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Polarised microscopy is shown to be a powerful alternative to light scattering for the determination of the

viscoelasticity of aligned nematic liquid crystals. We perform experiments in a wide range of temperatures

by using an adapted version of the recently introduced differential dynamic microscopy technique, which

enables us to extract scattering information directly from the microscope images. A dynamic analysis of the

images acquired in different geometries provides the splay, twist and bend viscoelastic ratios. A static

analysis allows a successful determination of the bend elastic constant. All our results are in excellent

agreement with those obtained with the far more time-consuming depolarised light scattering

techniques. Remarkably, a noteworthy extension of the investigated temperature-range is observed,

owing to the lower sensitivity of microscopy to multiple scattered light. Moreover, we show that the

unique space-resolving capacities of our method enable us to investigate nematics in the presence of

spatial disorder, where traditional light scattering fails. Our findings demonstrate that the proposed

scattering-with-images approach provides a space-resolved probe of the local sample properties,

applicable also to other optically anisotropic soft materials.

1 Introduction

Devices based on nematic liquid crystals (LC) are very common
and include displays for TVs, computers and phones, optical
shutters and modulators, and 3D glasses for cinema or televi-
sion.1–4 One of the most important properties for all these
devices is the characteristic time of collective reorientation aer
the application of external elds, which sets the time scale of
the device. The relaxation of LC can be interpreted as a visco-
elastic response to a distortion of the director eld and the
reorientation time is mostly determined by the so-called visco-
elastic ratios, which quantify the importance of the LC viscosity
compared to its elasticity.5 Nematics have relatively low viscos-
ities and even small external forces such as thermal agitation
can locally distort their order. One of the classical means to
study the lifetime of these thermally excited orientational uc-
tuations is small-angle Depolarised Dynamic Light Scattering
(DDLS). DDLS exploits the fact that temporal intensity uctua-
tions in the depolarised scattered light are a direct consequence
of the orientational uctuations of the LC director. By studying
the lifetime of the scattering intensity uctuations, one can thus
access the three viscoelastic ratios that correspond to splay,
twist and bend deformations of the LC director, provided that

suitable scattering geometries are used.5,6 Small-angle DDLS
measurements are quite demanding, requiring very clean
sample cells and optical surfaces to minimise the unwanted
scattered light (stray light). In addition, measurements at
several scattering angles are oen necessary, which increases
substantially the overall measurement time to achieve the
sample characterisation. Another possible – although scantily
explored – route for the characterisation of the LC viscoelasticity
exploits the fact that the director uctuations can be easily
visualised in real space by means of depolarised microscopy
and recorded with a pixel detector (camera) for subsequent
analysis. This idea was originally used in ref. 7, where spatial
Fourier transforms of microscope images of nematic LC were
analysed in time to extract the twist viscoelastic ratio. While the
latter was found to be in agreement with previous DDLS
measurements, no information about the bend and splay
viscoelastic rations could be retrieved, leaving the full potential
of dynamic microscopy experiments still unexpressed. A
particularly promising technique for the full characterisation of
the LC viscoelasticity is represented by the recently introduced
Differential Dynamic Microscopy (DDM).8 In its simplest
implementation, DDM allows performing Dynamic Light Scat-
tering (DLS) experiments with a camera-equipped microscope,
by recording a short movie of the sample and processing it
through a combination of subtraction of images acquired at
different times and a spatial Fourier analysis. The sample
dynamics is then recovered by looking at the increase of the
square amplitude of each Fourier mode as the time separation
between the two subtracted images is made larger, which
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provides the intermediate scattering function for the corre-
sponding wave vector.9 This approach has been successfully
demonstrated with a variety of samples including colloids and
bacteria, both in bright eld,8–10 phase contrast,11–13 and uo-
rescence wide-eld14 or confocal15 microscopy. We shall prove
here that DDM in combination with properly oriented polar-
isers – hereinaer named polarised differential dynamic
microscopy or pDDM – allows performing DDLS experiments
with a microscope and permits the full characterisation of LC
viscoelastic ratios in nematics. To this aim we rst develop a
theoretical description of dynamic microscopy experiments
with optically anisotropic samples. We then succeed in
measuring experimentally the three viscoelastic ratios in a
nematic LC sample with suitable alignment, thereby demon-
strating pDDM as a powerful tool for the rapid characterisation
of nematics. The use of pDDM for the extraction of the elastic
constants necessitates alignment-dependent theoretical
expressions describing the effect of the light propagation in a
distorted medium on the image intensity. Even though deriving
such expressions is beyond the aim of this work, we adapt
recent results developed in ref. 16, primarily for the description
of electroconvection patterns, for one of the experimental
geometries used in this study. As a result we could extract the
bend elastic constant at various temperatures and nd it to be
in excellent agreement with literature data. We also show that
our imaging-based approach allows extracting the viscoelastic
parameters in a heterogeneous planar nematic, by means of a
space-resolved experiment that would be practically impossible
with DDLS. Our results suggest a routine use of microscopes for
the determination of the viscoelastic properties of various
optically anisotropic uids, such as for instance lyotropic liquid
crystals made of anisotropic macromolecules or colloids.17–20

2 Nematodynamics

The relaxation of orientational uctuations of the director is
usually described in the framework of nematodynamics
theory.5,21 The elastic cost of deformation of the nematic order is
expressed by the free-energy volume density

f ¼ 1
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where the unit vector n̂(~r) ¼ n̂0 + d~n(~r) provides the local
orientation of the director. In fact, eqn (1) denes the three
elastic constants K11, K22 and K33 that are associated with splay,
twist and bend deformations, respectively.

