
1. Introduction

The past decade has witnessed a boost of the layered crystals 

researches since the pioneering (re)discovery of the mono-

layer graphene [1, 2] and enormous applications based on 

these materials [3]. Inorganic layered crystals (ILCs), similar 

to their organic counterparts, are formed through covalent 

bonds in layers and van der Waals forces between layers. 

Benefiting from intra- and inter- layer structures, it is rela-

tively easy to manipulate complex structures to reach different 

application purposes. In contrast to the gapless pristine gra-

phene, most of the ILCs have non-zero bandgaps. Such semi-

conducting properties are essential in industrial applications. 

The library of ILCs consists of various species of nitrides, 

and metal compounds of the group VI [4]. Among them, the 

MoS2 is well-known as a conventional lubricant [5] and cata-

lyst for hydrogen evolution [6, 7]. Recent investigations of the 

materials showed that mono- and few- layered MoS2 are also 

advanced in high efficient transistors [8, 9], photoelectronics 

[10], and electrocatalysis [11]. To improve the properties of 

the MoS2-based devices, developments of molecular modula-

tion and engineering are in progress. Different methods have 

been applied to synthesize MoS2 monolayers [12, 13], and 

few layers on a large scale [14, 15].

Exploration of the MoS2 semiconductor functionalities 

was featured from a discovery of the transformation of indi-

rect to direct band transitions when lowering the ILC dimen-

sions [16, 17]. Laser-induced photoluminescence (PL) spectra 
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showed that a direct band transition peaking at an energy of 

~1.9 eV in a single layer diminished with the increase of film 

thickness. Such a PL peak was also found in the few layered 

MoS2 at low temperatures but the intensity decreased when 

temperature increased [18]. The temperature dependent PL 

spectroscopy of mono-layer MoS2 shows a low-energy peak 

beside the dominating one due to a bound exciton state [19]. 

Relaxing dynamics and time scales for the different relaxa-

tion processes were also elucidated [14], while studies of 

the excitons were further extended to other low dimensional 

metal dichalcogenides [20]. Extensive studies through this PL 

technique further revealed that indirect band transitions were 

plasmonic enhanced in nanoparticles [21], and also Au nano-

particle decorated flakes [22].

Despite the pioneering findings revealed via laser-induced 

PL detections, the laser-induced spectroscopies, carried out 

with blue lasers as incident sources are limited in photon 

energy variations to excite valence band (VB) electrons to 

higher conduction bands (CBs) or electrons from deeper levels 

to the CBs. A detailed knowledge of the electronic structures 

is of crucial importance for digging out materials’ potentials 

in different applications. Though VB structures of the cleaved 

MoS2 single-crystal flake were revealed by the angular-

resolved photoemission spectroscopy (ARPES) [23], the 

probe of the CB structure is beyond the reach of the ARPES 

technique. The CBs were also investigated through the x-ray 

absorption spectroscopy, but so far these studies were applied 

only to the bulk 2H-MoS2 [24, 25]. More band structures and 

transition mechanisms of the low-dimensional MoS2 await to 

be revealed, however, with incident sources of tunable photon 

energies. In this paper, we report a photoluminescence study 

of few-layered MoS2 excited by energy tunable synchrotron 

radiation. By monitoring the PL emission and tuning the 

SR beam in the VUV energy region, a wide excitation band 

peaking at 7 eV was found. The excitation band was strong at 

low temperature but disappeared at temperature above 100 K. 

First-principles calculations were carried out to explicate the 

origin of the excitation band.

2. Experimental

Large-area few-layer MoS2 was grown using the two-step 

thermolysis process [26]. High-purity (NH4)2MoS4 was added 

to 20 ml of dimethylformamide (DMF) to form a 1.25 wt%  

solution. The solution was sonicated for 20 min before use. 

Sapphire substrates were cleaned with piranha solution 

(H2SO4/H2O2). We used highly polished, EPI-ready grade 

sapphire substrates. In order to achieve atomically smooth 

sapphire terraces on the surface we annealed the substrates in 

air for 1 h at a temperature of 1150 °C just prior to the growth 

process. The next step of the growth was the immersion of the 

substrates into the (NH4)2MoS4 solution. The substrates were 

then baked on a hot plate at 120 °C for 30 min.

