PrivCheck: Privacy-Preserving Check-in Data Publishing for
Personalized Location Based Services

Dingqi Yang', Daqing Zhang?®, Bingqing Qu*, Philippe Cudré-Mauroux!
leXascale Infolab, University of Fribourg, Fribourg, Switzerland
’Institut Mines-Télécom, Télécom SudParis, CNRS SAMOVAR, France; 3Peking University, China
“University of Rennes 1, Renne, France
'{firstname.lastname } @unifr.ch, 2daqing.zhang @it-sudparis.eu, *bqu@ina.fr

ABSTRACT

With the widespread adoption of smartphones, we have ob-
served an increasing popularity of Location-Based Services
(LBSs) in the past decade. To improve user experience, LBSs
often provide personalized recommendations to users by min-
ing their activity (i.e., check-in) data from location-based so-
cial networks. However, releasing user check-in data makes
users vulnerable to inference attacks, as private data (e.g., gen-
der) can often be inferred from the users’ check-in data. In
this paper, we propose PrivCheck, a customizable and contin-
uous privacy-preserving check-in data publishing framework
providing users with continuous privacy protection against in-
ference attacks. The key idea of PrivCheck is to obfuscate user
check-in data such that the privacy leakage of user-specified
private data is minimized under a given data distortion budget,
which ensures the utility of the obfuscated data to empower
personalized LBSs. Since users often give LBS providers ac-
cess to both their historical check-in data and future check-in
streams, we develop two data obfuscation methods for his-
torical and online check-in publishing, respectively. An em-
pirical evaluation on two real-world datasets shows that our
framework can efficiently provide effective and continuous
protection of user-specified private data, while still preserving
the utility of the obfuscated data for personalized LBSs.
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INTRODUCTION

With the increasing popularity of smartphones and wireless
networks, Location-Based Services (LBSs), such as location
recommendation or search, have attracted millions of users. To
develop efficient LBSs, personalization is a key ingredient to
provide users with more pertinent recommendations, leading
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to better user experience. In the current literature, personalized
LBSs are usually powered by mining users’ activity data. In
particular, Location Based Social Networks (LBSNs), such as
Foursquare', have become primary data sources for developing
personalized LBSs [3, 45, 42]. In LBSNs, users voluntarily
share their real-time spatiotemporal activities by checking-in
at certain Point of Interests (POIs). For example, a typical
user check-in may indicate that the user is having dinner in a
French restaurant (activity) with GPS coordinates [40.7586,
-73.9791] (location) on a Friday evening (time). By analyzing
large volumes of such digital footprints [48], user preferences
can be extracted to enable personalized LBSs.

As large amounts of check-in data can be used to effectively
mine user preferences, releasing such data often leads to se-
rious privacy leakage. Previous work [15, 6, 17, 29, 34] has
shown that the disclosure of such spatiotemporal user activity
data may reveal sensitive information, such as a user’s identity,
health status, income level, friendship or home address, etc.
Therefore, privacy protection is a critical issue in this context.

Existing privacy protection techniques for LBSs mainly focus
on location privacy, i.e., obfuscating user locations before us-
ing them. A typical example is private location based query
[13], where a user does not want to reveal her location informa-
tion when sending a location-based query. To achieve this goal,
the user’s location data may be slightly altered or generalized
using data obfuscation techniques such as cloaking region [15]
and dummy location [30], in order to avoid revealing her real
position. However, such a privacy mechanism should not be
adopted by LBSNGs as it hinders key benefits for their users.
Specifically, users of LBSNs intendedly share their presence
within their social circles by checking in at POIs. Hence, they
might not appreciate the fact that the service hides their loca-
tion information (even any part of their check-in data) from
their friends. For example, when a user is watching a football
match at a bar and wants to share her presence to potentially
attract some nearby friends, she does not want her location to
be obfuscated in any sense.

Since check-in data should not be obfuscated before being
sent to LBSNs, an alternative solution is to protect user pri-
vacy when publishing check-in data from LBSNs to any other
third-party LBS providers. Many LBSN third-party services
require access to user check-ins in order to provide them with
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personalized LBSs. In addition to the check-in data, these
services may optionally require access to other user data, such
as users’ profiles. While many users are willing to release
their check-in data (public data) to obtain high-quality rec-
ommendation services, they may consider part of the data in
their profile as private (private data), like gender or marital
status. Although they may refuse to release such data, the
correlations between check-in data and private data may cause
privacy leakage. For example, based on user check-in data in
New York City from Foursquare, we found that one’s gender
information can be inferred with high accuracy (see Figure
7 for details). Such an observation shows that private data
often suffers from inference attacks [23], where an adversary
analyzes a user’s public data to illegitimately gain knowledge
about her private data. Therefore, it is indispensable to provide
privacy protection when releasing check-in data.

In the current literature, the privacy-preserving data publishing
has been widely studied by database research community [12].
Its basic idea is to provide privacy guarantees by distorting the
data before its publication, at the expense of a loss of utility
of the data in the latter processing stages. In a personalized
LBS scenario, the utility of check-in data refers to the per-
sonalization performance [18]. We consider a typical LBS,
i.e., context-aware activity recommendation [45], as our target
scenario. Specifically, by learning a user’s preferences from
her check-in data, it tries to recommend her a list of activi-
ties according to her current context (i.e., location and time).
We define the utility here as the quality of the recommended
ranking list, compared to the user’ actual preferences.