Nematodynamics uses eqn (1) as a starting point to write
equations that account for conservation of the linear and
angular momentum, suitably complemented by the constitutive
equations for the material.5,21 Exact solutions of such equations
can be obtained by their linearization for small uctuations of
velocity (d~v) and direction (d~n) around the equilibrium solution
(~v¼ 0 and n̂¼ n̂0). By introducing the Fourier transform d~n(~Q)¼Ð
d~n(~r)exp(�i~Q$~r)d~r and by choosing an orthonormal reference

system (ê1, ê2, ê3 ¼ n̂0), such that for each wave vector ~Q the unit
vector ê2 is perpendicular to ~Q and ê1 is perpendicular to ê2, the

free energy density in eqn (1) assumes the particularly useful
diagonal form

F ¼ 1
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in the reciprocal space. For each ~Q ¼ ~Qk + ~Qt ¼ Qkn̂0 + Qtê1
uctuations of the nematic director are accordingly decomposed
in two collective normal modes (v ¼ 1, 2), dened by the relative
orientation of n̂0 and ~Q, and schematically depicted in Fig. 1.
Mode 1 describes director uctuations d~n perpendicular to n̂0 in
the (n̂0,~Q) plane, which are due to splay and bend deformations.
Fluctuations perpendicular to the (n̂0, ~Q) plane dene mode 2,
which is a combination of twist and bend deformations. Relax-
ation of the modes occurs exponentially with a rate

Gn
~Q

� �
¼ KnnQt

2 þ K33Qk
2

hn
~Q

� � (3)

where hn(~Q) denotes two Q-dependent viscosities dened in
terms of the Leslie viscosities5 ai (i ¼ 1, 2, 3, 4, 5, 6) as
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where g1 ¼ a3 � a2, ha ¼ a4/2, hb ¼ (a2 + a4 + a6)/2, and
hc ¼ (�a2 + a4 + a5)/2.

Fig. 1 Cartesian reference system (ê1, ê2, ê3 ¼ n̂0) used to decompose
the director fluctuations in mode 1 and mode 2. The wave vector ~Q of
the fluctuations (not shown) and the director n̂0 form a plane. The unit
vector ê2 is perpendicular to that plane. With this choice ~Q lies in the
(n̂0, ê1) plane and can be seen as the sum of ~Qk and ~Qt. (a) Mode 1
corresponds to bend and splay distortions of the director. (b) Mode 2
accounts for bend and twist. The vector d~n(~r) (not shown) is oriented
along ê1 for mode 1 (a) and along ê2 for mode 2 (b).
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These rather complex expressions can be simplied in
some limit cases. For the cases of interest in the present work,
one has:
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which dene hsplay, htwist, hbend, and in turn result in the
following expressions for the relaxation rates of the two modes:
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For each of the three deformations, the viscoelastic ratio is
thus in the form K/h where K is a deformation-dependent elastic
constant (measured in newton) and h is the corresponding
viscosity (measured in Pa s). In the next paragraph we will show
how it is possible to exploit the limits in eqn (8) and (9) in DDM
experiments.

3 Dynamic microscopy of fluctuating
nematics

In this paragraph we rst briey recall the working principles of
bright-eld DDM, as introduced in ref. 8 and 9. In addition, we
describe DDM in the presence of polarising elements, which are
the essence of the pDDM method. Our description includes the
outline of novel experimental geometries that are used here for
the characterisation of the viscoelasticity of nematics.

Bright-eld DDM

DDM is a near-eld (or deep-Fresnel) scattering technique22 that
allows the recovery of scattering information about the sample
by analysing sequences of images (movies) acquired close to the
sample (deep-Fresnel regime) rather than in the sample far-eld
(Fig. 2). The main idea of DDM is to extract from microscope
images a signal that is proportional to the density uctuations
within the sample. In this way, by means of Fourier transform
analysis, it is possible to quantify relevant statistical quantities
such as the static and the dynamic structure factor, for
comparison with suitable theoretical models or with analogous
quantities extracted from far-eld scattering experiments.9

In bright-eld DDM experiments such a task is easily tackled
for weakly scattering samples i.e. whenever the intensity of the

transmitted beam I0 ¼ E*0E0 is way larger than the intensity of
the scattered light Is ¼ E*sEs, where E0 and Es are the incident
and scattered elds, respectively. Indeed, fulllment of the
heterodyne condition Is � I0 guarantees that the intensity of
each microscope image can be written as

I(x, y, t) ¼ |E0 + Es(x, y, t)|
2 x I0 + 2Re[E*

0Es(t)] (10)

where the homodyne term Is has been neglected and where Re
[.] is the real part of the argument. Eqn (10) shows that a
measure of the intensity I(x, y, t) enables one to access the real
part of the uctuating scattering eld Es(x, y, t), a consequence
of the intrinsic interferometric nature of the method. This fact
can be exploited if an effective procedure for removing the
transmitted light intensity I0 is found. Among the possible
choices,9 a very common one is to calculate the algebraic
difference between two images acquired at different times t0
and t0 + Dt to obtain the difference image

Fig. 2 In a DDM experiment (a) light impinging on the sample is
scattered at various angles and is collected by the objective lens. Two-
dimensional microscope images of the sample are Fourier analysed
and information equivalent to a traditional far-field scattering experi-
ment (b) is recovered. A generic scattered ray (wave propagating) with
polar angle q and azimuthal angle f (dashed line), which corresponds
to the point (q, f) in the far-field scattering pattern (b), is collected by
the lens in a DDM experiment (a) and contributes to the images. The
contribution of each scattered ray (wave) can be isolated bymeans of a
two dimensional Fourier analysis, which is based on the two-dimen-
sional projection ~q (defined in eqn (12)) of the wave vector ~Q trans-
ferred during the scattering process (c). The length ks of the scattered
wave vector~ks may differ in general from the length ki of the incident
wave vector~ki (inelastic scattering).
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d(x, y, t0, Dt) ^ I(x, y, t0 + Dt) � I(x, y, t0)

x 2Re{E*
0[Es(t0 + Dt) � Es(t0)]}. (11)

For stationary ergodic samples the dependence on the
reference time t0 can be neglected since all the images obtained
by subtracting pairs separated in time by the same value of Dt
are statistically equivalent. This allows averaging of the spatial
Fourier power spectra of all difference images with the same Dt
to obtain the image structure function

D(qx, qy, Dt) ¼ h|
Ð
dqxdqxexp[�i(xqx + yqy)d(x, y, t0, Dt)]|

2it0. (12)

The image structure function is studied for each ~q as a
function of Dt by tting the trend of the experimental data
points with the theoretical expression