The prepared samples with the fresh thin film of 

(NH4)2MoS4 were placed in the cold zone of the quartz tube 

with a gas mixture (Ar/H2 20/5 sccm). When the center of 

the furnace reached 500 °C, we moved the crucible with the 

samples inside the tube by using a magnet. After 1 h, the cru-

cible was moved to the cold zone and the gas environment 

was changed to Ar. The second step of the growth consists in 

sulfurization of the film in the environment of Ar and sulfur at 

1000 °C. The sulfur is used as a protection gas against the oxi-

dation. The sulfur is introduced into the chamber in a pellets 

form which becomes sulfur vapor at the growth temperature. 

Samples were further characterized through optical micros-

copy and atomic force spectroscopy (AFM).

VUV excitation luminescence spectroscopy is especially a 

powerful tool for investigating wide band gap materials such 

as fluorides [27], iodides [28] and oxides [29–32]. The method 

was extended to studies of electronic excitations in semicon-

ductor nanocrystals [33]. In this work, luminescence proper-

ties of MoS2 were investigated in a wide spectral range using 

synchrotron radiation from the Max III storage ring of the Max 

IV synchrotron (Lund, Sweden). The photoluminescence end-

station was installed on the FinEst branch of the I3 undulator 

beamline. A 6.65 m off-axis eagle type normal incidence mon-

ochromator was employed, delivering monochromatic photons 

with a flux of 1011–1013 ph s−1/0.1% BW [34, 35]. The  incident 

beam was cut to a size of ~ 1 mm  ×  1 mm. The excitation 

spectra were recorded in the 250–100 nm (5–12 eV) spectral 

range with a spectral resolution of 0.3 nm. Excitation spectra 

of sodium salicylate were employed to normalize the inten-

sity of the photons impinging onto the sample. Luminescence 

spectra in the visible/infrared range were recorded with a mon-

ochromator (SpectraPro-308i, Acton Research Corporation) 

equipped with a photomultiplier (HAMAMATSU R6358P). 

Step of the analyzing monochromator was typically 8 nm. 

Emission spectra were corrected for the spectral response of 

the detection system. Samples were installed onto the sample 

holder of a flow-type liquid helium cryostat, allowing tempera-

ture changes from 10 to 300 K. Two different beam polariza-

tions (vertical and horizontal) were used. However, emission 

and excitation spectra were found to be independent of the 

beam polarization.

3. Theory

To calculate the spectroscopic properties of few-layered 

MoS2, we employed the hybrid exchange-correlation func-

tional Heyd–Scuseria–Ernzerhof (HSE06) [36, 37] by using 

norm-conserving pseudopotentials implemented in CASTEP 

code [38]. Calculations were performed at the temperature of 

0 K. A vacuum region of 25 Å was applied in the z-direction 

to exclude mirror interactions between neighboring images. 

The convergence tolerance of the energy was set to 10−6 eV 

and the energy cutoff of the plane wave basis set to 650 eV. 

The Brillouin zone was represented by a set of 10  ×  10  ×  1 

k-points for the geometry optimizations, and 15  ×  15  ×  1 

k-points were used to obtain the optical properties. Taking 

the sample thickness into consideration, a bilayer model was 

employed. A 5  ×  5 supercell was constructed from 150 atoms 

including 50 Mo atoms and 100 S atoms. Interlayer effect of 

van der Waals interactions was introduced explicitly through 

the empirical correction scheme proposed by Ortmann, 

Bechstedt, and Schmidt [39].
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4. Results and discussions

An AFM image of the sample is shown in figure  1(a). The 

AFM phase image of the film was acquired directly on top of 

the sapphire substrate and the AFM was operated in a tapping 

mode. With the AFM, grains sizes ranging from 100 to 200 nm 

can be observed. Crystalline domains boundaries are visible 

because they are segregated by impurities. This is consistent 

with the experimental evidence that grain boundaries appear 

as strong variations in the phase contrast during the AFM 

scan. Figure 1(b) shows an optical microscopic image of the 

sample, where light contrast denotes the general flat surface.