In this paper, we study the privacy-preserving check-in data
publishing problem by considering both the specific require-
ments of user privacy in LBSNs and the utility of the data for
enabling personalized LBSs. Towards this goal, we face the
following two challenges. First, since users often have differ-
ent privacy concerns [19], a specific type of data (e.g., gender)
may be considered as private by some users, while other users
may prefer to consider it public in order to get better person-
alized services. Therefore, the first challenge is to provide
users with customizable privacy protection, i.e., to protect
user-specified private data only. Second, when subscribing to
third-party services, users often allow the service providers
to access not only their historical check-in data, but also their
future check-in data streams. Although the obfuscated histori-
cal check-in data can efficiently reduce privacy leakage, the
continuous release of user check-in streams will incrementally
increase such leakage (see Figure 6 for details). Therefore, the
second challenge is to provide continuous privacy protection
over check-in data streams.

Aiming at overcoming the above challenges, we propose
PrivCheck, a customizable and continuous privacy-preserving
check-in data publishing framework against inference attacks
for enabling personalized LBSs. Our framework provides
continuous protection of user-specified private data against
inference attacks by obfuscating both the historical and stream-
ing check-in data before releasing them, while still preserving
the utility of the published data for enabling personalized
LBSs. Our main contributions are summarized as follows:

e First, unlike existing LBS privacy protection approaches
that mainly focus on location privacy, we identify a privacy-
preserving check-in data publishing problem by analyzing
the specific privacy requirements and users’ benefits of
LBSNs. To the best of our knowledge, this is the first work
addressing privacy-preserving data publishing for check-in
data.

e Second, we propose a customizable and continuous data
obfuscation framework for user check-in data from LB-
SNs. The key idea is to measure the privacy leakage of
user-specified private data from public check-in data based
on mutual information, and then obfuscate check-in data
such that the privacy leakage is minimized under a given
data distortion budget, which can ensure the utility of the
released data. To handle real-world use case of third-party
services built on top of LBSNs, our framework considers
both historical and online check-in data publishing.

— Historical check-in data publishing: When a user sub-
scribes to a third-party service for the first time, the
service provider has access to the user’s entire check-
in history. To obfuscate the user’s historical check-in
data, we minimize the privacy leakage from her histor-
ical check-in data by replacing her check-in history by
that of another user whose check-in history is similar
but with less privacy leakage.

— Online check-in data publishing: After the user sub-
scribed to third-party services, the service provider
also has real-time access to her future check-in stream.
Due to efficiency consideration, online data publish-
ing should be performed only based on each incoming
check-in itself, without accessing the user’s historical
check-in data. Therefore, we minimize the privacy
leakage from individual check-ins by obfuscating each
check-in from the check-in stream on-the-fly.

o Finally, based on real-world LBSN datasets, we conduct an
extensive evaluation of our framework. The results show
that our framework can continuously provide customized
protection of user-specified private data, while the obfus-
cated data can still be exploited to enable high-quality LBSs.

RELATED WORK

Privacy issues of LBSs have been widely studied over the
past decade. Most of the research efforts focus on location
privacy [38, 21, 37], i.e., protecting user location information
before using them. To this end, the most popular approach is
location obfuscation. Its key idea is to obfuscate user location
with imprecise locations, using techniques such as cloaking
region [15] and dummy location [30]. However, in LBSNS, it
might be inappropriate to obfuscate a user check-in data before
being sent to the LBSNS, since the user intendedly shares her
real time presence with her friends. Therefore, an alternative
solution is to protect users’ privacy when publishing their
check-in data from LBSNs to any third-party service providers
for enabling personalized LBSs. As we focus on this new
problem in our study, our objective is to protect user private
data by obfuscating publicly released data, which differs from
the approaches tackling only location privacy.



In order to protect user privacy when publishing user data, the
current practice mainly relies on policies or user agreements,
e.g., on the use and storage of the published data [12]. How-
ever, this approach cannot guarantee that the users’ sensitive
information is actually protected from a malicious attacker.
Therefore, to provide effective privacy protection when re-
leasing user data, privacy-preserving data publishing has been
widely studied. The key idea in this context is to obfuscate
user data such that published data remains practically useful
for some application scenarios while the individual’s privacy
is preserved. According to the attacks considered, existing
work can be classified into two categories.

The first category is based on heuristic techniques to protect
ad-hoc defined user privacy [12]. Specific solutions mainly
tackle the privacy threat when attackers are able to link the
data owner’s identity to a record, or an attribute in the pub-
lished data. For example, to protect user privacy from identity
disclosure, K-anonymity [39] obfuscates the released data so
that each record cannot be distinguished from at least k-1 other
records. However, since these techniques usually have ad-hoc
privacy definitions, they have been proven to be non-universal
and can only be successful against limited adversaries [36].

The second category is theory-based and focuses on the unin-
formative principle [26], i.e., on the fact that the published data
should provide attackers with as little additional information as
possible beyond background knowledge. Differential privacy
[9] is a well-known technique that is known to guarantee user
privacy against attackers with arbitrary background knowl-
edge. Information-theoretic privacy protection approaches
have also been proposed in that context. They try to quantita-
tively measure privacy leakage based on various entropy-based
metrics such as conditional entropy [36] and mutual informa-
tion [8], and to design privacy-protection mechanisms based
on those measures. Although the concept of differential pri-
vacy is stricter than that of information-theoretic approaches,
the latter is intuitively more accessible and fits the practical
requirements of many application domains[36]. For example,
information theory can provide intuitive guidelines to quan-
titatively measure the amount of a user’s private information
(e.g., gender) that an adversary can learn by observing and
analyzing the user’s public data (e.g., check-in data).

