Nucleotide binding and dimerization at the chloroplast pre-protein import receptor, atToc33, are not essential in vivo but do increase import efficiency

Henrik Aronsson1,†, Jonathan Combe2,†, Ramesh Patel2,†, Birgit Agne3, Meryll Martin3, Felix Kessler3 and Paul Jarvis2,*
1Department of Plant and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden,
2Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK, and
3Laboratoire de Physiologie Végétale, Université de Neuchâtel, Rue Émile-Argand 11, 2007 Neuchâtel, Switzerland

*For correspondence (fax +44 116 252 3330; e-mail rpj3@le.ac.uk).
†These authors contributed equally to this work.

SUMMARY

The atToc33 protein is one of several pre-protein import receptors in the outer envelope of Arabidopsis chloroplasts. It is a GTPase with motifs characteristic of such proteins, and its loss in the plastid protein import 1 (ppi1) mutant interferes with the import of photosynthesis-related pre-proteins, causing a chlorotic phenotype in mutant plants. To assess the significance of GTPase cycling by atToc33, we generated several atToc33 point mutants with predicted effects on GTP binding (K49R, S50N and S50N/S51N), GTP hydrolysis (G45R, G45V, Q68A and N101A), both binding and hydrolysis (G45R/K49N/S50R), and dimerization or the functional interaction between dimeric partners (R125A, R130A and R130K). First, a selection of these mutants was assessed in vitro, or in yeast, to confirm that the mutations have the desired effects: in relation to nucleotide binding and dimerization, the mutants behaved as expected. Then, activities of selected mutants were tested in vivo, by assessing for complementation of ppi1 in transgenic plants. Remarkably, all tested mutants mediated high levels of complementation: complemented plants were similar to the wild type in growth rate, chlorophyll accumulation, photosynthetic performance, and chloroplast ultrastructure. Protein import into mutant chloroplasts was also complemented to >50% of the wild-type level. Overall, the data indicate that neither nucleotide binding nor dimerization at atToc33 is essential for chloroplast import (in plants that continue to express the other TOC receptors in native form), although both processes do increase import efficiency. Absence of atToc33 GTPase activity might somehow be compensated for by that of the Toc159 receptors. However, overexpression of atToc33 (or its close relative, atToc34) in Toc159-deficient plants did not mediate complementation, indicating that the receptors do not share functional redundancy in the conventional sense.

Keywords: atToc33, ppi1, chloroplast protein import, protein targeting, GTPase, Arabidopsis.

INTRODUCTION

Most chloroplast proteins are encoded in the nucleus and synthesized as pre-proteins in the cytosol. Each pre-protein has an N-terminal transit peptide that is recognized by the TOC and TIC (translocon at the outer/inner envelope membrane of chloroplasts) complexes of the chloroplast envelope (Soll and Schleiff, 2004; Kessler and Schnell, 2006; Smith, 2006; Inaba and Schnell, 2008; Jarvis, 2008). These two multiprotein complexes co-operate to drive the post-translational import of pre-proteins across the envelope membranes. Pre-protein import requires both ATP and GTP (Olsen et al., 1989; Olsen and Keegstra, 1992; Young et al., 1999). Most of the ATP is consumed at late stages of import, in the stroma, and this requirement is attributed to molecular chaperones within a putative import motor complex. By contrast, GTP is required during early stages, when pre-protein recognition occurs, and is used by import receptors at the chloroplast surface. Once a pre-protein arrives in the stroma, the transit peptide is proteolytically removed and the mature domain takes on its final conformation, or engages intraorganellar sorting pathways (Gutensohn et al., 2006; Schünemann, 2007).

Transit peptide recognition is mediated by the receptors Toc34 and Toc159 (Hirsch et al., 1994; Kessler et al., 1994; Schnell et al., 1994; Seedorf et al., 1995). These are related
GTPases, and they possess many of the guanine nucleotide binding and hydrolysis motifs that are characteristic of such proteins (Bourne et al., 1991). Both receptors are anchored in the outer envelope by a C-terminal membrane domain, and both project a GTPase domain (G-domain) out into the cytosol. Although Toc159 additionally possesses an N-terminal acidic domain, it is thought that the G-domain plays a more important role in transit peptide binding (Bölter et al., 1998; Chen et al., 2000; Bauer et al., 2002).

Structural studies and in vitro interaction analyses have shown that the receptor G-domains are able to undergo homo- and heterodimerization (Sun et al., 2002; Weibel et al., 2003; Reddick et al., 2007; Yeh et al., 2007; Koenig et al., 2008). There have been conflicting reports concerning the consequences of receptor dimerization for GTPase cycling. An early hypothesis was that each monomer acts as the GTPase activating protein (GAP) for its partner (Sun et al., 2002). However, it was recently reported that receptor dimerization does not significantly affect GTPase activity, and that it instead serves to facilitate the transfer of pre-proteins to the translocation channel (Lee et al., 2009).

Although it is generally accepted that the two receptors cooperate closely to mediate pre-protein recognition and the early stages of import, the mechanisms have not been clearly established (Becker et al., 2004; Kessler and Schnell, 2004; Li et al., 2007).

