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Introduction

Real options refer to the investment, entry, exit and other strategic decisions of the firm that

share three important characteristics: they are irreversible, they are made under uncertainty, and

their timing is chosen by the firm. The term ‘real options’ was introduced in 1977 by Stewart

Myers in his paper ‘Determinants of corporate borrowing’ that related risky debt holdings to the

future investment policy of the firm.

The literature on real options has since been active and growing with seminal works by Bren-

nan and Schwartz (1985) on the valuation and optimal timing of the natural resource investments;

McDonald and Siegel (1986) on general approach to investment timing and scrapping; Margrabe

(1978) on the asset exchange options; Fudenberg and Tirole (1985) on the preemption and equi-

librium in the technology adoption games; Pindyck (1988) on capacity choice, and Kulatilaka and

Perotti (1998) on strategic growth options under imperfect competition.

In the 1990’s and 2000’s, a number of classical textbooks in real options appeared in print:

Dixit and Pindyck (1994), Trigeorgis (1996), Amram and Kulatilaka (1998), and Vollert (2003).

In its development the real options literature combines the option pricing framework introduced

in Black and Scholes (1973) and Merton (1973) with the research in the specific fields of economics

and finance such as capital budgeting and investment policy, corporate debt and agency problems,

mergers & acquisitions or game theory.

The present work illustrates the application of the real options approach to three economic

areas: strategic competition, mergers & acquisitions and international trade.

The first chapter discusses the optimal timing of the technology adoption, entry and merger

decisions in the industry producing a vertically differentiated product. I solve the model for the

monopoly, duopoly and merger (which is equivalent to a monopoly with two products) and outline

the equilibrium strategies of the Incumbent and the Entrant. In particular, I demonstrate that

the Incumbent under the threat of entry always invests in the cost-reducing technology later as

compared to the no-threat-of-entry (monopoly) case. This results in the lower option value to the

Incumbent under duopoly.

vii



The monopolistic problem is investigated using two alternative specifications for the price of

the new technology: in the first case, the price of the technology is constant, whereas in the second,

more general case, the price of the new technology is increasing in the amount of cost reduction

it provides. I demonstrate that the increasing investment cost (price of the technology) makes

the Incumbent postpone the technology adoption as compared to the constant price situation.

Besides, increasing investment cost reduces the option value to the Incumbent.

I demonstrate that the merger generates the endogenous synergy in this model. I prove that

the merger may not only increase the option value to the Incumbent as compared to the monopoly

case, but it may also give the Entrant the opportunity to finally enter the market as a part of the

merged firm whereas its independent entry would be unprofitable.

The second chapter investigates the connection between the market valuation and a type of the

merger (stock, cash). I solve explicitly for the timing and terms of cash mergers in two different

settings to demonstrate that cash mergers generally take place at low market valuations, whereas

stock mergers may be observed at both low and high valuations. This result holds with some

differences for both dynamic settings and conforms to the empirical evidence on mergers. In the

second setting I solve the model employing the Least Squares Monte Carlo simulation approach

developed by Longstaff and Schwartz (2001).

I also study the dynamics of the intra-industry mergers within the first setup. I solve for the

optimal order of mergers inside the industry. Using three different initial capital allocations within

the industry, I demonstrate that stock mergers in more concentrated industries occur at higher

market valuation (i.e. later) as compared to mergers in less concentrated industries.

In the third chapter I investigate the problem of the exporter who faces the exchange rate

appreciation and, consequently, decrease in profits since its export prices are denominated in the

currency of the country of destination. The exporter has a number of opportunities to renegotiate

the export prices paying fixed menu costs each time.

I solve the problem employing the real options approach for both infinite and finite horizon. I

demonstrate that even small menu costs may contribute to the export price stickiness. I provide

the closed-form expressions for the export price adjustment thresholds and explicitly compute

the option value of performing an infinite number of export price adjustments for the infinite

horizon problem. For the finite horizon problem, I use the binomial tree method to approximately

estimate option values and derive the exercise boundaries of the first export price adjustment. I

also provide simulation results to show that the aggregate price in the market of destination is

much less volatile than the exchange rates for the respective exporters.
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Chapter 1

Real options approach to vertical

product differentiation: from monopoly

to merger
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CHAPTER 1

1.1 Introduction

Tastes differ. This universal truth has long been acknowledged by the marketing departments

in the industries ranging from beauty products to cars. Consumers are diverse, moreover, they

believe themselves to be unique, and companies are doing their best to respond to these unique

needs offering a variety of differentiated products. These products may be offered either within one

product line or under different brand names within the same company or by competing producers.