In this study, we advocate the information-theoretic approach.
In the current literature, information-theoretic metrics were
adopted to design privacy mechanisms [11, 32, 8, 35]. Ev-
fimievski et al. [11] leveraged randomization techniques to
limit privacy leakage, without explicitly considering data util-
ity loss constraints. Rebollo et al. [32] proposed a Kullback-
Leibler divergence-based metric to evaluate the privacy dis-
closure and designed a privacy-preserving mechanism based
on rate distortion theory. Calmon et al. [8] introduced a gen-
eral framework to measure privacy leakage based on mutual
information, and to protect user private data against statistic
inference by considering data distortion constraints for user
public data. Salamatian et al. [35] further applied this idea to
study user privacy when releasing users’ TV viewing records.
By considering the fact that different users often have different
privacy concerns [19], our approach differs from these work
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Figure 1. System workflow for privacy-preserving check-in data publish-
ing in LBSNs: 1) Users report their check-ins to LBSNs; 2) PrivCheck
publishes the obfuscated check-in data to third-party LBS providers; 3)
The third-party LBS providers can still deliver high-quality personal-
ized LBSs to users.
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in offering users customizable privacy protection. Moreover,
as an intrinsic streaming data source, users continuously re-
port their check-ins online, which requires continuous privacy
protection over time. Therefore, besides offering privacy pro-
tection when publishing static historical check-in data, our
framework is also designed to offer users continuous privacy
protection when publishing their check-in streams.

PRELIMINARIES

In this section, we first introduce our system workflow, and
then a typical LBS as our targeted application. Finally, we
present the data collection and preprocessing process.

System Workflow

Figure 1 illustrates the end-to-end workflow of our system.
Our PrivCheck framework is implemented as a supplementary
module to existing LBSN platforms. When users interact with
each other in a LBSN, they voluntarily share their check-in
data. When a user wants to subscribe to third-party services,
she typically needs to give them access to her check-in data.
Specifically, right after the user’s subscription, third-party
services can immediately access the user’s historical check-
in data. Before releasing her historical check-in data and
according to the user’s own criteria, the historical check-in
publishing module obfuscates her historical check-in data to
protect user-specified private data against inference attacks.
Afterwards, when the user continuously share her check-ins
on the LBSN, the online check-in data publishing module
obfuscates each check-in from the check-in streams before
sending to third-party services. Despite receiving obfuscated
check-in data, the third-party services can still provide high-
quality personalized LBSs to the users. The most important
advantage of such an architecture lies on the easy integration
of our framework into the existing LBSN platform, where the
latter does not need to be changed significantly.

Targeted Location Based Service

In this study, we consider a typical LBS, i.e., context-aware
activity recommendation [50, 45], as our target application.
More precisely, knowing a user’s current context (i.e., location
and time), it tries to recommend her a list of activities that she
may be interested in, where the activities are represented as
POI categories (e.g., restaurant or nightlife spot) [31, 45]. To



deliver personalized recommendations, existing approaches
mainly resort to mining users’ check-in data. Specifically,
check-in data can be represented as quadruples, user-time-
location-activity. By aggregating and discretizing the context
(i.e., time slots and location grid cells) of check-in data [50,
46] to build a user-context-activity tensor, many popular ap-
proaches leverages tensor factorization techniques for user
preference prediction [33, 20, 43]. We advocate such an ap-
proach in this paper, and adopt the ranking tensor factorization
algorithm from [44] to come up with a ranking list of activities
for a user given her context.

Data Collection and Preprocessing

We use a check-in dataset collected from Foursquare by [40,
41]. It contains global-scale Foursquare check-ins collected
via Twitter Public Streams? for about 18 months (from Apr.
2012 to Sep. 2013). A check-in is represented by a quadruple,
user-time-location-activity. A user is uniquely identified by
her ID. An activity is represented by the category correspond-
ing to the POI [45], such as gym or restaurant. According
to the aforementioned LBS scenario, we discretize the tem-
poral and spatial dimensions of check-in data. Specifically,
we map check-in time in a day onto three commonly-used
time slots in LBSNs, namely morning (8:00-12:00), afternoon
(12:00-20:00) and evening/night (20:00-8:00) [47]. Moreover,
we empirically segment geographical areas (e.g., a city) into
Ikmx 1km grid cells. Formally, let U, A, T, £ denote the
sets of users, activities, time slots, and location grid cells, re-
spectively. We note that for a specific geographical area (e.g.,
a city), A, T, L are often of fixed size, while the size of U
usually increases over time (e.g., incoming of new users).

We consider user profile data as private data in this paper.
Due to Foursquare’s privacy policy, only limited profile data
(i.e., name and gender) is included in the check-ins?. Fortu-
nately, as the dataset is collected via Twitter, we also have
access to the corresponding Twitter profiles*, which typically
include additional information such as number of followers
and “followings”, etc. In this paper, due to the limited avail-
ability of user profile data in the collected dataset, we define
two attributes as private, i.e, gender (male/female) and social
status [5] (a yardstick to measure the popularity of a user in
social network). For a user u, social status is computed as the
ratio of the number of u’s followers to the number of users

u follows (i.e., “followings™): social (u) = %m. We

also discretize u’ social status as popular (social(u) > 1) and
non-popular (social(u) < 1). We note that our framework is
not limited to these two types of private data, and it can in-
corporate any discretized/categorical attributes as private data
(see Discussion section for more details).

THREAT MODEL

We consider the inference attack [23] in this study. Specifically,
a user in a LBSN has two types of data, namely public check-
in data (public data) that she is willing to publish for enabling
personalized LBSs, as well as further private data that she

Zhttps://dev.twitter.com/streaming/public
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wants to keep confidential (private data), such as gender. In
the following, we denote public data as X € X, and user-
specified private data as Y € ), where X and ) are the sets
of values that X and Y can take, respectively. Due to the fact
that ¥ usually links to X by their joint probability P(X,Y), an
adversary who observes X is able to infer some information
about Y. In order to reduce such privacy leakage, the basic
idea is to release a distorted X € X instead of X , so that it is
hard to infer ¥ from X.