D(~q, Dt) ¼ A(~q)[1 � g(~q, Dt)] + B(~q) (13)

where B(~q) is a background term that accounts for the noise of
the detection chain, A(~q)¼ T(~q)I(~q), I(~q) is the intensity scattered
by the sample and T(~q) is a transfer function that depends on
the microscope.9 It is particularly relevant that g(~q, Dt), the so-
called intermediate scattering function, is the quantity normally
accessible in DLS experiments and this provides the link
between DDM and DLS.9 For most of the systems previously
analysed with DDM8–12,14,15 the image structure function bore a
circular symmetry (like in Fig. 2a and b), such that an azimuthal
average for q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qx2 þ qy2
p

was performed. The structure func-
tion D(q, Dt) was thus typically studied as a function of Dt by
tting the trend of the experimental data points with the
theoretical expression

D(q, Dt) ¼ A(q)[1 � g(q, Dt)] + B(q). (14)

It is worth noting that the wave vector ~q accessible in DDM
experiments is a two-dimensional projection of the wave vector
~Q¼~ki�~ks transferred during a scattering process, where~ki and
~ks are the incident and the scattered wave vector, respectively
(see Fig. 2c). As a consequence of the small wave vectors
accessible in DDM experiments, typically well below 10 mm�1,
the difference between ~q and ~Q is usually negligible, as is a
common practice for camera-based far-eld small angle elastic
scattering experiments.23,24

DDM with polarising elements (pDDM)

Orientational uctuations of the nematic director can change
the polarisation state of incident light. The two modes
decomposing the uctuations of the nematic director intro-
duced in eqn (2) can be easily probed in a scattering experi-
ment, where a nematic liquid crystal slab is illuminated by a
plane wave with wave vector~ki and polarisation direction î. The
scattered light is then collected in a direction specied by the
wave vector~kf and the polarisation direction f̂ . The polarisation
directions î and f̂ are usually selected by use of linear polarising
elements placed before and aer the LC sample, respectively.
The scattering differential cross-section sd in such experiments
is given by

sd
~Q

� �
¼ const:

X
n¼1;2

ðinfz þ iz fnÞ2
KnnQt

2 þ K33Qk
2

(15)

where in ¼ î$ên, iz ¼ î$n̂0, fn ¼ f̂ $ên, fz ¼ f̂ $n̂0. The dynamics is
described by the intermediate scattering function, which is
given by

g(~Q, Dt) ¼ g1(~Q)exp[�G1(~Q)Dt] + g2(~Q)exp[�G2(~Q)Dt] (16)

where the relaxation rates Gn(~Q) have been already dened in
eqn (3) and where g1(~Q) + g2(~Q) ¼ 1, with g1(~Q) and g2(~Q)
depending on sd(~Q). The presence of the term (iv fz + izfv)

2 in
eqn (15) shows that the relative contribution of each mode to
the scattered light can be suppressed by a careful choice of the
orientation of the director and of the polarising elements. As
recently reviewed in ref. 6, several far eld scattering geometries
have been proposed and reported in the literature to take
advantage of this possibility. One of the main advantages of
pDDM is that we can exploit known results from light scattering
theory and we do not need ad hoc calculations, at least if we
want to extract dynamic information. In principle, the investi-
gation with DDM of the depolarised scattering of light from
orientational uctuations of the director requires thus a simple
strategy: equipping the microscope with two linear polarising
elements and performing a DDM analysis without resorting to
an azimuthal averaging of the image structure function in the
Fourier space. However, the ostensible simplicity of the exper-
imental strategy can be misleading. Indeed, validity of eqn (10)
is based on the assumption that the transmission of light
through the sample remains large enough that the homodyne
term Is ¼ E*sEs can be safely neglected. An immediate conse-
quence of such requirement is that typical geometries employed
in DDLS experiments, where the sample is sandwiched between
crossed polarisers and the signal of interest is a small intensity
contribution superimposed to an ideally zero background,
cannot be used directly with DDM. Indeed, under these condi-
tions the homodyne term is dominant, eqn (10) becomes a bad
approximation and the easy connection between DDM and far-
eld scattering experiments is lost. However, this difficulty can
be overcome by identifying experimental geometries with
orientation of the director and of the polarising elements that
allow for the presence of a sufficiently intense transmitted
beam. This problem is somehow similar to the one encountered
in ref. 25, where the dynamics of randomly oriented colloidal
particles was studied with near-eld scattering. However, in the
present case, it is possible to take advantage of well established
procedures to x the alignment of the director at the cell
surfaces, as sketched in Fig. 3.

We have thus decided to rst study LC samples with home-
otropic and (homogeneous) planar alignment of the director at
the cell surfaces (Fig 3a1 and a2), which represent two cases
oen encountered in the literature. The general scheme of our
pDDM experiments is sketched in Fig. 3 where we describe the
common features of all the experiments that we have con-
ducted. The specic features of each experimental geometry
can be instead appreciated by inspecting Fig. 4–7, where we
have dropped the objective lens and the microscope image

4

ht
tp

://
do

c.
re

ro
.c

h



to focus the attention on the reconstructed scattering pattern
A(qx, qy) ¼ D(qx, qy, Dt / N) and its symmetries. For all these
geometries we will also specify the correct relations between the
amplitude Q of the three-dimensional wave vector of the uc-
tuations and the amplitude q of the two-dimensional wave
vector associated with the image Fourier transform. We note
that light scattering from liquid crystals is in general inelastic
(kss ki) with Dq¼ |ki� ks|max¼ k0Dm, where Dm¼ |me�mo| is
the difference between the extraordinary and ordinary refractive
indices of the sample and k0 is the incident wave vector in the
vacuum.