In Arabidopsis, both receptors are encoded by a small gene family: Toc34 is encoded by two genes (atTOC33 and atTOC34), whereas Toc159 is encoded by four genes (atTOC159, atTOC132, atTOC120 and atTOC90) (Jarvis et al., 1998; Bauer et al., 2000; Gutensohn et al., 2000; Hiltbrunner et al., 2001; Jelic et al., 2003); the different numbers indicate the sizes (in kDa) of the encoded proteins (Schnell et al., 1997). Genetic and biochemical studies led to the hypothesis that the different receptor isoforms have distinct substrate specificities: the dominant isoform in each family (atToc159 and atToc33) is thought to have recognition preference for highly abundant components of the photosynthetic apparatus (Bauer et al., 2000; Kubis et al., 2003; Smith et al., 2004), whereas other isoforms (atToc132, atToc120 and atToc34) act preferentially in the import of less abundant, housekeeping pre-proteins (Hiltbrunner et al., 2004; Ivanova et al., 2004; Kubis et al., 2004). The Arabidopsis plastid protein import 1 (ppi1) and ppi2 mutants, which lack atTOC33 and atToc159, respectively, have striking chlorotic or albino phenotypes because of deficiencies in the import of photosynthesis-related pre-proteins (Jarvis et al., 1998; Bauer et al., 2000; Kubis et al., 2003; Smith et al., 2004).

It has been proposed that pre-protein binding by the receptors is strongly influenced by their nucleotide status (Sveshnikova et al., 2000; Jelic et al., 2002; Schleiff et al., 2002; Becker et al., 2004). One possibility is that the receptors bind to transit peptides when in the GTP-bound state, and that transit peptide binding stimulates GTP hydrolysis to yield a lower-affinity, GDP-bound form of the receptor, allowing the pre-protein to dissociate and progress to the next stage of the translocation pathway (Soll and Schleiff, 2004). Other models suggest that the stimulation of GTP hydrolysis is mediated by dimerization between the receptors (as already mentioned) (Kessler and Schnell, 2004), or that the transit peptide acts as a guanine nucleotide exchange factor (GEF) rather than as a GAP (Li et al., 2007). One thing that all models share is a key role for nucleotide cycling at the receptors. However, two recent studies revealed that transgenes expressing atToc159 mutants with defects in GTP binding and/or hydrolysis can still mediate the efficient complementation of the ppi2 phenotype (Wang et al., 2008; Agne et al., 2009). This is surprising, as it indicates that GTPase cycling at atToc159 is not strictly required for efficient protein import. To assess the significance of GTP cycling (and dimerization) at the other main receptor in Arabidopsis, we generated a series of atToc33 G-domain mutants and tested them for activity, both in vitro and in vivo.

RESULTS

Generation of the atToc33 mutants

The atToc33 protein possesses many of the conserved motifs found in other GTP-binding proteins (Bourne et al., 1991). Numerous studies on various GTPases have shown that the mutation of certain residues can interfere selectively with nucleotide binding or hydrolysis. We generated the following mutations within the atTOC33 cDNA, with predicted effects on GTP binding or hydrolysis: K49R, S50N and S50N/S51N (binding); G45R, G45V, Q68A and N101A (hydrolysis). Several of these (S50N, G45V and G45R) are equivalent to the standard G1-motif mutations that have been used to induce dominant-negative or constitutively-active effects in many GTPases (Li et al., 2001); the S50N/S51N double mutant was used to eliminate the possible contribution of an adjacent serine at position 51. Mutations equivalent to K49R, S50N and G45R have been studied in the context of atToc159, and were shown to interfere with functionality as expected (Smith et al., 2002; Lee et al., 2003). The Q68A and N101A mutations were designed based on pea Toc34 (psToc34) structural data, which suggested that these residues may act in GTPase catalysis (Sun et al., 2002). Additionally, we generated a G-domain triple mutant (G45R/K49N/S50R), which is equivalent to previously studied mutants in psToc34, atToc159 and atToc33 (Chen and Schnell, 1997; Bauer et al., 2002; Wallas et al., 2003). In atToc159, this triple mutation essentially abolished nucleotide binding and hydrolysis (Bauer et al., 2002), and so it is thought to severely disrupt the G-domain. Finally, we generated three mutations with predicted effects on dimerization or dimerization-mediated stimulation of GTPase activity (R125A, R130A and R130K) (Sun et al., 2001; Reddick
Arginine 130 was suggested to act as an arginine finger, such that each subunit within an atToc33 dimer functions as a GAP for the opposing monomer (Yeh et al., 2007); an alternative possibility is that this residue simply mediates dimerization (Weibel et al., 2003; Lee et al., 2009). All of these mutations and their predicted effects are summarized in Figure 1.

In vitro analyses of GTP binding and hydrolysis by the atToc33 mutants

A subset of the mutations were selected for in vitro analysis (K49R, G45R, S50N, S50N/S51N, Q68A, N101A, G45R/K49N/S50R, R125A and R130K), to confirm that they exert the expected effects on GTP binding and hydrolysis. Thus, the mutations were introduced into a truncated cDNA lacking the transmembrane region, enabling the preparation of soluble proteins for analysis. The proteins were expressed in bacteria and were purified using affinity chromatography (Figure 2). Two of the mutants, S50N and S50N/S51N, were almost completely insoluble and could not be purified to homogeneity, despite repeated attempts (data not shown); this suggested that the impairment of magnesium co-factor binding within the nucleotide binding site (which is the predicted effect of these mutations; Farnsworth and Feig, 1991) had a severely destabilizing effect on the whole G-domain. The G45R/K49N/S50R triple mutant, and to a lesser extent R125A and K49R, were similarly problematic, although preparation of reasonably pure samples was eventually achieved in these cases (Figure 2). Two independent G45R/K49N/S50R samples are shown to give an indication of the persistent contaminating proteins in the ~50–75-kDa range.