We assume that an adversary has an inference attack method
q that is used to get some information on Y. The adversary
always tries to select g such that the inference cost of using ¢
to infer Y is minimized. Therefore, before observing X, g can
be obtained by solving the following problem:

c:mqin Ey[C(Y,q)] €))

where C(Y,q) is the expected cost function of inferring ¥
using g. After observing the distorted public data X, ¢ can be
obtained by solving the following problem:

¢ = min By [C(Y,q)|%] @)

The adversary’s cost gain after observing X can be determined
as follows:

AC=c—¢, 3)

which measures how much the adversary gains w.r.t. the
inference of ¥ knowing X. The idea of privacy protection is to
find X such that the privacy leakage AC is minimized, while
still enabling personalized LBSs based on X.

Basic Idea of Our Solution
In order to reduce the privacy leakage AC, we obfuscate X to
obtain X based on a probabilistic obfuscation function pxx»

which encodes the conditional probability of releasing X when
observing X. Intuitively, Px|x should be designed such that any
inference attack on Y should be rendered weak. Meanwhile, it
also keeps some utility of X by limiting the distortion budget in
the obfuscation process, which can be modeled by a constraint
AX as follows;

Eg x(dist(X,X)) < AX 4)

where dist(X,X) is a certain distance metric that measures the
difference between X and X. AX limits the expected distortion
w.rt. the probabilistic obfuscation function pgy. The data
distortion budget can ensure the utility of the released data.
Therefore, the key idea of our solution is to learn pgy that
minimizes AC under a given distortion budget AX.

HISTORICAL CHECK-IN DATA PUBLISHING

To publish historical check-in data in a privacy-preserving
way, the key idea is to probabilistically obfuscate a user’s his-
torical check-in data to that of another user, which are similar
but have less privacy leakage. In this context, data obfusca-
tion operates on one’s historical check-in records, rather than
obfuscating her check-in records one by one (for the incom-
ing check-in stream). Compared to the streaming scheme,
our study shows that such a historical check-in obfuscation
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scheme can achieve the same level of privacy protection with
a lower data distortion budget (see Figure 6 for details). In
the following, we first give an overview of our approach, and
then describe its three key phases, i.e., user clustering, cluster-
wise obfuscation function learning and probabilistic check-in
history obfuscation.

Figure 2 shows the historical check-in data publishing process.
First, aiming at reducing the problem complexity stemming
from learning the optimal obfuscation function, we incorporate
a clustering step in our framework to cluster a large number of
users into a limited number of groups based on their check-in
history. The underlying intuition is that similar activities from
the social network, i.e., from the check-in history, usually im-
ply similar user “lifestyles” [47], which further imply similar
privacy leakage [7]. Second, based on the user clusters, we
quantitatively measure the privacy leakage of user-specified
private data (e.g. gender) from check-in data, and then learn
the optimal obfuscation function by minimizing the privacy
leakage under a given distortion budget. Finally, based on
the learned obfuscation function, we perform probabilistic
check-in history obfuscation. Customized privacy protection
is achieved in the way that, for the specified private data (e.g.,
gender, social status, or both of them), a corresponding obfus-
cation function is generated.

User Clustering

We try to obfuscate a user’s historical check-in data to that of
another user. Directly learning the optimal obfuscation func-
tion Pxix from individual user’s check-in history incurs the
complexity growing quadratically with the number of users
|U|. In order to reduce the problem complexity, the user clus-
tering phase clusters users into a limited and fixed number
of groups according to their check-in history. Then, the com-
plexity related to learning the optimal obfuscation function
between user clusters rather than between individual users is
hence reduced and independent with |2/].

Let H, denote the check-in history of user u(u € U), which
is a vector of size |A| *|T|*|L|. Each element H,(a,t,l)
indicates whether u has performed a certain spatiotemporal
activity (a,z,l), where a € A,t € T and I € L. Therefore, we
can cluster the set of users I/ based on their check-in history
{Hulu € U}. As we adopt 0/1-based check-in history data,
we apply average-linkage hierarchical clustering [10] using
the Jaccard distance, and obtain a set of clusters G. More

complex clustering algorithms can also be applied, though this
is beyond the scope of our paper.

Based on the clustering results, we then summarize the ac-
tivity of a cluster to characterize the “lifestyle” of the users
in that cluster. Specifically, for each cluster g € G, we first
summarize the total number of users for each spatiotempo-
ral activity: Dg(a,t,1) = ¥,,coHu(a,t,1), and then normalize
Dg(a,t,1) such that ¥ e 4 ;7 1e2 Dg(a,t,1) = 1. The normal-
ized Dy(a,t,1) represents the empirical probability of the clus-
ter g conducting activity a at time ¢ and location /. Hence, D,
characterizes the “lifestyle” of the cluster.

Cluster-wise Obfuscation Function Learning
The optimal obfuscation function is learned based on user
clusters, which implies that we try to obfuscate the users’
“lifestyles” for privacy protection. Therefore, values for the
public data X and for the released public data X refer to
user clusters G. Without loss of generality, in the following
derivation, we keep using X and Y for public and private data,
respectively. The privacy leakage in this paper is measured
by AC, which represents the information gain of an adversary
after observing the released public data X. When using a log-
loss cost function, Calmon et al. [8] proved that AC becomes
the mutual information between the release public data X and
the specific private data Y:
AC=1(X,Y) Z p(x ,y)log

%X, yeY

&)

As noted above, we use the probabilistic obfuscation function
Pg|x to generate the released public data X. Therefore, the

joint probability of X and ¥ can be computed as:
p(E&Y) =Y pgx Glo)pxy (%) (6)
xeX