Planar alignment – geometry P1. In this geometry the
polariser and the analyser are crossed and the director forms an
angle p/8 with the polariser (Fig. 4). This choice for the angle
guarantees not only a fairly intense transmitted beam intensity
but also the linearity between the change in intensity and the
(small) local orientational uctuation of the director. As
customarily done in optics, the linearly polarised incident light
can be decomposed into two components, one with the polar-
isation direction of the electric eld perpendicular to the
director (ordinary light) and the other one parallel to it
(extraordinary light). A similar decomposition can be made for
the scattered light where both the elastic and inelastic scat-
tering processes contribute to the scattering pattern. However,
if the scattering pattern is analysed in the two directions (bow-

ties in Fig. 4a) that are parallel (centre in Fig. 4b and c) and
perpendicular (right in Fig. 4b and c) to the director, the
contribution of polarised scattering is negligible. The use of eqn
(15) with the proper reference system allows the estimation of
the contribution of the two modes by recalling that the scat-
tering of each mode is proportional to (ivfz + izfv)

2, with v ¼ 1, 2.
� for director orientation modulations with wave vector ~q

parallel to n̂0 the suitable reference system is drawn on the le
side of panel b in Fig. 4. In this direction, only mode 2 can
be thus probed. Indeed, for ordinary incident light and
extraordinary scattered light (Fig. 4, panel b, centre) one has i1¼
iz ¼ f1 ¼ f2 ¼ 0, which implies (i1fz + izf1)

2 ¼ 0 and

ði2 fz þ iz f2Þ2 ¼ 1� q
nek0

� 	2

, whereas for extraordinary incident

light and ordinary scattered light (Fig. 4, panel b, right) one has
i1 ¼ i2 ¼ f1 ¼ fz ¼ 0, which leads to (i1fz + izf1)

2 ¼ 0 and

Fig. 3 Sketch of the pDDM experimental and data analysis procedure.
(a) The sample is confined between two glass slides whose surfaces are
treated in order to promote the planar (a1) or the homeotropic (a2)
alignment of the director. (b) The sample cell is positioned on the
microscope stage between two polarising elements. The polarisers are
mutually oriented according to themodes to be probed (see text). (c) A
stack of digital images of the sample is acquired with a fixed frame rate.
(d) For each Dt, the 2D image structure function D(~q, Dt) is calculated
by averaging the Fourier power spectrum of the difference of images
separated in time by the same time delay Dt. (e) The fit of D(~q, Dt) as a
function of Dt allows the estimation of the q-dependent amplitudes A,
the rates G and the camera noise B (see eqn (13) and (16)). (f) The linear
fit of each G as a function of q2 in selected geometry-dependent
directions allows the estimation of the corresponding viscoelastic
ratio, according to eqn (3).

Fig. 4 (a) Sketch of a pDDM experiment in the P1 geometry. Unpo-
larised light crosses a linearly polarising element (polariser) and inter-
acts with the nematic sample, whose director is placed at p/8 with
respect to the polariser axis. Both the transmitted beam and the
scattered light encounter a second polarising element (analyser),
perpendicular to the first one. Microscope images (not shown) are
acquired and processed as described in the text to recover information
equivalent to a traditional far-field scattering experiment. If the scat-
tering pattern is analysed along the direction parallel (blue online) or
perpendicular (red online) to the director, the contribution of polarised
scattering is negligible. (b) For ~qkn̂0 (corresponding reference system
on the left) the two combinations of interest are: incident ordinary light
and scattered extraordinary light (centre); incident extraordinary light
and scattered ordinary light (right). (c) For ~qtn̂0 (corresponding
reference system on the left) the two combinations of interest are:
incident extraordinary light and scattered ordinary light (centre); inci-
dent ordinary light and scattered extraordinary light (right).
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(i2 fz + iz f2)
2¼ 1. Considering that Q||¼ q and Qtx Dq, we have

the following expression for the relaxation rate of mode 2:

G2ðqÞ ¼ K22Dq
2 þ K33q

2

g1 �
a2

2q2

Dq2ha þ q2hc

(17)

which can be expanded for q� Dq
ffiffiffiffiffiffiffiffiffiffiffiffi
ha=hc

p
to give

G2ðqÞxK22

g1

Dq2 þ K33

g1

�
1þ K22a2

2

K33g1ha

	
q2 (18)

The rate G2(q) has a rather complex dependence on q. The
intercept for q / 0 provides the twist viscoelastic ratio. The
bend ratio can be extracted only for large q ðq[Dq

ffiffiffiffiffiffiffiffiffiffiffiffi
ha=hc

p Þ
where

G2ðqÞx K33

hbend

q2 (19)

It appears that, in the absence of prior information about the
value of

ffiffiffiffiffiffiffiffiffiffiffiffi
ha=hc

p
, it is not easy to know a priori whether the bend

viscoelastic ratio in eqn (19) is experimentally accessible or one
rather accesses the more complex combination in eqn (18).
� for ~q perpendicular to n̂0 the reference system is depicted

on the le side of panel c in Fig. 4. Both for extraordinary

Fig. 5 Sketch of a pDDM experiment in the P2 geometry. Unpolarised
light crosses the polariser and interacts with the nematic sample,
whose director is parallel to the polariser axis. The analyser is oriented
parallel to the polariser. In the inset we draw the reference system used
for mode decomposition (left) and the scattering diagram (right)
describing elastic scattering processes with ~qkn̂0.

Fig. 6 Sketch of a pDDM experiment in the H1 geometry. In the
configuration shown in the upper part of the main figure, unpolarised
light crosses the polariser and interacts with the nematic sample,
whose director is parallel to the optical axis. The analyser is oriented
parallel to the polariser. In the configuration shown in the lower part
of the figure all the polarising elements are removed. In the inset we
draw the reference system used for mode decomposition (left) and
the scattering diagram (right) describing elastic scattering processes
with ~qtn̂0.