![Figure 1](image_url)

Figure 1. Details of the atToc33 mutations used in this study. (a) Alignment of the central region of the atToc33 G-domain (At1g02280) with the corresponding regions of the other five TOC receptors in Arabidopsis (atToc34, At5g05000; atToc159, At4g02510; atToc132, At2g16640; atToc120, At3g16620; atToc90, At5g20300), as well as those of the two pea receptors (psToc34, accession Q41009; psToc159, accession AAF75761). The alignment was generated using ClustalW within BioEdit (Thompson et al., 1994; Hall, 1999). Numbers to the left and right of the alignment indicate positions within the corresponding full-length proteins. Residues identical in at least four sequences are shaded black, whereas similar residues are shaded grey. Residues in the atToc33 sequence that have been mutated in this study, or in previous studies, are shaded red; equivalent residues in the other GTPases that have also been subjected to mutational analysis are similarly shaded. Mutations used here are indicated above the alignment in red text. (b) List of the mutations used in this study. The predicted or known effects of the mutations are indicated; some are known because the relevant mutations have already been studied in the context of atToc33. References are for relevant reports on mutational studies conducted in the context of atToc33 or one of the other GTPases.
Nucleotide binding was assessed using two different procedures: a filter-binding assay using immobilized protein and radiolabelled nucleotide ([α-32P]GTP) (Figure 3a), and a liquid-phase assay using fluorophore-modified nucleotides (mant-GTP, mant-GDP and mant-ATP) that respond with different intensities and wavelengths of fluorescence upon protein binding (Figure 3b). The results indicated that most of the mutations behaved as expected. Essentially normal nucleotide binding was detected for those mutants predicted to be specifically hydrolysis-defective (G45R, Q68A and N101A); consistent with previous work (Aronsson et al., 2003), all binding-competent proteins bound GTP and GDP, but not ATP (Figure 3b). By contrast, strongly reduced nucleotide binding was seen for those mutants predicted to be binding-defective (K49R and G45R/K49N/S50R). The results for R125A were somewhat unexpected, as this mutant was reported to disrupt dimerization and, thus, hydrolysis (Sun et al., 2002). However, our data show clearly that this mutant is also binding-defective, indicating that the mutation has more wide-ranging consequences than previously predicted.

Next, GTP hydrolysis assays were conducted using those mutants predicted to have hydrolytic defects (G45R, Q68A and N101A). Assays were conducted in liquid phase using [α-32P]GTP, and were analysed by thin-layer chromatography (TLC). Normalized activity detected using wild-type protein was ~0.2–0.5 nmol GTP min⁻¹ μmol⁻¹ atToc33, which is broadly consistent with what has been reported previously at similar nucleotide concentrations (Reddick et al., 2007). Surprisingly, none of the putative hydrolytic mutants showed significantly reduced activity (Figure 4); an atToc159 mutant (K868R; equivalent to atToc33 K49R) that was previously shown to be both binding- and hydrolysis-defective in vitro was used as a negative control in these assays, and it behaved as expected (Smith et al., 2002; Agne et al., 2009). The Q68A and N101A results can be explained by structural data that were published recently (Koenig et al., 2008), after we initiated this study based on the earlier proposal that the Gln 71 and Asn 104 of psToc34 are candidate catalytic residues (Sun et al., 2002); these are equivalent to Gln 68 and Asn 101 of atToc33, respectively. The results of Koenig et al. (2008) suggest that neither residue is likely to perform a catalytic role, as their side-chains are oriented away from the γ-phosphate of the nucleotide; instead, it was suggested that the main-chain carbonyl group of Gly74 (in psToc34) is responsible for the intrinsic hydrolytic activity of the protein, by positioning a water molecule for nucleophilic attack on the γ-phosphate of bound GTP. In relation to G45R, the results are more difficult to explain, as Gly45 is a core residue of the highly-conserved, G1 P-loop motif, and its mutation is known to affect hydrolytic activity in the context of other GTPases, including atToc159 (Smith et al., 2002; Wang et al., 2008). To help understand the hydrolysis results, we utilized the recent structural data (Koenig et al., 2008) to model the equivalent Gly-to-Arg mutation of psToc34 (G46R) (Figure S1). Despite extensive primary sequence conservation in the P-loop region, we found that the Arg46 side group points away from the γ-phosphate of the nucleotide, such that it cannot interfere with any of the proposed catalytic residues (as equivalent mutations do in other GTPases, such as H-Ras; Figure S1). Significant structural differences between Toc34 and Toc159 led to the suggestion that the two receptor GTPases employ distinct hydrolytic mechanisms (Koenig et al., 2008), which may account for the differences between our results (Figure 4) and those reported for atToc159 (Smith et al., 2002; Wang et al., 2008).