The marginal probability py (%), px (x) and py(y) can be cal-
culated as follows:

ps(®) =Y prxEx)pxy(x.y) )
xeX,yeY
px() =Y pxy(xy), pr() =Y pxr(xy) (8
yey xeX

Combined with the above Equations, the mutual information
between the release public data X and the private data ¥ can
be derived as:

Y p@EYI —Y p(y)logp(y) 9
eX yey yeY
where the second term is the entropy of Y, i.e.,
—Y ey P(y)log p(y), which is a constant for the specified
private data (e.g., gender) in a given dataset. Hence, we ignore
this term in the following derivations and obtain:

= ¥ »e IS ) (10)

X yeY ( )

Combined with Equations 6 and 7, the mutual information can
then be derived as a function of only two factors, namely the
joint probability px y which can be empirically obtained from



a given dataset, and the obfuscation function pgy:

x'eXx

Y pgx (X )pxy (v, y)

1(X,Y) =Y pgix(&x)pxy (x,y)log
§g§ X'ex
yey yey

an

The optimal obfuscation function PRix is learned such that
I(X,Y) is minimized under a given distortion budget AX.

To quantitatively model the distortion budget AX for historical
data publishing, we need to measure the difference between
user clusters. Since we characterize user clusters using their
activity distributions D, we resort to the Jensen-Shannon
divergence [24], a symmetric and bounded metric, to quantita-
tively measure the difference between two activity probability
distributions. Specifically, given two activity distributions
D, and Dg, the Jensen-Shannon divergence is computed as
follows:
1 1
JSD(D,||D;) = EKLD(DgHM) + EKLD(DgA
where M = 3 (D, + D;), and KLD(D,||M) is the Kullback-
Leibler divergence [22], which is calculated as:
Dy(a,t,l)

M) = log(=4—""2).Dy(a,t,1) (13

) GGAJ;TJGL g( M(a,t,l) ) A( ) ( )

M) (12)

KLD(D,

In summary, for a given dataset, we can empirically determine
pc.y according to private data Y (e.g., gender, social status
or their combination). Thus, the obfuscation function Péic
can be learned by Algorithm 1, which contains a convex op-
timization problem with three constraints (can be solved by
many solvers such as CVX [14]). The first constraint is for the
distortion budget, and the last two constraints are probability
constraints of Pgig: In order to stress the protected private data

Y, we denote the corresponding optimal obfuscation function
as Pgig.y- We note that we do not assume any inference attack
methods in our framework, and that any inference attacks on
Y should be rendered weak by our solution.

As we try to find the optimal obfuscation probability between
each pair of user clusters, the problem complexity of learning
optimal pg in Algorithm 1 is O(n?), where n is the number

of user clusters |G| rather than the number of users |/|. The
later evaluation shows that a small number of G can indeed
provide efficient privacy protection (see Figure 8 for details).

Probabilistic Check-in History Obfuscation

Since the learned obfuscation function is based on user clus-
ters, we still need to bridge the gap between clusters and users
to obfuscate individual user’s check-in data. Algorithm 2 de-
scribes the probabilistic check-in data obfuscation process.
Specifically, for a user u, we first obtain the corresponding
obfuscation function Pgg,y to protect her private data Y (Line
2-3). We then obfuscate her cluster g to another ¢ based on
the obfuscation function pg, G.y(8lg) (Line 4-5). Finally, since
all users in g share the same lifestyle, we randomly select one
user 4 in the cluster ¢, and leverage her check-in history Hj; to
obfuscate (replace) H, (Line 6-7).

Y pyix(EX")pxy ("))

Algorithm 1 Cluster-wise obfuscation function learning

Require: Joint probability pg y, and distortion budget AX
1: Solve the optimization problem for PéiG

min 1(G,Y)

Pdlc
s.t., Eg o(JSD(Dg||Dg)) < AX
pG‘G(gA‘g) € [07]]>Vg7g €g
Y pecléle) =1.Y8€G
B

2: return Péloy

Algorithm 2 Probabilistic check-in history obfuscation
Require: Obfuscation functions Pélc for all possible Y

for u € U do
Get u-specified private data Y
Get obfuscation function PGy forY

1:
2
3
4 Get u’s cluster g, where u € g

5: Obfuscate the user’s cluster g to § based on Péley (8lg)
6 Randomly select a user # in cluster §

7

8:

Obfuscate H,, to Hy
end for

ONLINE CHECK-IN DATA PUBLISHING

After a user’s subscription to third-party services, the service
providers have access to the user’s future check-in streams.
Therefore, we protect her private data by obfuscating her
check-in streams. Different from historical check-in data pub-
lishing, the streaming nature of user check-ins imposes the
following two constraints on online check-in data obfuscation.
First, due to time and space efficiency requirements of real-
time data publishing (i.e., single-pass processing with limited
memory) [27], online check-in obfuscation can only be per-
formed based on the incoming check-in data itself, without
accessing the user’s historical check-in data. Second, the tem-
poral dimension of check-in data cannot be obfuscated, due to
real-time publishing requirement. In other words, since third-
party services can access user’s real-time check-in streams, it
is unreasonable to publish a check-in data with a time stamp
other than the current time.

Considering these two constraints, the key idea of online
check-in publishing is to obfuscate the spatial and activity
dimensions for each incoming check-in in a real-time manner.
Figure 3 shows the online check-in data publishing process.
First, by measuring the privacy leakage of the user-specified
private data from each activity-location pair, we learn the
optimal obfuscation function between those pairs such that
the privacy leakage is minimized under a given distortion
budget. Second, for each incoming check-in data (i.e., user-
time-location-activity) in the check-in streams, we obfuscate
its activity and location according to the learned obfuscation
function.