Fig. 7 (a) Sketch of a pDDM experiment in the H2 geometry. Unpo-
larised light crosses the polariser and interacts with the nematic
sample, whose director is parallel to the optical axis. The analyser is
oriented at b ¼ 30� with respect to the polariser. If the scattering
pattern is analysed along the direction parallel (blue online) to the
polariser the contribution of depolarised scattering is negligible and
only polarised scattering is of interest. If the scattering pattern is
analysed along the direction perpendicular (red online) to the polariser
the only relevant contribution comes from depolarised scattering. (b)
Reference system used for mode decomposition (left), the scattering
diagram (centre) describing elastic scattering processes within the
plane of the analyser and the scattering diagram (left) describing elastic
scattering process within the plane perpendicular to the analyser.
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incident light and ordinary scattered light (Fig. 4, panel c,
centre) and ordinary incident light and extraordinary scattered
light (Fig. 4, panel c, right) one has (i1fz + izf1)

2 ¼ q2/(Dq2 + q2)
and (i2fz + izf2)

2 ¼ q2/(Dq2 + q2), which implies that both modes
show-up in the scattering intensity. In addition, we have Q|| ¼ 0
and Qt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dq2 þ q2

p
, which leads to

G1ðqÞ ¼ K11

hsplay



q2 þ Dq2

�
(20)

G2ðqÞ ¼ K22

htwist



q2 þ Dq2

�
(21)

for the relaxation rates of the two modes. For q � (K11/K22)Dq
the scattering from mode 2 dominates over mode 1 and the
splay and twist contributions can be easily separated via double-
exponential tting of the structure function by using eqn (16)
or, when this is not possible, by inspecting the low-q and the
high-q limits of the system dynamics, where a single exponen-
tial behaviour is a good approximation. It has to be mentioned
that for low-q the scattering is due to twist uctuations as
expected also from the fact that refractive index modulations
with ~q x 0 are characterised by ~Q parallel to the z-axis. Modu-
lations of this kind can only be originated by twist deformation
of the LC director, which thereby act as Bragg diffraction grating
with transmission coefficient peaked around Q x Dq.

Planar alignment – geometry P2. In this conguration the
polariser, the analyser and the director are all parallel to each
other (Fig. 5). In contrast with the previous case, scattering is
elastic here and Q x Dq. Along the direction described by the
bow-tie region in Fig. 5 (inset) the dynamics is due to mode 1
and in particular to bend uctuations of the director. Indeed,
(i1 fz + iz f1)

2 ¼ q2/(nek0)
2 and (i2 fz + iz f2)

2 ¼ 0 and the relaxation
rate is given by

G1ðqÞ ¼ K33

hbend

q2 (22)

which, at variance with geometry P1, allows for an unambig-
uous determination of the bend viscoelastic ratio. In practice, a
combination of P1 and P2 experiments allows always a full
characterisation of the splay, twist and bend viscoelastic ratios,
even though for some samples P2 experiments could prove to be
unnecessary. For this geometry, a detailed theoretical treatment
of the deep Fresnel diffraction from periodic modulations of the
nematic LC was presented recently.16 In particular, we can make
use of the expression for the intensity I given in eqn (48) of ref.
16 to write:

AðqÞ ¼ 2I0
2ðbqÞ2��d~n1ðQÞ��2cos2

�
q2

2ko
z0
	

(23)

where b ¼ 1 � (mo/me)
2, z0 is the observation distance and

|dñ1(Q)|
2 is the 3D power spectrum of the director uctuations

within the scattering plane (mode 1). For q [ p/h (about 0.06
mm�1 for a sample thickness h ¼ 50 mm) one can safely assume
that Q x q and application of the equipartition theorem to eqn
(23) gives the simple result

AðqÞ ¼ 2I0
2Vb2 kBT

K33

(24)

where V ¼ L2h is the probed sample volume, and L is the length
of the image side. Finally, even though the analysis in ref. 16
does not account for the effects of limited coherence of the light
source and of the transfer function of the objective, such effects
can be safely neglected at small enough q,9 which enables us to
make use of eqn (24) to extract the bend elastic constant K33

from our pDDM images acquired in the P2 geometry. We note
here that in contrast to the case of non-absorbing colloidal
particles, periodic modulations of the director in the P2
geometry do not behave as a simple phase grating, as it can be
appreciated from eqn (23) that contains a cos2 term instead of
the usual sin2 term.9 Quite interestingly, this shows that the
birefringence of LC brings in additional ingredients to the
problem of deep Fresnel scattering and in turn to the descrip-
tion of Differential Dynamic microscopy experiments. While
these ingredients do not affect the determination of the LC
dynamics, they need to be carefully accounted for when static
scattering information is of interest.

Homeotropic alignment – geometry H1. If the sample is
placed between parallel polarisers (Fig. 6) the intense, linearly
polarised transmitted beam interferes only with scattered light
with the same polarisation. Splay uctuations with wave vector
~Qx~q parallel to the polarising elements behave as a diffraction
grating with wavelength 2p/q and in fact, only polarised scat-
tering due to splay uctuations is probed. Indeed, one has for
the two modes (i1fz + izf1)

2 ¼ q2/(nok0)
2 and (i2fz + izf2)

2 ¼ 0, with
~Qx~Qt. The relaxation rate of such uctuations is thus given by

G1ðqÞ ¼ K11

hsplay

q2 (25)

Interestingly, the removal of both polarising elements leaves
the situation unchanged. Indeed, unpolarised light is the
incoherent sum of different polarisation states but for each one
of them only light produced by scattering processes that
maintain the original polarisation can interfere with the
transmitted beam. This leads to the advantage that the scat-
tering pattern becomes azimuthally symmetric, and that in turn
azimuthal averaging of the data can be performed to increase
the statistical accuracy of the results (Fig. 6).

Homeotropic alignment – geometry H2. In this geometry,
the polariser is not perpendicular to the analyser but it is
rotated by an angle b (for instance, for the experiments reported
here we used b ¼ 30�) with respect to that condition (Fig. 7).
This conguration guarantees the fullment of the heterodyne
condition and the validity of eqn (10). With respect to H1
geometry, here we have an additional depolarised scattering
contribution. Indeed, similar to geometry P1, the incident light
can be considered as the sum of two components, one with
polarisation parallel to the polariser and the other one
perpendicular to it. Because of the presence of the analyser both
components can now interfere with the transmitted beam.
� for director modulations with wave vector along the

polariser direction, mode 1 is probed and, in analogy with
geometry H1, splay-induced polarised scattering is observed.
Indeed, one has (i1fz + izf1)

2¼ q2/(nok0)
2 and (i2fz + izf2)

2¼ 0, with
~Q x ~Qt. The relaxation rate of such uctuations is
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G1ðqÞ ¼ K11

hsplay

q2 (26)

� in the direction perpendicular to the polariser, depolarised
scattering is sensitive to mode 2 and (i1fz + izf1)

2 ¼ 0, (i2fz + izf2)
2

¼ q2/(nok0)
2 with ~Qx ~Qt. Twist uctuations with wave vector ~Q

x~q act thus as a diffraction grating with wavelength 2p/q and
the relaxation rate of such uctuations is thus given by

G2ðqÞ ¼ K22

htwist

q2: (27)

It appears that a combination of P1 and P2 measurements
always allows for a complete characterisation of the LC visco-
elasticity, with geometry P1 being sufficient under some
circumstances. By contrast, measurements on a homeotropi-
cally aligned LC can not provide access to the bend viscoelastic
ratio.