The PL spectra of MoS2 sample under VUV excitation in 

temperature range from 10 to 100 K are shown in figure 2. The 

spectral position and shape of the emission spectra remain 

the same despite the temperature changes. Each emission 

spectrum contains a well-resolved emission band peaking 

at ~1.9 eV and a shoulder at higher energy. Such PL bands 

were reported in previous studies under visible laser excita-

tion [17, 40–42] and attributed to several types of excitons in 

mono- and few-layered MoS2 [41, 42]. According to [41, 42] 

a neutral free A-exciton (XO,A) is responsible for emission at 

1.89 eV, while a broad contribution near 2.01 eV stems from 

B-exciton emission (XO,B) from the spin–orbit split valence 

band at the K-points of the Brillouin zone. The emission bands 

of the negatively charged trion (XT) and a defect induced fea-

ture (XD) known in 2D MoS2 [42, 43] have spectral positions 

below 1.8 eV and could not be detected in figure 2 due to the 

limitation of the detection system of the set-up.

Figure 2 demonstrates that the PL intensity decreases with 

increasing temperature. Generally speaking, the PL intensity 

degradation at high temperatures is typically attributed to the 

enhancement of the nonradiative electron–hole recombination 

process which reduces the probability of radiative transitions. 

In [18] it was demonstrated that the PL intensity of MoS2 

under visible laser excitation decreases when the temperature 

Figure 1. Morphology of the CVD few-layered MoS2 sample probed via (a) the atomic force microscopy, and (b) the optical microscopy.

Figure 2. Temperature dependence of photoluminescence spectra 
of few-layered MoS2 under VUV excitation at the incident photon 
energy of =E 7.5ex  eV.
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calculation of the excitation spectrum at 0 K.
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increases from 90 to 423 K regardless of the layer thickness. 

It was concluded there that the temperature dependence of 

the PL intensity in 2D MoS2 is typical for conventional semi-

conductors. Therefore, the temperature dependence of the PL 

signal depicted in figure 2 is in principle in line with the data 

obtained before using visible excitation.

The effective VUV excited PL spectra at low temperature 

allowed us to employ higher-energy photons to investigate 

the excitation spectra of the A-exciton and to get information 

about intrinsic electronic properties in layered MoS2. Taking 

into account that intensity of the PL signal is strongest at low 

temperature, we applied low temperature in order to get inten-

sive and reliable excitation spectra. Figure 3 demonstrates the 

excitation spectrum by monitoring intensities of the emitted 

PL around 1.9 eV at a low temperature of 10 K. This spec-

trum comprises a strong PL excitation band peaking at about 

7 eV and having a prolonged shoulder to higher energies. It 

is important that the PL intensity is low if the energy of exci-

tation is lying in the 5.0–6.5 eV range. This energy range is 

much higher than the band gap of MoS2 and definitely should 

be sufficient for excitation of PL. It is worth mentioning that 

the CB structures were investigated for the bulk MoS2. The 

s- or d-like DOS near to the sulfur atoms were revealed via 

soft x-ray absorption near-edge structures (XANES) [24, 

25]. However, no general information about the other band 

transitions from VB to CB could be given by the XANES due 

to the dominant dipole transition in the core-level excitations 

of the sulfur 2p electrons [25]. On another hand, to the best of 

our knowledge, studies of the excitation spectra of the low-

dimensional MoS2 are still lacking.

Combining the theoretical and experimental results allows 

us to clarify the emission and excitation schemes. The bilayer 

MoS2 was chosen here, considering the rather huge synchro-

tron beam coverage area on the CVD sample. The theoretical 

excitation spectrum of the bilayer is depicted in figure 3 to 

make a direct comparison with the experimental one. The 

optimized geometry is shown in figure 4(a) for the top and 

side views. The lattice parameter of the two-layered MoS2 

from our calculations is 3.21 Å. The band structure is shown 

in figure 4(b), the projections of the density of states (DOS) 

next to the Fermi level in figure  4(c), and the DOS in an 

enlarged energy scale in figure 4(d). Crosscheck of the com-

putation quality can be seen, e.g. from the conduction-band 

minimum (CBM) (point K in figure  4(b)) and the valence-

band maximum (VBM) (points Γ), which were found to be 

consistent with previous results [43]. It is noteworthy that 

the present band structure and gap calculations give very 

good agreement with experimental values. Other calcula-

tions, such as the generalized gradient approximation in the 

Perdue–Burke–Ernzerhof (PBE) functional form [44], may 

Figure 4. Theoretical calculations of the bilayer MoS2 geometry and electronic structures. In (a), optimized geometric structures of the 
two-layered MoS2 are shown from the top view and the side view. The blue and yellow spheres represent Mo and S, respectively. The 
electron band structure of the bilayer is plotted in (b). The partial density of states next to the Fermi level is depicted in (c) and extended in 
(d). The Fermi level is denoted with dashed lines.
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underestimate bandgap energies due to compromises between 

computational efficiencies and precisions.

