 and 3, the main crack initializes at 244, 183 and 172 days, respectively,

thus the time of failure seems to converge with mesh size.

This study shows that the volume fraction of ice description is a relevant alternative to the level

set description used in [21]. Unlike the method proposed by Pralong and Funk, no remeshing is

needed. Moreover, the behaviour and the location of the cracks inside the ice domain are not very

sensitive to the mesh size.

Parameter Value Unit
m 3 -

A 6.8 ×10−24 Pa−ms−1

|g| 9.81 m s−2

ρ 900 kg m−3

ρw 1000 kg m−3

B 1.7 ×10−9 Pa−rs−1

c1 1.3 -

c2 0.53 -

X 45 m

Z 35 m

C 10−13 ms−1

Parameter Value Unit
λ 0.4 -

r 0.43 -

k 2 -

σ̄ 44000 Pa

zwl 12 m

τ0 1000 Pa

τmax 105 s
ε 10−3 -

CFL 0.9 -

ω 4.2 Deg

- - -

Table 1: Physical and numerical parameters.

6 Conclusions
A physical model has been presented to describe the dynamics of glaciers with the local damage

effects that may drive ice to break. Given the ice domain, a nonlinear Stokes problem has to be

solved to obtain the velocity of ice. Whenever needed, a damage variable describes continuously

the presence of cracks. The damage function satisfies a transport equation with source terms. Then,

the viscosity of ice must be updated accordingly. A Eulerian formulation based on the volume

fraction of ice is used to describe the evolution of the ice domain. The volume fraction of ice

satisfies a transport equation with source terms on the ice-air interface to account for accumulation

or melting. Two different grids are used to solve the Stokes and transport equations.

This model allows complex geometries with possible changes of topology to be handled. Two

applications demonstrate the potential of the numerical model for simulating glaciological pro-

cesses. First, the simulation of Rhonegletscher is performed from 2007 to 2100 using three cli-

matic scenarios, but neglecting damage. The results predict that Rhonegletscher will continue to

retreat even if the climate of the last decade persists over the entire 21th century and no additional

warming occurs. Second, a two dimensional simulation of the calving process is presented. Dam-

age is considered and the opening of a crevasse is observed. Since the method does not require any
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remeshing procedure, mesh effects remain limited. Based on the results shown we recommend the

proposed method for numerical simulation of future glacier retreat and the prediction of break-off

of ice masses.
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2007 (initialization)

Sc. ’cold’
Sc. ’current’
Sc. ’hot’

Scenario ’cold’ Scenario ’current’ Scenario ’hot’

2050 2050 2050

2085 2100 2100

Figure 5: Top left: initialization, Rhonegletscher in 2007. Top right: total ice volume of Rhone-

gletscher with respect to time according to the different scenarios. Bottom: simulation of Rhone-

gletscher according to different scenarios.
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t = 0 day t = 50 days

t = 120 days t = 155 days

t = 172.134 days t = 172.513 days

Figure 6: Numerical simulation of the calving process. Gray color represents undamaged ice

(D = 0) while white color represents the maximum of damage (D = 1 − ε) and air. Time t is

displayed in days.
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Figure 7: Damage field represented by the white color on meshes 1, 2 and 3 about one day before

the failure.

Mesh 1

Mesh 2

Mesh 3
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