4 Experimental

For our experiments we use the thermotropic liquid crystal
4-hexyl-40-cynanobiphenyl (6CB, Sigma-Aldrich), whose nematic
phase is in the temperature range 14.5–28.8 �C.We consider two
samples that are conned in cells made of optical-quality glass
windows and that differ only in the alignment of the LC mole-
cules at the cell surface. To that purpose the cell surfaces in
contact with the LC sample are treated so as to favour either
parallel (planar or P) or perpendicular (homeotropic or H)
alignment. H alignment is obtained by depositing a layer of
polyimide (polymer 0626 from Nissan Chemistry Industries)
with spin coating (3000 rpm for 2 minutes), whereas for P
alignment, spin coating of a 0.5% water solution of polyvinyl-
alcohol (3000 rpm for 2 minutes) is followed by rubbing. By
using Mylar® spacers, the cell thickness is set to h¼ 50� 3 mm,
as checked with optical Fabry–Perot interferometry in reec-
tion. The cell is then lled with 6CB in the isotropic phase at T¼
40 �C and sealed with epoxy glue. The sample is subsequently
cooled at a low rate from the isotropic to the nematic phase and
eventually kept for at least one hour at 10 �C (or 12 �C for some
of the experiments) below the nematic–isotropic transition
temperature TNI ¼ 28.8 �C. Measurements are performed at
different temperatures in the nematic phase aer careful ther-
malisation of the sample. Thermalisation takes place inside an
INSTEC-HCS301I hot stage mounted on a NIKON Eclipse Ti-U
microscope, which is also used for the sample observation. At
each temperature, images of the uctuations are acquired with
a fast camera (IDT M3), with the image pixel size corresponding
to dpix ¼ 1.2 mm in real space (magnication 10�). A typical
dataset consists of a sequence of 8000 images, acquired with a
sampling rate of 2500 images per s and an exposure time of
400 ms. The total measurement time is thus 3.2 s for each
temperature and geometry. The acquired images are stored on a
disk for subsequent pDDM analysis, which is performed by
using MATLAB®. In contrast with bright eld DDM experi-
ments, the 2D structure functions of LC do not bear in general

an azimuthal symmetry, as it can be appreciated in Fig. 4–7. As a
consequence, instead of azimuthally averaging the data with the
same q but different (qx, qy) over 2p, we limit the angular size of
the region over which the averaging is performed by using bow-
tie shaped regions, as shown in Fig. 8 (panels a and b) and 11,
for the planar and homeotropic samples, respectively.

5 Results and discussion
Planar alignment

At each temperature, data for planar samples are acquired rst
in the P1 geometry (polariser t analyser) and immediately
aer in the P2 geometry (polariser || analyser) by rotating the
sample and the polariser. According to the expectations from
theory (Section 3), the reconstructed scattering patterns A(qx,
qy) for the P1 (Fig. 8a) and P2 (Fig. 8b) geometries have quite
different symmetry properties. As far as the pDDM analysis is
concerned, for the P1 geometry, the two shaded bow-tie areas
(angular width p/32) in Fig. 8a indicate the two regions used for
azimuthal averaging, one (blue) with the scattering wave vector
~q parallel to the director n̂0, whereas the other (orange) with ~q
perpendicular to n̂0. It can be noticed that the two highlighted
regions are rotated by p/8 with respect to the image axes as a
consequence of the fact that in this geometry the director forms
an angle p/8 with the polariser (Fig. 4a). By contrast, the scat-
tering pattern for the P2 geometry is almost concentrated in a
direction parallel to the director (Fig. 8b), as scattering vanishes

Fig. 8 (a) Reconstructed scattering pattern A(qx, qy) for the P1
geometry. The two shaded bow-tie areas, centred, respectively,
around a direction parallel (blue) and perpendicular (orange) to the
nematic director n̂0, indicate the regions where the azimuthal averages
are performed. (b) Reconstructed scattering pattern for the P2
geometry. The red shaded area, oriented along the direction of the
nematic director, indicates the region used for the azimuthal average.
(c) Normalised structure functions for the P1 and P2 geometries at q ¼
1.0 mm�1. Blue circles (orange squares) correspond to ~q parallel
(perpendicular) to n̂0 in the P1 geometry. Red triangles correspond to~q
parallel to n̂0 in the P2 geometry. The dashed line is the best fitting
single exponential curve for~qkn̂0, while the continuous blue line is the
best fitting double exponential curve for ~qtn̂0. (d) q-dependent
relaxation rates G obtained with the P1 (circles, squares and diamonds)
and the P2 (triangles) geometries.
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perpendicularly to it. The region used for the pDDM analysis is
highlighted in blue and has an angular width of p/16. In Fig. 8c
we plot three structure functions measured at T � TNI ¼ 0.2 �C
and for q ¼ 1.0 mm�1 in the P1 and in the P2 geometries. It
appears that relaxation of the director uctuations when ~q is
perpendicular to n̂0 (orange squares in Fig. 8c for the P1
geometry) are slower than uctuations in the parallel direction
(blue circles for the P1 geometry and red triangles for the P2
geometry in Fig. 8c). According to the theoretical expectation,
the P2 geometry is the easiest case to analyse. Indeed, a single
mode (mode 1) of pure bend is probed with a rate given by eqn
(22). Fitting the structure function with a single exponential
curve (red dashed line in Fig. 8c) provides the rate G1, which is
plotted as a function of q2 in Fig. 8d (red triangles). For each
temperature, the obtained results are well tted with a linear
function, from which the bend ratio K33/hbend can be extracted.
Results for different temperatures are reported in Fig. 9a (full
red circles) and are in excellent agreement with previous
experiments on the same sample with DDLS.28 The situation is
more complex for the P1 geometry. For ~q parallel to n̂0, scat-
tering is originated only from mode 2 and thus the dynamics is
again well described by a single exponential function (blue
circles in Fig. 8c). The rate G2 extracted from the single expo-
nential tting is plotted in Fig. 8d (blue circles) as a function of
q2. In principle, these data should be tted with eqn (17).
However, this t becomes very challenging because of the large
number of tting parameters and the limited q-range of the
experiments. In addition, the possible use of the simpler
expression in eqn (19) to extract the bend ratio is based on prior
knowledge of ha, hc and Dq to ensure that the condition
q[Dq