Analyses of dimerization of the atToc33 mutants

Some of the mutations were predicted to exert a primary effect on receptor dimerization, or on dimerization-mediated GAP functionality. To assess this possibility, we analysed homodimerization by conducting pull-down experiments using the recombinant atToc33 G-domain as bait and [35S]methionine-labelled atToc33 as prey (Weibel et al., 2003). A principal aim here was to quantitatively compare the effects of the R130A and R130K mutations. In accordance with earlier results (Weibel et al., 2003), R130A had a strong effect on homodimerization: the quantity of bound prey was reduced to ~10% of that observed using wild-type prey (Figure 5a,b). The R130K mutation also reduced dimerization efficiency, but not to the same extent as R130A: prey binding was ~30% of the wild-type level (Figure 5a,b). The reduced severity of R130K presumably reflects the fact that it is a more conservative mutation than...
These results are more consistent with a physical role for Arg130 at the dimer interface, than with a role as a GAP arginine finger. The R125A mutation was not included in these assays because an equivalent mutation was previously shown to abolish homodimerization in the context of psToc34 (Sun et al., 2001).

Next, we investigated the consequences of selected mutations in relation to atToc33 heterodimerization with atToc159. For these experiments, we used a yeast two-hybrid assay that allows for the assessment of protein–protein interactions in intact cells. Because such assays are relatively straightforward, we were additionally able to test some of the other mutants that have primary effects on GTP binding/hydrolysis. As shown in Figure 5(c), both R125A and R130A strongly interfered with G-domain heterodimerization, as expected. By contrast, the binding/hydrolysis mutations (K49R, G45R and Q68A) did not interfere with heterodimerization. Interestingly, the G45R/K49N/S50R triple mutant was found to be heterodimerization-defective, which is consistent with the notion that this mutation causes severe disruption of the G-domain. Similarly, the S50N mutant did not heterodimerize, supporting the hypothesis (discussed earlier) that impairment of magnesium binding in this mutant severely destabilizes of the whole G-domain. In no instance could our failure to detect heterodimerization be attributed to a lack of hybrid protein expression (Figure 5d).

Overall, the data in Figure 5 provide clear evidence that R125A, R130A and R130K do interfere with receptor dimerization, as expected. It is conceivable that the dimerization defect of R125A is caused by a general disruption of the G-domain; this notion is supported by the mutant’s failure to exhibit detectable nucleotide binding (Figure 3), and by the negative heterodimerization results for G45R/K49N/S50R and S50N (Figure 5c,d).

Generation of ppi1 transgenic lines expressing various atToc33 mutants

The *in vitro* and yeast studies above led us to conclude that most of the mutants were behaving as expected (the putative hydrolytic mutants being one notable exception; Figure 4). Thus, we proceeded to assess the behaviour of selected mutations *in vivo*. Mutations were introduced into

Figure 3. In vitro analyses of nucleotide binding to the atToc33 mutants.

(a) Filter-binding assay using radiolabelled GTP. Recombinant atToc33 proteins were incubated with [γ-32P]GTP on ice, and then transferred to polyvinylidene fluoride (PVDF) membrane. Unbound material was removed by washing, and then bound nucleotide was visualized by autoradiography. Levels of bound [γ-32P]GTP were quantified using IMAGEQUANT software (GE Healthcare, http://www.gehealthcare.com). The upper part of the panel shows a representative binding experiment. The chart in the lower part of the panel presents means (±SE) derived from three, four or five independent experiments (each individual experiment comprised three separate measurements per protein sample). BSA was used as a negative control.

(b) Liquid-phase binding assay using mant nucleotides. Excitation at 350 nm gives a fluorescence emission peak at ~450 nm with unbound mant-nucleotide, and a more intense peak nearer ~400 nm with bound nucleotide. Increases in mant fluorescence and a blue-shift in the emission maximum after the addition of atToc33 protein are indicative of the degree of protein-nucleotide binding. Fluorescence spectra were recorded 0 (T0) and 7 min (T7) after the initiation of each assay, normalized, and then used to derive fluorescence difference (∆F) spectra by subtracting T0 values from corresponding T7 values. Representative spectra for the wild-type (WT) protein and for two of the non-binding mutants (K49R and R125A) are shown in the chart. A summary of the whole data set is given below the chart in tabular form: +, positive binding result; −, negative binding result.
standard procedures. A large number of T1 transformants and then transformed into homozygous transformants were found to carry the appropriate genotypes, we amplified the transgenic copy of atTOC33 in each case and sequenced the resultant PCR products: all transgenic lines exhibited the restored accumulation of the atToc33 protein, at levels broadly consistent with those in the wild type (Figure 7). Equivalent Coomassie-stained gels served as loading controls, and additionally revealed sub- stantially recovered levels of the three main photosynthetic proteins in the complemented plants (Figure 7). The different atToc33 constructs did not significantly affect the expression of the native atTOC34 gene (a functionally similar homologue that is expressed at ~20% of the level of atTOC33 in green tissues; Jarvis et al., 1998), supporting the notion that the transgenes are directly responsible for the complementation observed (Figure S5).