Check-in-wise Obfuscation Function Learning

The check-in-wise obfuscation function is learned based on
activity-location pairs, denoted as (a,l). Therefore, values
for the public data X and for the released public data X
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Algorithm 3 Check-in-wise obfuscation function learning

Require: Joint probability pg y, distortion budget AX
1: Solve the optimization problem for Py

min 1(S]S,Y)

P3is

s.t., Eg g(Dist((a,1),(a, (a,0))) < AX
ps(aslla,l) € 0.1 V(@) @) €
ZPS\S a,lla,l)=1,Y(a,l) €S

2: return P3is,y

refer to S ={(a,l)|la € A,l € L}. In order to minimize the
privacy leakage of private data Y from public data S (S € S),
we follow a similar process as for cluster-wise obfuscation
function learning, and try to minimize 1(S, Y).

To model the distortion budget for check-in streams, we only
care about the percentage of the check-ins that have been
modified. In other words, a check-in is modified if at least
one of its dimensions has been changed (location or activity
in our case). Therefore, to compute the distance between two
activity-location pairs (a,) and (d,[), we use the following
function:

Dist((a,1),(a,1)) :{

In summary, we first empirically calculate pgy, and learn the
optimal obfuscation function Pjs.y using Algorithm 3 which

0,if a=aandl=1

14
1, otherwise 14

is also a convex optimization problem. The complexity of
solving the optimization problem in Algorithm 3 depends only
on | A| and |£|. Since A and £ are of fixed size for a specific
city, the complexity does not increase over time.

Probabilistic Online Check-in Obfuscation

Based on the learned obfuscation functions, we obfuscate each
incoming check-in from the check-in stream using Algorithm
4. For each incoming check-in u-a-t-I, we first obtain the cor-
responding obfuscation function pg)s.y to protect u- specified
private data Y (Line 1-2). We then obfuscate the activity and
location of the check-in based on pg s, (4,1 |a,1), and return

u-G-1-1 as obfuscated check-in data (Line 3-4).

Algorithm 4 Probabilistic online check-in obfuscation

Require: Obfuscation functions p3is for all possible Y, a check-in
u-a-t-1

: Get u-specified private data Y

: Get obfuscation function Psis,y forY

: Obfuscate (a,1) to (4,[) based on Psis Y(ﬁ,f|a,l)

Sl A

. return obfuscated check-in u-d-t-/

Table 1. Characteristics of the experimental dataset

Dataset New York City(NYC) | Tokyo(TKY)
User number 3,669 6,870
Check-in number 893,722 1,290,445
Activity number 141 113
Time slot number 3 3
Location grid cell number 179 106

EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the effectiveness and
efficiency of our framework. Specifically, based on two real-
world LBSN datasets, we first evaluate the privacy protection
performance of our framework by comparing it to state-of-
the-art approaches, and analyze the trade-off between privacy
protection and personalization performance in LBSs. Subse-
quently, we study the continuous privacy protection perfor-
mance by evaluating the privacy leakage over time. Afterward,
we evaluate the customization performance of privacy protec-
tion by comparing the privacy leakage of user-specified private
data and that of other data. Finally, we evaluate the runtime
performance of our framework. We start by introducing our ex-
perimental setup below, including descriptions of our datasets,
baseline approaches and evaluation metrics, before reporting
on the evaluation results.

Experimental Setup

Dataset

Following the aforementioned data collection and processing
steps, we gather the check-in data and the corresponding pri-
vate data (i.e., gender and social status) for users in New York
city (NYC) and Tokyo (TKY). Table 1 shows the statistics of
the resulting datasets.

Baseline Approaches

In order to demonstrate the effectiveness of our framework, we
compare it with the following privacy-preserving obfuscation
approaches:

e Random obfuscation (Rand). For historical check-in obfus-
cation, it randomly obfuscates each H,(a,t,l) with a given
probability p,uuq, i.e., if H,(a,t,1)=1 (or 0), we obfuscate
it to O (or 1) with probability p,.,s. For online check-in
obfuscation, it randomly obfuscates each check-in u-a-t-I to
another u-a-t- with probability p,quq. Here, p,qnq controls
the distortion budget in both cases.

e Frapp [1]. It is a generalized matrix-theoretic framework of
data perturbation for privacy-preserving mining. Its key idea
is to obfuscate one’s check-in data to itself with higher prob-
ability than to others. For historical check-in obfuscation,
it obfuscates a user u’s check-in H, to H,; with probability
Pfrapp = Ye if u=u', otherwise p f,qpp = e. Here e is used



for probability normalization, i.e., e = For online

7+\011H :
check-in obfusgation, it obfuscates each check-in u-a-t-/ to
another u-d-t-/ with probability ps.qpp = Ye if a = d and
l‘: f, .otherwise mepp = e (here 'e = W). The
distortion budget is controlled by ¥ in both cases.

o Differential privacy (Diff). Differential privacy [9] is a
state-of-the-art privacy protection method. Its key idea
is to protect privacy regardless of the adversary’s prior
knowledge. We adopt exponential mechanism [16] for
implementing differential privacy for discrete data. For
historical check-in obfuscation, it obfuscates H, to H,
with a probability that decreases exponentially with the dis-
tance d(H,,Hy), i.e., pair(Hy|Hy) o< exp(—Bd(H,, Hy)),
where 8 > 0.  actually controls the distortion budget. The
exponential mechanism satisfies 2 d,,,.,-differential privacy
[16], where dyqx = max,, ey d(H,,H,). Since differential
privacy directly obfuscates the individual’s check-in data
rather than the summarized activity distribution, we adopt
the Jaccard distance to compute d(H,,H,/). For online
check-in 0bfu§cation, this method obfuscates each check-in
with pgisr(a,l|a,l) o< exp(—BDist((a,1),(d,1))). Combin-
ing with the distance function in Equatlon 14, we derive that
pairf < lifa=adand [ = I, otherwise pairf o< exp(—p).
Therefore, Diff is equivalent to Frapp in the case of online
check-in obfuscation, only with a different way of control-
ling the distortion budget.