ffiffiffiffiffiffiffiffiffiffiffiffi
ha=hc

p
is met. Literature data for ha and hc relative to

our sample could not be retrieved. However, data for 5CB26 and
MBBA27 in a T�TNI range similar to the one explored here show
that

ffiffiffiffiffiffiffiffiffiffiffiffi
ha=hc

p
remains in the range 1–1.7. Based on this estimate,

we can expect the condition q[Dq
ffiffiffiffiffiffiffiffiffiffiffiffi
ha=hc

p
to be met only in a

narrow range close to the critical temperature TNI, where in
principle it should be possible to extract the bend viscoelastic
ratio. In fact, even quite close to TNI, the approximation of
eqn (17) with eqn (19) is still not fully satisfactory, as it can be
appreciated in Fig. 8d, by comparing the rates obtained in this
condition (blue circles) with the ones obtained in the P2
geometry (red triangles). For ~q perpendicular to n̂0, the struc-
ture function is the sum of two exponential functions due to the
superposition of modes 1 and 2 (eqn (16)). A double exponen-
tial t (continuous line) thus provides the corresponding
relaxation rates G1(q) and G2(q) (diamonds and squares in
Fig. 8d, respectively). For small q, where scattering frommode 2
dominates, data for G1(q) appear quite noisy, as the small
amplitude of mode 1 translates into a large uncertainty in
determining G1(q). Nevertheless, data for both modes can be
well tted to eqn (20) and (21) to extract the splay and twist
viscoelastic ratios, respectively and Dq. The results for different
temperatures are shown as orange down-triangles in Fig. 9b
and c, respectively. Again the agreement with previous experi-
ments in ref. 28 is very good.

As a by-product of the analysis in the P1 geometry, the
birefringence Dm can be obtained from the experimentally

determinedDq, by using the relationshipDq¼ k0Dm¼ (2p/l0)Dm,
where we used l0 ¼ 580 nm for the peak wavelength of our light
source.9 Results obtained in this way for Dm at different
temperatures are reported in Fig. 10a (black circles) together
with the literature data obtained with traditional refractometry
(red squares).27

Finally, by making use of eqn (24) it is also possible to
calculate the bend elastic constant from the amplitude A(q) of
the structure functions for ~q parallel to n̂0 obtained for each
temperature in the P2 geometry. A reliable estimate of the low-q
limit A0 of the amplitude is obtained as the average of A(q) over
the interval [0.39, 0.49] mm�1, where A(q) is essentially at.

Fig. 9 Viscoelastic ratios of 6CB measured as a function of the
temperature difference from the transition temperature TNI. Full
symbols are obtained with pDDM in different geometries (P1 geometry
– red circles, P2 geometry – orange down-triangles, H1 geometry –
green diamonds, H2 geometry – blue up-triangles). Empty symbols
are literature data (from ref. 28) obtained with DDLS.
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According to eqn (24), the bend elastic constant K33 is estimated
as K33 ¼ 2I0

2Vb2kBT/A0. As shown in Fig. 10, the obtained values
compare remarkably well with the literature data obtained by
light scattering.27 Most remarkably, we are able to extend the
existing data-range by almost a decade with pDDM approaching
further towards TNI. This is because pDDM is less sensitive to
multiple scattering as compared to traditional light scattering
methods. We note that in principle the good result obtained for
K33 could be extended also to the other two elastic constants,
provided that some expressions analogous to eqn (24) are
available for the corresponding geometries. Given the
complexity of the calculations involved, the derivation of such
expressions is well beyond the purpose of the present article,
but it should be a priority for further developing the full
potential of the method.

Homeotropic alignment

At each temperature we have performed measurements rst in
the H1 geometry (no polarisers, Fig. 11b) and successively in the
H2 geometry (polariser and analyser mutually oriented at 60�).
In H1 geometry (mode 1) the splay ratio can be obtained by
taking advantage of the azimuthal symmetry of the scattering
pattern (Fig. 11b) whereas both splay and twist ratios can be

extracted in H2 geometry (mode 1 and 2) by analysing the
dynamics in two perpendicular directions in the q-space.

The results are reported in Fig. 9b and c, where green dia-
monds are obtained in the H1 geometry, whereas blue up-
triangles in the H2 geometry. All the results are in excellent
agreement with both the literature data and the measurements
are performed in the P1 geometry. We note that the quality of
the results obtained with the H1 geometry, where azimuthal
averaging of the structure functions over 2p was performed, is
appreciably higher than that obtained in other geometries. This
also shows that polarising elements are not always needed for
the characterisation of the viscoelastic behaviour of LC.

Heterogeneous planar alignment

To explore the novel possibilities offered by this imaging-based
scattering method, a last set of experiments was performed with
a sample of 6CB conned in a cell whose glass surfaces were
kept untreated, to obtain a heterogeneous planar alignment that
occurs with many samples for which alignment procedures are
not available or known, such as for instance biological LC
formers.17 The alignment of the LC molecules at the surfaces is
spontaneously planar but does not remain uniform across the
cell width. This alignment is also known in the literature as
random planar alignment. Images acquired between crossed
polarisers under this condition have the typical Schlieren
texture appearance (Fig. 12a). However, it is still possible to
identify small domains inside which the planar alignment is
approximately uniform even though different domains are
characterised by different orientations of the director.