Organellar and molecular level characterization of the atToc33 transgenic lines

That the mutants were able to mediate efficient ppi1 complementation was surprising, especially in relation to the G45R/K49N/S50R triple mutant, which is predicted to have a strongly disrupted G-domain. We therefore conducted experiments to test for consequences of the mutations at the organellar or molecular levels. First, we analysed chloroplast ultrastructure in two independent G45R/K49N/S50R transgenic lines. However, there were no obvious differences between the organelles in these lines and those in untransformed wild-type plants: all three genotypes had large chloroplasts with more developed thylakoidal networks than those in ppi1 (Figure 8).
Recent reports indicated that transgenes encoding mutant forms of atToc159 can efficiently complement the \textit{ppi2} albino phenotype, but that the mutations nonetheless have consequences in relation to pre-protein import efficiency (Wang \textit{et al.}, 2008; Agne \textit{et al.}, 2009). To assess whether atToc33 mutations are similarly associated with altered import efficiency, we conducted import assays with chloroplasts isolated from selected transgenic lines. As expected (based on phenotypic data in Figures 6 and 8), we observed significantly improved import efficiency in all transgenic lines tested, relative to \textit{ppi1} (Figure 9). Import into chloroplasts from \textit{ppi1} plants carrying the WT construct was almost as efficient as that into chloroplasts from untransformed Columbia-0 wild type. By contrast, import

Figure 5. Homodimerization and heterodimerization of selected atToc33 mutants.
(a, b) Analysis of homodimerization \textit{in vitro}. (a) Increasing concentrations of recombinant, hexahistidine-tagged wild-type atToc33 (atToc33-6His; 0, 10 and 40 \textmu M) were incubated with \textit{in vitro} translation reactions containing 35S-labelled atToc33 G-domain; radiolabelled proteins were either wild-type or mutant (R130K and R130A). Recombinant protein together with any bound radioactive protein was captured using Ni-NTA chromatography, washed, and eluted with imidazole. Aliquots of the pre-pull-down binding mixtures (load, 10%) and the post-pull-down eluates (100%) were analyzed by SDS-PAGE followed by Coomassie Blue staining and/or autoradiography. Because the R130K and R130A mutants were generated in the context of G-domains with slightly different truncation points (residues 1–258 and 1–265, respectively), two different, similarly truncated wild-type G-domains were analyzed as controls (only the latter is shown). (b) Levels of bound radiolabelled protein were quantified and normalized relative to the quantity of radiolabelled protein loaded in each reaction; binding in the absence of recombinant protein was adjusted to zero. Average wild-type data are shown.
(c, d) Analysis of heterodimerization \textit{in yeast} by two-hybrid analysis. (c) Three independent yeast colonies carrying the indicated Gal4 activation domain (AD) and DNA-binding domain (BD) constructs were subjected to X-Gal filter assays. Development of a strong blue colouration in cells from all three colonies indicated LacZ reporter gene activation, and a positive interaction result. All AD constructs contained the atToc33 G-domain (residues 1–265), which was either wild-type or mutant. All BD constructs contained the wild-type atToc159 G-domain (residues 728–1093). (d) Expression levels of the yeast two-hybrid fusion proteins. Trichloroacetic acid-extracted yeast protein samples were analysed by immunoblotting using anti-atToc33 for the detection of the Gal4-AD-atToc33 fusion proteins (upper panel), and anti-myc for the detection of the Gal4-BD-atToc159 fusion proteins (lower panel); the proteins contain a myc epitope tag between the Gal4-BD domain and the fused protein. Samples are identified by the numbering system shown in panel (c); sample 9 is from yeast cells carrying empty AD and BD vectors. Each lane contains protein derived from 0.05 OD (600 nm) units of yeast cells. Sample loading was controlled by staining with amidoblack, and a section of stained membrane is shown in each case.
Figure 6. Basic characterization of transgenic ppi1 plants expressing atToc33 mutant constructs.

(a) Plants of the indicated genotypes were grown side-by-side, in vitro, for 7 days, and then photographed. Representative plants are shown in each case. With the exception of G45V (and to some extent S50N and S50N/S51N), the effects of the mutations were tested in vitro or in yeast (Figures 2–5).

(b) Chlorophyll concentrations (nmol chlorophyll a + b per mg fresh weight) in 10-day-old, in vitro-grown T2 or T5-generation plants, and in Columbia-0 wild-type and ppi1 controls, were determined photometrically. Values are means (±SD) derived from five independent samples, each one containing eight plants.
into chloroplasts carrying the G45R/K49N/S50R and R130A mutants was of intermediate efficiency. Whether these results are a direct consequence of the atToc33 mutations, or are the result of transgene silencing effects discussed earlier, is difficult to determine. However, because the plants used for the import experiments were indistinguishable from the Columbia-0 wild type, the former explanation seems most likely.

Figure 7. Immunoblots showing the expression of atToc33 proteins in the transgenic pp1 plants. Total-protein samples (40 μg each) isolated from 10-day-old, in vitro-grown plants of the indicated genotypes were separated by SDS-PAGE and used to produce blots. Each blot was cut into two parts: one was probed with an atToc33-specific antibody; the other with an atTic110 antibody to control sample loading. Similarly loaded gels (20 μg per lane) were stained with Coomassie Blue to control loading and visualize the main photosynthetic proteins: LSU, Rubisco large subunit; LHCP, light harvesting chlorophyll protein; SSU, Rubisco small subunit. Molecular weight standards are indicated in kDa. Transgenic plants were homozygous, and of the T4 or T5 generation.

Figure 8. Ultrastructural analysis of chloroplasts in pp1 plants expressing the G45R/K49N/S50R construct.
(a) Mid-lamina cross sections of cotyledons from 10-day-old, in vitro-grown plants of the indicated genotypes were analysed by transmission electron microscopy. At least ten whole-chloroplast micrographs from each of three independent plants per genotype (i.e., a minimum of 30 chloroplasts per genotype) were analysed carefully, and used to select the representative images shown. Scale bar: 2.0 μm.
(b) The length and width of each chloroplast in each of the micrographs described in (a) was measured. These values were used to estimate chloroplast cross-sectional area using the formula: π x 0.25 x length x width. Values are means (±SE) derived from measurements of 37-68 different chloroplasts per genotype.
Overall, these results indicate that GTP binding and dimerization at atToc33 are not strictly required for the receptor to fulfill its role in the import mechanism.