The observed emission spectra at ~1.9 eV are attributed to 

transitions of excited electrons in the CBM to holes migrated 

just below the VBM. As shown in figure 4(c), the calculated 

energy difference between the peaks of DOS next to the Fermi 

level and DOS next to the VBM is 1.96 eV. This energy is 

in accordance with the observed PL energy. In the total DOS 

next to the Fermi level, the main peak is associated with a 

smaller one at a lower energy of 0.14 eV. The DOS next to 

the CBM is a singlet. Transitions of the electrons from these 

unoccupied to occupied states resulted in the PL features as 

observed in figure 2. In contrast to literature data, however, 

the VUV excited PL (figure 2) is stable at low temperature 

only, and is completely quenched at 100 K. In addition it was 

not detectable at room temperature. We can explain these 

facts as follows. The present few-layered MoS2 is a semi-

conducting material having an indirect bandgap energy of 

1.82 eV. Exciting this material by relatively high energy VUV 

photons we promote an electron in the CB with energy sig-

nificantly higher than the CBM. After some relaxation, the 

electron reaches the bands next to the CBM. Meanwhile,  

the vacancies pop up in bands next to the VBM. Subsequently, 

the recombination between the electron and the hole results 

into the PL signal.

In the excitation case, the experimental absorption peak 

positions and relative intensities also agree well with the 

theoretical spectra. Detailed analysis of PDOS in figure 4(d) 

reveals that there are several substantial peaks around the 

Fermi level between  −8 and  +8 eV. Such a big unoccupied 

DOS volume allows electrons from the VB to be prompted 

and kept therein, in accordance with previous explanations. 

The PDOS in figure 4(d) clarifies the origins of the observed 

peaks in figure 3. The dominating spectral component origi-

nates from the electron transitions of the p- and d-DOS in the 

VB to the d- and p-DOS in the CB. Staying at ~4 eV below 

the Fermi level, both p-DOS and d-DOS have the most abun-

dant densities. In addition, the d-DOS and p-DOS in CB peak 

at ~3 eV above the Fermi level. Similar energy intervals are 

found between the large VB DOS at  −2.6 eV, and CB DOS 

at  +4.5 eV with respect to the Fermi level. The combined 

peaking densities of these occupied VBs and unoccupied 

CBs contribute to the observed strongest excitation peak 

at 7 eV. The present excitation scheme is different from the 

laser (e.g. 532 nm, 632 nm) induced one where the electrons 

next to VBM are excited to the vacancies in the CB [17, 45]. 

Indeed, the experimental excitation spectrum may also bear 

other transition schemes due to the low-dimensionality of the 

material. Excitations were found to be strong in the theoret-

ical results at 5.5 eV, but not visible in the experimental curve. 

Such peculiarities of the PL excitation spectrum may be cor-

related to the nano-scale. For instance, it can be supposed that 

low dimensionality strongly influences the oscillator strength 

of the transitions in 2D MoS2. This leads to the appearance 

of the structure in the excitation spectra shown in figure  3. 

In other words, the measured PL excitation spectrum demon-

strates the dependence of the transitions oscillator strength of 

few-layered MoS2 on low dimensionality in the VUV spectral 

range. Similar conclusions were reached in [33] in order to 

explain the dependence of the Si PL excitation spectra on 

the nanocrystal size. In the present theoretical calculations, 

however, such oscillator strength changes were not taken into 

consideration.

5. Conclusions

In this paper we have reported on the finding of a novel 

excitation peak in the VUV region of the few-layered MoS2 

photoluminescence spectrum induced by energy tunable 

synchrotron radiation. An intensive PL excitation peaking at 

~7 eV or 177 nm at low temperature was found beyond excita-

tion energies supplied by conventional radiation sources such 

as lasers. From the temperature dependent PL spectra and 

first-principles calculations, the origin of the excitation peak 

was attributed to the intrinsic electronic structures of the low 

dimensional MoS2. Finally, considering the excitonic peak 

energy and the similarity of the present PL spectrum with the 

one obtained for Si nanocrystal, we suggest that few-layered 

MoS2 could be a transformer of UV/VUV radiation into vis-

ible light and may find practical applications as those reported 

in [46, 47] for multilayered van der Waals heterostructures.
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