To investigate the amount of quantitative information that
can be extracted in this condition we have prepared a sample of
6CB with heterogeneous planar alignment that was charac-
terised at the xed temperature T¼ 22.7� 0.2 �C. Twomovies of
the same region (8000 images with 512 � 512 resolution) were
acquired, respectively, at 800 and 1000 frames per second. The
rst movie was taken with the sample placed between perpen-
dicular polarisers (Fig. 12a), while for the second the polarisers
were kept parallel (Fig. 12b). Such double acquisition enabled
us to identify proper sub-regions for the pDDM analysis as

Fig. 10 Experimentally determined birefringence (panel a) and bend
elastic constant (panel b) of 6CB as a function of the temperature
difference from the transition temperature TNI. Black circles are data
obtained with pDDM. Red squares are literature data from ref. 27.

Fig. 11 (a) Reconstructed scattering pattern for the H1 geometry
(parallel polarisers). The red shaded bow-tie area, oriented along the
direction of the axis of the polarising elements, indicates the region
where the azimuthal average is performed. (b) Reconstructed scat-
tering pattern for the H1 geometry (no polarisers). (c) Reconstructed
scattering pattern for the H2 geometry. The two shaded bow-tie areas
are oriented, respectively, along a direction parallel (blue) and
perpendicular (orange) to the axis of the polariser and indicate the
regions where the azimuthal averages are performed.
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follows. A point-like defect and the corresponding region of
interest such as the one outlined with a red circle in Fig. 12a is
chosen under the assumption that the orientation of the
director around it is uniformly distributed. The image intensity
histogram of the region of interest similar to the one in Fig. 12a
is calculated and tted with the theoretical expression: P(I) ¼
(1/p)(I � Imin)

�1/2(Imax � I)�1/2 derived under the hypothesis of
uniform distribution of the director orientation to obtain a
correspondence between intensity levels in the image and
director angle (modulo p/4). Once such correspondence is
obtained (Fig. 12a) the analysis proceeds differently according
to the viscoelastic ratio of interest.

Splay and twist. For the determination of the splay and twist
viscoelastic ratios we select an intensity range at the centre of
the histogram and determine the corresponding regions in the
image, where the director is oriented at p/8 + np/4 (n integer),
with respect to the polarising elements. Inside these regions
small square regions of interest (ROI) (64 � 64 or 32 � 32 or 16
� 16 pixels) are selected and a pDDM analysis is run in parallel
for all of them. The actual orientation of the director within
each ROI can be easily determined by exploiting the asymmetry
displayed by the 2D structure function, as shown in Fig. 11a.
The structure functions with~q perpendicular to n̂0 are analysed
and tted with a single exponential, since the limited size of the
square regions of interests prevents a double exponential t.
Nevertheless, the twist and splay viscoelastic ratios can be
extracted from the G(q) data in Fig. 13. The results for the two
ratios (K11/hsplay ¼ (5.9 � 0.3) � 10�11 m2 s�1, K22/htwist ¼ (2.6 �
0.6) � 10�11 m2 s�1) are in fair agreement with those obtained
with uniformly aligned samples, reported in Fig. 9.

Bend. An intensity range in the lower part of the image
histogram is selected and the corresponding regions in the
image are determined, where the director is parallel or
perpendicular to the polarising elements. Since we are inter-
ested only in the regions with the director parallel to the
polarisers, we focus on the regions where the intensity is larger
and select small square regions of interest (32 � 32 or 16 � 16
pixels) for the pDDM analysis. The analysis proceeds in each
region of interest by using the same method used for the P2
geometry. The bend ratio obtained from the slope of the G(q)
curves in Fig. 13 is K33/hbend¼ (1.3� 0.3) � 10�10 m2 s�1, which
is about 70% smaller than the result obtained with homoge-
neously planar samples. This discrepancy can be attributed to a
large, unknown pre-tilt angle at the surfaces, as independently
veried with experiments performed on homogenous planar
samples conned between glass plates rubbed in opposite
directions, or to an unavoidable twist29 due to the possibly
different orientation of the director on the two cell surfaces.

6 Conclusions

Our experiments demonstrate the versatile use of pDDM for the
characterisation of the dynamics of liquid crystals and, in
perspective, of other optically anisotropic uids. It is worth
stressing that the differential algorithm provides a very effective
solution to the stray light problem, which makes DDLS
measurements at small angles very challenging. Our method
could thus be used as a robust analytical tool that would func-
tion in harsh environments as those typically found in
production plants. More theoretical work will be needed to
exploit the full potential of the method, not only for the char-
acterisation of the three viscoelastic ratios but also for the
corresponding elastic constant.

Fig. 12 Portion of a heterogeneous planar sample of 6CB observed
between crossed (a) and parallel (b) polarisers. (c) Intensity histogram
(symbols) of the area enclosed in the red circle in panel (a), centred
around a point-like defect. The continuous line is the best fitting curve
of the form: P(I)¼ (1/p)(I� Imin)

�1/2(Imax� I)�1/2, expected from theory.
The intensity range outlined in blue (orange) with dotted (continuous)
contour corresponds to regions where the nematic director is
approximately parallel (tilted by p/8 + np/4, with n integer) with
respect to the polarising element. In panel (a) some representative
regions of interest are shown, corresponding to these orientations;
dotted blue squares were analysed with pDDM in the P1 geometry,
while orange squares in the P2 geometry. The corresponding recon-
structed scattering patterns are also shown close to each region of
interest.

Fig. 13 q-dependent relaxation rates G obtained for a heterogeneous
planar sample of 6CB at T ¼ 22.7 � 0.2 �C. Different symbols corre-
spond to the different regions of interest in the sample, as shown in
Fig. 12. Circles, squares and diamonds correspond to regions of
interest equivalent to a P1 geometry experiment. Crosses and empty
triangles are equivalent to a P2 geometry experiment. The shown
fitting lines allow extraction of the bend (dashed line) and the splay
(continuous line) ratios, whereas the extrapolated q ¼ 0 limit of the P1
data provides an estimate of the twist ratio.
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