Overexpression of atToc33 and atToc34 in Toc159-deficient mutants

The ability of the atToc33 mutants to complement ppi1 suggested that another TOC GTPase might be able to compensate for the defective atToc33 G-domain. The other main receptor of the TOC complex is Toc159, which has three principal isoforms in Arabidopsis: atToc159 acts in the import of photosynthetic pre-proteins, whereas the closely-related atToc132 and atToc120 isoforms act redundantly in the import of housekeeping pre-proteins. To test for possible redundancy between atToc33 and either atToc159 or atToc132/120, we overexpressed atToc33 in ppi2 and toc132 toc120 double-mutant plants. Additionally, we conducted similar overexpression studies using the atToc33 homologue, atToc34.
plants accumulated chlorophyll to the same extent as untransformed mutants (Figure 10), and were visibly indistinguishable from the controls (data not shown). This indicates that the two main TOC receptor families in Arabidopsis (atToc33/34 and atToc159/132/120) do not share significant functional redundancy in the conventional sense. One possible explanation of the atToc33 mutant complementation results (Figures 6–9) is that the presence of both receptor types is required to maintain the structural integrity of the complex, but that only one of the two receptors need have normal GTPase functionality in order for import to proceed; in other words, although the receptors as a whole do not share redundancy, it is possible that their G-domains do. This would be consistent with the observation that non-hydrolysable GTP analogues interfere with protein import (Kessler et al., 1994; Young et al., 1999), as such reagents are expected to interfere non-selectively with GTPase cycling at both receptors.

DISCUSSION

Our finding that none of a diversity of point mutations within the atToc33 G-domain interferes significantly with the protein’s ability to complement ppi1 was a great surprise. Early stages of the pre-protein import mechanism require GTP (Olsen and Keegstra, 1992; Kessler et al., 1994; Ma et al., 1996; Young et al., 1999), and this requirement is attributed to the receptors, Toc34 and Toc159, as both proteins possess sequence motifs characteristic of GTPases, and both can bind and hydrolyse GTP (Kessler et al., 1994; Seedorf et al., 1995; Becker et al., 2004; Reddick et al., 2007). These observations led to the formulation of models for pre-protein recognition and early-stage translocation, in which the two receptors act co-ordinately as molecular switches and/or translocation motors (Kessler and Schnell, 2004; Li et al., 2007). A key component of these models is a GTPase cycle at each receptor. The fact that it is possible to disrupt this cycle at the principal Toc34 isoform in Arabidopsis, atToc33, and yet retain in vivo functionality, is inconsistent with all models thus far proposed.

Similar results were reported for the Toc159 receptor by Wang et al. (2008) and Agne et al. (2009). The former study revealed that an A864R mutation within the G-domain of the principal Arabidopsis Toc159 isoform, atToc159, does not impair the ability of the protein to complement the albino atToc159 knock-out mutant ppi2. The A864R mutant was reported to exhibit normal GTP binding, but strongly reduced hydrolytic activity (Smith et al., 2002). The in vivo functionality of this mutant protein led the authors to conclude that atToc159 plays a switching role (Wang et al., 2008), as their results were inconsistent with the alternative proposal that it functions as a GTP-powered translocation motor (Schleiff et al., 2003). Interestingly, although A864R-complemented ppi2 plants were visibly indistinguishable from wild-type plants, pre-protein binding and translocation efficiencies were slightly elevated in chloroplasts carrying the mutant protein. The equivalent atToc33 mutant in our study was G45R. Consistent with the earlier report, we found that atToc33-G45R can complement the ppi1 visible phenotype, as can the similar mutant, G45V (Figure 6). However, we observed no effect of G45R on hydrolytic activity in vitro (Figure 4), most likely because of structural differences between atToc33 and other GTPases (Figure S1; Koenig et al., 2008), and so did not select G45R for detailed in vivo analysis. Thus, we are unable to comment on whether it has a stimulatory effect on import similar to atToc159-A864R.

Agne et al. (2009) reported that an atToc159 K868R mutant is also able to complement the ppi2 visible phenotype. In contrast with A864R, this mutation interferes strongly with GTP binding (Smith et al., 2002). Whereas ppi2 chloroplasts harbouring the A864R mutant exhibited elevated levels of pre-protein binding and import, those carrying K868R displayed reduced binding and import, relative to wild-type organelles. This further supported the notion that GTP-binding/hydrolysis cycles at atToc159 are not strictly linked with individual pre-protein translocation events, and that Toc159 functions as a molecular switch; in fact, the data suggest that the GTP-bound form promotes import, whereas the GDP-bound form inhibits import. The atToc33 mutation equivalent to K868R in our study was K49R. This mutant was not selected for ppi1 complementation analysis, as we felt that it would likely behave in the same way as G45R/K49N/S50R, which also carries a mutation at Lys49. Accordingly, although G45R/K49N/S50R complemented the ppi1 visible phenotype efficiently (Figure 6), we observed reduced import efficiency in ppi1 chloroplasts carrying the G45R/K49N/S50R protein (Figure 9).