The market for laptops provides a good example: the same producer offers both high-priced

sophisticated laptops with powerful processor and cheaper and simpler lightweight netbooks.

The vertical product differentiation models introduced by Mussa and Rosen (1978), Shaked

and Sutton (1982) and Shaked and Sutton (1983) consider the industries producing vertically

differentiated products with the aim to investigate the entry, exit, pricing and other strategic

decisions of the firms.

In these models products differ in both price and quality; consumers have different tastes, some

of them prefer expensive and high-quality products, others are satisfied with cheaper products of

lower quality. The market is served either by a monopolist, or by a monopolist under the threat

of entry of potential competitors, or by a certain number of competing firms1.

Mussa and Rosen (1978) demonstrated that the monopolist tends to offer the product of lower

quality as compared to the product that would be offered under competition; besides, consumers

with low taste for differentiated product sometimes decide not to buy it at all (they are priced out

of the market).

Shaked and Sutton (1982) showed that in the case of two firms2 and relatively small entry cost

both firms enter the market offering two distinct products in terms of both quality and price and

earn positive profits.

More recently, Motta (1993) examines the vertical product differentiation model comparing

price competition to quantity competition. The model encompasses both fixed costs of quality

improvement (as in Shaked and Sutton (1982) and Shaked and Sutton (1983)) and variable costs

of quality improvement (as in Mussa and Rosen (1978)). Motta (1993) proves that independently

of the assumptions about the nature of costs of quality improvement and type of competition

firms always produce substantially differentiated products with the degree of differentiation being

higher for price competition.

1For the modern textbook treatment of vertical price differentiation see, for example, Tirole (1988), Shy (1996)
or Motta (2004)

2Having exactly two firms in the market is the necessary condition for the existence of the perfect Nash equi-
librium.
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CHAPTER 1

Acharyya (1998) studies the conditions influencing the choice between the pooling and sepa-

rating menus by the monopolist3; he demonstrates that the heterogeneity of consumers by itself

does not imply that the separating menu is selected by the monopolist.

Noh and Moschini (2006) discuss the problem of entry deterrence and entry accommodation in

the traditional setup of Mussa and Rosen (1978) with the marginal cost of production increasing

in quality of the product; the paper also examines the welfare implications of the accommodated

entry.

This paper contributes to the literature on vertical product differentiation, optimal technology

adoption and real options. It builds on the classical model by Mussa and Rosen (1978) with

quadratic per unit cost as in Noh and Moschini (2006) and Motta (1993) (quadratic cost is a

special case of the increasing and convex cost as in Acharyya (1998)).

The model considers the Incumbent active in the market and offering a product of certain

quality and price. The Entrant is initially out of the market contemplating either an indepen-

dent entry with its own version of the differentiated product (duopoly) or an entry followed by

the merger with the Incumbent. The model also features consumers differing in their tastes as

described by the taste parameter θ, so that consumers with higher θ are willing to pay more for

the products of higher quality.

There exist a third-party technology that allows the Incumbent to reduce manufacturing costs.

The technology improves over time and can be viewed as a series of patents that appear discontin-

uously one after another, so that every new patent provides more cost-reduction than the existing

one. The Incumbent has an opportunity (an option) to buy this technology; therefore, it needs to

determine the optimal timing of technology adoption. The Incumbent faces a trade off between

early adoption of technology to start benefiting from lower manufacturing costs and later adoption

to wait for even better patent to arrive.

As soon as the cost-reducing technology is adopted, it becomes profit-maximizing for the In-

cumbent to switch to the product of higher quality and higher price because of the decrease in

manufacturing costs. This new product of the Incumbent is tailored for the consumers with higher

taste parameter θ than the original product. In the duopoly, reduction in the Incumbent’s man-

ufacturing cost also leads to the higher quality and higher price of both products in equilibrium;

profits of both players increase too. This leaves more strategic space for the Entrant who may

now offer its product to the consumers though in was unprofitable before. Therefore, when de-

ciding on the optimal timing of technology adoption, the Incumbent has to take into account the

3Under the pooling menu all consumers are offered the same product, whereas under the separating menu a
number of distinct products tailored for different groups of consumers are offered.
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CHAPTER 1

actions of the Entrant in order to develop the optimal strategies of entry deterrence and entry

accommodation. The model in this paper also provides the Incumbent and the Entrant with the

merger opportunity. This allows to compare the optimal dynamic strategies of the players in

non-cooperative setting (duopoly) with the strategies in the cooperative setting (merger).