Evaluation Metrics

Privacy evaluation is traditionally based on simulations, and
tries to show that the defined privacy is satisfied with a reason-
able computation overhead [49]. In this paper, we take a step
forward to quantitatively evaluate both our privacy protection
and data utility. Specifically, we implement two inference at-
tack methods to directly assess the performance of our privacy
protection and use a real-world LBS to evaluate the resulting
utility of the obfuscated data.

Privacy. Inference attacks [23] on private data try to infer a
user’s private information Y (e.g., gender) from her released
public data X, which can be regarded as a classification prob-
lem for discrete data. Therefore, we adopt here two common
classification algorithms as inference attack methods, namely
Support Vector Machine (SVM) and Naive Bayes (NB). We
assume that adversaries have trained their classifiers based
on the original public data X and private data Y from some
non privacy-conscious users [8], who do not care about their
privacy and publish all their data. We randomly sample 50%
of all users as such non privacy-conscious users for training
the classifiers, and then perform inference attacks on the pri-
vate data Y of the rest of the users based on their obfuscated
activity data X. We use the Area Under the Curve (AUC),
which is a widely used metric for classification problem [25],
to evaluate the performance of the inference attacks. A better
privacy protection implies lower AUC for both inference at-
tack methods. The ideal privacy protection is achieved when
AUC = 0.5, which implies that any inference attack method
performs no better than a random guess.

Utility. In this work, utility corresponds to the degree to which
data can be used to power personalized LBSs. As aforemen-
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Figure 4. Privacy protection performance for different distortion bud-
gets on NYC dataset

tioned, we adopt the personalized recommendation algorithm
from [44] to come up with a ranking of activities for a user
given her context. To apply this algorithm, we first randomly
split the original public data X into a training dataset X4,
(80%) and a test set X;.5; (20%), and then use our framework
to obfuscate X;,qin 10 Xirain- Subsequently, we apply the rec-
ommendation algorithm on the obfuscated data X, rain, Which
would be released to third-party services, and then make pre-
dictions for the test dataset X;.s, which represents the users’
true preference. The goal is to verify that the obfuscated data
Xirain can still be used to accurately predict the users’ true
preference in X.;. To evaluate the quality of the resulting
recommendations, we use Mean Average Precision (MAP) 2],
which is a widely used metric from Information Retrieval to
assess the quality of rankings. Higher value of MAP implies
better personalization performance.

Privacy & Utility Trade-off for Historical Data Publishing

In this experiment, we vary the parameters that control the dis-
tortion budget for our method and baselines, and observe the
resulting trade-off between privacy (AUC) and utility (MAP).
As our framework and baselines use different parameters to
control the distortion budget, we report all the experiment

results with a unified AX = |X‘X‘X‘

tween X and X). We consider both user gender and social
status as private data. We set the number of user clusters to
200 (the selection of this parameter is discussed later). Each
result we report is the mean value of ten repeated trials.

(the relative difference be-

Figure 4 shows the results of the privacy protection perfor-
mance with different distortion budgets for the NYC dataset.
In general, higher distortion budgets imply a better privacy
protection. Compared to the baselines and for a give distortion
budget, our framework systematically achieves a better pri-
vacy protection (i.e., lower AUC) for both types of private data
against any inference attack. We observe similar results on the
TKY dataset, but do not show them due to space limitations.

Figure 5 gives the utility results for different distortion bud-
gets. We observe that the higher data distortion budget leads
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Figure 5. Utility performance for different distortion budgets

to a lower performance in LBS personalization. Compared
to the baselines, our framework, which considers the users’
“lifestyles” when obfuscating their activity data, always re-
sults in higher MAP values under the same distortion budget.
Particularly, with the results shown in Figure 4, we see that
PrivCheck achieves better privacy protection and data utility
at the same time compared to differential privacy [28].

Privacy Protection over Check-in Streams

To study the privacy protection performance over time, we
first obfuscate the historical check-in data using our method
with a distortion budget of 0.04, and then compare different
online obfuscation methods for the future check-in streams.
As our dataset contains check-ins for 18 months, we select
the first 14 month data as historical check-ins, and the last 4
month data as check-in streams.

Figure 6 shows the privacy performance over time on the NYC
dataset. (We obtain similar results on the TKYY dataset, which
are not shown due to space limitations). As noted previously,
Frapp and Diff are equivalent for online data publishing and
have the same results under the same data distortion budget.
We observe in Figure 6 that although our obfuscated historical
check-ins effectively preserve user privacy, the privacy leakage
incrementally increases over time with the release of further
check-ins. When keeping the same distortion budget (0.04)
for all online obfuscation methods, PrivCheck outperforms
other baselines by achieving lower AUC. However, all the
methods still show increasing privacy leakage over time. In
order to keep the same level of privacy protection, we need
to increase the distortion budget to 0.052 for our method.
Compared to historical data obfuscation, online obfuscation
needs more distortion budget (0.052 rather than 0.04) to keep
same level of privacy protection. This is due to the fact that
online obfuscation can only be done based on the incoming
check-in itself without an overview of users’ whole check-in
history (real-time data publishing constraint).

Performance of Customized Privacy Protection

Since users often have different privacy requirements, our
framework is designed to protect user-specific private data.
According to the two types of private data, users have three
options according to the types of private data to be protected:
1) protecting gender only (PrivCheck-Gender); 2) protecting
social status only (PrivCheck-Social); 3) protecting both gen-
der and social status (PrivCheck-Both). In this experiment, we
configure our framework with those three settings, and report
on the customized privacy protection performance. We fix
the distortion budget to 0.04 for all historical data obfuscation
methods, and to 0.052 for all online data obfuscation methods.
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Figure 6. Privacy protection performance over time on NYC dataset

In this way, we keep the same level of privacy protection over
time. The reported results are the average values over months.