Overall, our data indicate that GTPase cycling at atToc33 is not strictly linked to individual pre-protein translocation events. In this sense, the results are similar to those reported for atToc159 (Wang et al., 2008; Agne et al., 2009), and suggest that atToc33 also plays a switching role in the import mechanism. Moreover, the reduced import efficiency seen in lines carrying the G45R/K49N/S50R mutant implies that GTP-binding similarly converts atToc33 into a form that promotes import. However, as with atToc159, the conversion of this putative atToc33 switch into the ‘active’ form is not a strict requirement for import; it is possible that nucleotide changes at the receptor cause affinity or structural changes that promote import progression, but that import can nonetheless proceed in the absence of GTPase cycling, albeit with reduced efficiency. Similarly, receptor dimerization is also not an absolute prerequisite for translocation, as several mutants with directly or indirectly impaired dimerization (Figure 5) were able to efficiently complement ppi1 (Figure 6). Nonetheless, an impairment in pre-protein import was observed in ppi1 chloroplasts carrying the R130A mutant (Figure 9), suggesting that dimerization acts to optimize the efficiency of transport. In
this regard, our results are entirely consistent with those of Lee et al. (2009), who reported that ppi1 plants complemented with dimerization-defective atToc33 mutants (R130A and F67A) exhibit reduced chloroplast protein import efficiency. It was suggested that receptor dimerization helps to promote the transition of the pre-protein from initial binding at the receptors to the TOC channel (Lee et al., 2009).

The atToc159 receptor is different from atToc33 in that it possesses two additional domains: an N-terminal acidic domain and a large C-terminal membrane domain (M-domain) (Chen et al., 2000). It was previously demonstrated that the M-domain, in isolation, is able to mediate partial complementation of ppi2 (Lee et al., 2003). Together with other results from transient assays using atToc159 G-domain mutants (which were found to be non-functional), this result led Lee et al. (2003) to propose that the M-domain is the minimal structure required to support pre-protein import, and that the G-domain plays a regulatory role. This hypothesis is consistent with the aforementioned ‘switching’ hypothesis (Wang et al., 2008; Agne et al., 2009), although it remains to be determined why there is a need for two GTPase switches. A lack of redundancy between the two receptor families (Figure 10) suggests that they do perform distinct roles. The greater structural complexity of atToc159, which distinguishes it from atToc33, may account for the negative ppi2 complementation results reported for the atToc159 A864R/K868N/S869R mutant (Bauer et al., 2002), which is equivalent to the atToc33-G45R/K49N/S50R mutant reported here.

Finally, the data have significance in relation to earlier in vivo studies on atToc33 phosphorylation (Aronsson et al., 2006). Phosphorylation of atToc33 was reported to impair GTP binding, and this was proposed to have a knock-on effect on pre-protein binding (Sveshnikova et al., 2000; Jelic et al., 2003). We reported that various mutations at the phosphorylation site (Ser181) do not interfere with in vivo activity of the protein, and concluded that phosphorylation is not an essential or stringent regulator of import. Although this conclusion remains valid, it should be considered in the context of the present results (indicating that nucleotide binding is also not essential for in vivo activity). Thus, Ser181 mutations may well interfere with GTP binding by atToc33 in planta, but, as the present results suggest, this may be of limited consequence in relation to organelle or plant development.

EXPERIMENTAL PROCEDURES

Mutations and vector construction

For the expression of the atToc33 G-domain in *Escherichia coli* (for use in Figures 2–4), a truncated cDNA encoding residues 1–258 of the wild type was PCR amplified and cloned as an Ncol/Sall fragment into Ncol/Xhol-cut pET23d (Novagen, now part of Merck, http://www.merck-chemicals.com), which adds a C-terminal hexahistidine tag. A series of similar constructs, containing mutations in the atTOC33 cDNA, were created by overlap extension PCR using mutagenic primers; see Appendix S2 for further details, and for information on the atToc159 constructs employed in Figure 4b.

For ppi1 complementation (Figures 6–9), full-length wild-type atTOC33 cDNA was PCR amplified and cloned as an Ncol/XbaI fragment into a derivative of PR2LGUS containing a CaMV 35S promoter cassette (Bate et al., 1996). Mutant atTOC33 fragments (generated as above) were subcloned as Ncol/BstXI fragments into the resulting 35S-atTOC33 construct, displacing the wild-type sequence; each mutation was confirmed by sequencing. The 35S-atTOC33 cassettes were inserted into binary vector, pZP221, as HindIII fragments for plant transformation (Hajdukiewicz et al., 1994).

Recombinant protein expression and in vitro analysis

Soluble atTOC33 and atTOC159 G-domains (residues 1–258 and 727–1093, respectively) were overexpressed in *E. coli* BL21-DE3 (Novagen), and purified using affinity resin as described previously (Smith et al., 2002; Aronsson et al., 2003, 2006; Rahim et al., 2009); see Appendix S2. Filter- binding assays (Figure 3a) were conducted as reported by Weibel et al. (2003). The liquid-phase binding assay (Figure 3b) was described previously (Aronsson et al., 2003), and utilized nucleotide analogues carrying the N-methyl-3′-O-anthraniloyl (marty) fluorophore (John et al., 1990). The GTP hydrolysis assays (Figure 4) were conducted as reported by Aronsson et al. (2003). Minor modifications to these procedures are described in Appendix S2.