The limitation of the traditional models of vertical product differentiation is that, to the best

of my knowledge, they are mostly static games. Since I would like to investigate the properties

of the dynamic equilibrium, I need to combine the static setup of vertical product differentiation

with the dynamics of the real options approach. This paper continues a line of research that

uses real options approach to model and explore the technology adoption and strategic investment

decisions of the firms.

The literature on strategic real options considers mostly the markets for homogeneous products

with a common stochastic shock factor; firms are usually assumed to be identical with symmetric

strategies. A survey by Boyer, Gravel, and Lasserre (2004) provides an extensive discussion of the

existing literature.

For example, Huisman and Kort (1999) and Huisman, Kort, Pawlina, and Thijssen (2003) con-

sider a duopoly of identical firms (of asymmetric firms as an extension), with symmetric strategies

and stochastic shock factor following a geometric Brownian motion (shock factor is introduced as

a demand multiple). The firms may invest to increase their stochastic payoffs; since the invest-

ment results in market share increase, there is a trade off between investing earlier to catch larger

market share (or to preempt a competitor) and investing later to get higher payoff.

Grenadier and Weiss (1997) develop a model of the optimal investment in technological in-

novation with the ‘technology level’ following a geometric Brownian motion. In their model, a

new generation of technology arrives when the ‘technology level’ first hits a certain threshold from

below, though the authors also mention the possibility of using a jump process to describe the

arrival of innovations. Their model describes the behavior of a single firm with no competition

and provides four distinct strategies of technology adoption.

Leahy (1993) and Grenadier (2002) discuss the optimality of myopic investment strategies in

the environment with many identical firms, homogeneous product and stochastic shock as above.

Weeds (2002) considers a model with two competing firms willing to invest in the same patent;

after the investment, the arrival of discoveries follows a Poisson process which represents techno-

logical uncertainty, whereas the value of the patent is stochastic reflecting economic uncertainty.

Weeds (2002) shows that in the non-cooperative equilibrium investment takes place later than

under cooperation.

Farzin, Huisman, and Kort (1998) develop a model of the optimal timing of technology adoption

4



CHAPTER 1

by a perfectly competitive firm with the technology parameter following a jump process with

random size of jumps. Farzin, Huisman, and Kort (1998) show how to obtain the thresholds for

both single and multiple technology switches, thought their results for the case of multiple switches

are corrected and improved by Doraszelski (2001).

This paper follows Farzin, Huisman, and Kort (1998) and Weeds (2002) in adopting the Poisson

(jump) process specification to describe the arrival of new, more advanced technology. It also

relates to Huisman and Kort (1999) and Huisman, Kort, Pawlina, and Thijssen (2003) as it

investigates the strategic interactions between the players: the Incumbent and the Entrant. It

contributes to the literature on strategic real options as it dynamically investigates the technology

adoption, entry and merger strategies of the players in the specific vertical product differentiation

environment.

This paper also relates to the literature that employs the real options approach to dynamically

investigate merger decisions. Lambrecht (2004), Morellec and Zhdanov (2005) and Hackbarth and

Morellec (2008) model mergers as dynamic option exercise games between the acquirer and the

bidder(s) in which both timing and terms of mergers are determined endogenously.

In particular, Lambrecht (2004) studies mergers motivated by economies of scale in the com-

plete and symmetric information setting and explains the procyclicality of merger waves. On

the contrary, Morellec and Zhdanov (2005) relate to Shleifer and Vishny (2003) in assuming that

outside investors have imperfect information about the parameters of the model (namely, about

the synergy created by the merger); thus, both models generate abnormal returns that conform

to empirical evidence.

Morellec and Zhdanov (2005) also introduce competition between the bidders resulting in

negative abnormal returns to the winning bidder. Moreover, they explain how outside investors

update their information about perceived synergy of the merger observing actions (or, rather,

inaction) of bidder(s); learning is also discussed in Grenadier (1999) and Lambrecht and Perraudin

(2003). Shleifer and Vishny (2003) develop a one-period static model with exogenous merger timing

explaining the choice of the medium of payment (cash, stock).