Figure 7 shows the privacy protection results for both gen-
der and social status, using the New York city and Tokyo
datasets, respectively. We observe that PrivCheck-Gender (or
PrivCheck-Social) outperforms all other methods when pro-
tecting the targeted gender data (or social status), by achiev-
ing the lowest AUC. Particularly, compared to PrivCheck-
Both, which treats both data as private, PrivCheck-Gender (or
PrivCheck-Social) can achieve a lower AUC for gender (or so-
cial status); Indeed, better privacy protection can be achieved
under a given distortion budget when less private data has to
be protected.

In addition, we observe that different types of private data
suffer from different levels of privacy leakage. For example,
Figure 7 shows that a user’s gender can be inferred with a
higher AUC than that of her social status. In practice, this
observation can be used to help users decide which private
data should be protected, by providing them with a quantitative
metric based on AUC to indicate the privacy leakage of all
potential private data.

Runtime Performance

As our framework includes both a historical and an online
check-in publishing modules, we separately discuss their run-
time performance. The prototype of our framework is imple-
mented on a commodity PC (Intel Core i17-4770HQ @2.20GHz,
16GB RAM, OS X), running MATLAB and CVX [14] library
to solve the optimization problems in Algorithm 1 and 3.

Historical Check-in Data Publishing

For obfuscation function learning, we adopt a user clustering
step to reduce the problem complexity. In this experiment, we
study the learning time of the obfuscation function using Algo-
rithm 1 w.r.t. the number of user clusters, and its influence on
privacy protection performance. We fix the distortion budget
to 0.04, and vary the number of user clusters. Figure 8 shows
the AUC results and the time needed for learning the optimal
obfuscation function for different numbers of user clusters
on both datasets. On the one hand, we observe that AUC de-
creases with an increasing number of clusters. A larger number
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of user clusters usually implies finer-grained “lifestyles”. By
learning the obfuscation function over fine-grained clusters
(more obfuscation lifestyle candidates), our method is more
probable to find the optimal function that achieves a better
privacy protection under the same distortion budget. Further-
more, we observe no significant reduction in AUC when the
number of clusters gets higher than 200, which implies that
200 “lifestyles” are sufficient to characterize the privacy leak-
age between user activity data and their private data. On the
other hand, the computation time continuously increases with
the increasing number of clusters. Therefore, we selected 200
as the number of user clusters in the previous experiments.
We note that learning the optimal obfuscation function is an
offline step, and only depends on the joint probability pgy. In
practice, we can regularly update the obfuscation function in
order to sustain its effectiveness.

Based on the learned obfuscation function, the probabilistic
check-in history obfuscation in Algorithm 2 can be efficiently
performed (0.49 seconds on both datasets).

Online Check-in Data Publishing

The complexity of obfuscation function learning for online
check-in data publishing (Algorithm 3) depends only on .4 and
L, which are constant for a specific city. As shown in Table 2,
our test PC is able to learn the optimal obfuscation function in
120 and 276 seconds for NYC and TKY datasets, respectively.
We note again that the obfuscation function learning is an
offline step, which can be regularly updated.

Table 2. Runtime performance for online check-in data publishing
Dataset NYC TKY

Obfuscation function learning time | 120 sec | 276 sec

Online check-in obfuscation speed | 2,200 check-in/sec

Due to the streaming nature of check-in data, the efficiency
of probabilistic online check-in obfuscation is particularly
important. As shown in Table 2, our method (Algorithm
4) is able to perform the obfuscation process with a speed
of 2,200 check-in/second on both datasets, which can easily
accommodate the current Foursquare check-in stream where
the peak-day record shows 7 million check-ins/day [4] (about
81 check-ins/sec on average).

DISCUSSION

Private data type. As PrivCheck is designed to handle discrete
data, it can incorporate any discrete/categorical attributes as
private data. In this study, due to the data collection limitation,
the selected two attributes are all with a small set of values (i.e.,
male/female for gender, and popular/non-popular for social
status). Theoretically, attributes with a smaller set of values
will be better protected under the same distortion budget. The
evaluation also shows this effect. When considering both
gender and social status as private data (Figure 7), we actually
try to obfuscate for four cases (i.e., the combination of the two
value sets). This is equivalent to one attribute with a set of
four values. The results show that privacy is better protected
when obfuscating for two values than for four values.

Data discretization. We note that the discretization of check-
in data is a common and practical approach in developing
LBSs [50, 46]. Although the discretization of the temporal
and spatial dimensions introduces certain data obfuscation,
our study shows that the discretized check-in data still causes
privacy leakage (see Figure 7), and PrivCheck can provide
effective protection against such privacy threats.

CONCLUSIONS AND FUTURE WORK

In this paper, we introduced PrivCheck, a customizable and
continuous privacy-preserving check-in data publishing frame-
work. It can protect user-specified data against inference at-
tacks by releasing obfuscated check-in data, while still en-
suring the utility of the released data to power personalized
location-based services. Based on real-world scenarios, our
framework considers not only historical check-in data publish-
ing, but also online check-in publishing for check-in streams.
We showed through extensive experiments on two real-world
LBSN datasets that PrivCheck can provide an efficient and
effective protection of private data against different inference
attacks, while still preserving the utility of the published data
for context-aware activity recommendation.

In the future, we plan to extend our framework by considering
the data types with continuous values rather than discretized
values, and explore other data utility other than personalized
LBSs, such as providing aggregate demographic metrics.
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