Receptor G-domain interactions in vitro and in yeast

In vitro homodimerization experiments (Figure 5a,b) were conducted as described previously (Weibel et al., 2003). Hexahistidine-tagged atToc33 recombinant protein (residues 1–265), and the 265-residue wild-type and R130A vitro translation products, were generated according to Aronsson and Jarvis (2002). The R130K mutant was generated in the context of a slightly shorter protein (residues 1–258), as was the corresponding wild-type control (described in ‘Mutations and vector construction’). Heterodimerization experiments (Figure 5c,d) were conducted using the Matchmaker GAL4 Two-Hybrid System 3 (Clontech, http://www.clontech.com), as described previously (Rahim et al., 2009; see Appendix S2).

Plant growth, transformation and analysis of transgenics

All *Arabidopsis thaliana* plants were Columbia-0 ecotype. Growth conditions were as described by Aronsson and Jarvis (2002). The ppi1 mutant, Columbia-0 introgressed ppi2 and the atc132-2 toc120-2 double mutant have all been described previously (Jarvis et al., 1998; Kubis et al., 2004).

Plant transformation employed *Agrobacterium* GV3101 (pMP90) and the floral-dipping method (Clough and Bent, 1998). Transgenic plants were selected and analysed using standard procedures (see Appendix S2).

Total-protein extracts were analysed by staining with Coomassie Brilliant Blue R250 (Fisher Scientific, http://www.fishersci.com), or by immunoblotting (Aronsson et al., 2003). Rabbit antibodies were against an atTOC33-specific peptide (Aronsson et al., 2003) or the atTic110 stromal domain (mature residues 93–966) (Inaba et al., 2003).

Chlorophyll content and fluorescence measurements

Chlorophyll content was determined photometrically as described previously (Porra et al., 1989; Aronsson et al., 2003). Chlorophyll fluorescence measurements were made using a continuous
excitation fluorimeter (Handy PEA; Hansatech, http://www.hansatech-instruments.com), according to the manufacturer’s instructions, and as described by Strasser et al. (2004).

Electron microscopy

Transmission electron microscopy was conducted as described previously (Aronsson et al., 2006, 2007), with minor modifications (see Appendix S2). Mid-lamina cross sections of cotyledons from plants grown in vitro for 10 days were analysed. These procedures were carried out at the Electron Microscopy Laboratory, University of Leicester.

Protein import assays

Isolation of chloroplasts from Arabidopsis seedlings, synthesis by in vitro translation of [35S]methionine-labelled preSSU (Arabidopsis Rubisco small subunit, ats1A), and protein import were all conducted as described previously (Aronsson and Jarvis, 2002; Aronsson et al., 2006; Kubis et al., 2008).

Overexpression of atTOC33/34 in the ppi2 and toc120 mutants

The atTOC33 and atTOC34 cDNAs were expressed from a double-enhancer version of the 35S promoter using the pHCh2 vector (Jarvis et al., 1998). Constructs were used to transform ppi2 heterozygotes or toc120 toc120 heterozygotes (genotype: toc120/+; ppi2-; +/+). Transgene overexpression was estimated by semi-quantitative RT-PCR using published procedures (Constan et al., 2004; see Appendix S2). Expression data for the TOC genes were normalized using equivalent data for elf4E1 (Rodriguez et al., 1998).

ACKNOWLEDGEMENTS

We thank Jocelyn Bédard and Tony Wardle for purification of atTic110 for antibody production, and Danny Schnell for the expression vector used. We are grateful to Natalie Allocco and Stefan Hyman for electron microscopy, and to Petra Weibel for assistance with homodimerization studies. We thank Ding Jin for useful discussions on structural modelling. Our work was supported by awards from the Wenner-Gren Foundation and the Swedish Research Councils FORMAS and VR (to HA), by the Swiss National Science Foundation (to FK), and by the Royal Society Rosenheim (NCCR) Plant Survival, a research programme of the Swiss National Science Foundation (3100A0-109667), the University of Neuchâtel and the National Centre of Competence in Research (NCCR) Plant Survival, a research programme of the Swiss National Science Foundation (to FK), and by the Royal Society Rosenberg Research Fellowship and BBSRC grants 91/C12976, BB/D016541/1 and BB/F020251/1 (to PJ).

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Figure S1. Assessment of putative catalytic residues in Toc34 by mutation modelling in silico using crystal structure data.

Figure S2. Complementation of ppi1 by the atToc33 mutant constructs at later stages of development.

Figure S3. Photosynthesis measurements in transgenic ppi1 plants expressing atToc33 mutant constructs.

Figure S4. Phenotypic variability amongst transgenic ppi1 plants expressing atToc33 mutant constructs.

Figure S5. Analysis of atTOC34 expression in transgenic ppi1 plants expressing atToc33 mutant constructs.

Table S1. Segregation analysis of the various transgenic ppi1 lines.

Appendix S1. Supplementary information for experimental procedures.

Please note: As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer-reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

REFERENCES

Smith, M.D., Hiltnbrunner, A., Kessler, F. and Schnell, D.J. (2002) The targeting of the atToC159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP. J. Cell Biol. 159, 833–843.

Young, M.E., Keegstra, K. and Froehlich, J.E. (1999) GTP promotes the formation of early-import intermediates but is not required during the translocation step of protein import into chloroplasts. Plant Physiol. 121, 237–244.