In this paper the terms and timing of the merger between the Incumbent and the Entrant arise

endogenously as in Lambrecht (2004), Morellec and Zhdanov (2005) and Hackbarth and Morellec

(2008). Moreover, under the vertical product differentiation, the synergy from the merger is also

endogenous as the profits of the merged entity with two products are quite naturally higher than

the sum of the profits of two competing firms under duopoly.

In Lambrecht (2004), the synergy comes from the production function displaying increasing

returns to scale, whereas in Morellec and Zhdanov (2005) and Hackbarth and Morellec (2008) the
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merger surplus is linear in the pre-merger valuations of the firms and depends on the exogenous

synergy parameters. Thus, as to the source of merger synergy, the present model is closer to the

one in Lambrecht (2004).

The research questions of this paper are: What is the optimal timing of technology adoption

by the Incumbent in the monopoly case? How does it change under the threat of possible entry?

How does the Entrant decide on possible entry? How does competition influence the option value

to the Incumbent? How does the opportunity to merge change the optimal dynamic strategies of

the firms?

I solve the model for monopoly, duopoly and merger cases and outline the equilibrium strategies

of both players. In particular, I demonstrate that the Incumbent under the threat of entry always

invests in cost-reducing technology later as compared to the no-threat-of-entry (monopoly) case.

This results in the lower option value to the Incumbent under duopoly than under monopoly.

The monopolistic problem is investigated using two alternative specifications for the price of

the new technology: in the first case, the price of the technology is constant, whereas in the second,

more general case, the price of the new technology is increasing in the amount of cost reduction

it provides. I demonstrate that the increasing investment cost (price of the technology) makes

the Incumbent postpone the technology adoption as compared to the constant price situation.

Besides, increasing investment cost reduces the option value to the Incumbent.

I also demonstrate that merger may not only increase the option value to the Incumbent as

compared to the monopoly case, but it may also give the Entrant the opportunity to finally enter

the market as a part of the merged firm whereas its independent entry would still be unprofitable.

The paper is organized as follows: Section 1.2 discusses static equilibrium, Section 1.3 discusses

dynamic equilibrium and solves for the trigger values of the players, Section 1.4 concludes. Detailed

derivations for Sections 1.2 and 1.3 are provided in Appendix A.

1.2 Static equilibrium

This section provides the static solutions for the monopoly, duopoly and merger. In particular,

it gives the closed-form expressions for the optimal price and quality of the differentiated product

along with the expressions for the maximized profits of the firms. Following the seminal work by

Mussa and Rosen (1978), the indirect utility function Vi of consumer i is given by:

Vi(p, q) = θiq − p, (1.1)

6



CHAPTER 1

where θi is a taste parameter of consumer i distributed uniformly over the interval [θL, θH ];

q is the quality of the product;

p is the price of the product.

Utility from buying nothing is zero; each consumer buys either one unit of the product or

nothing. Consumers maximize their indirect utility functions Vi subject to the participation con-

straint Vi ≥ 0 and, if more than one product is available in the market, buying the product with

the highest utility.

Consider a firm j offering a differentiated product of quality qj and price pj. Following Noh

and Moschini (2006) and Motta (1993), I assume that the cost function of firm j is quadratic in

quality and takes the form 1
2
cjq

2
j where cj is the cost parameter specific to firm j. As we shall see

later, this parameter plays a central role in this model.

Firm j generates profits πj:

πj =

∫ θHj

θLj

pj − 1
2
cjq

2
j

θH − θL
dθ =

θHj − θLj
θH − θL

(pj −
1

2
cjq

2
j ) =

∆θ

θH − θL
(pj −

1

2
cjq

2
j ), (1.2)

where ∆θ = θHj − θLj is the range of θ such that consumers with θ in this range buy from firm j;

pj is the price of the product produced by firm j;

qj is the quality of the product produced by firm j.

Firm j maximizes its profits choosing an optimal price-quality combination (pj, qj). Each firm

produces only one distinct product; if the firms decide to merge, the new merged entity will

produce two products inherited from the parent firms.

1.2.1 Monopoly with one product

Initially, there is only one firm in the market - the Incumbent. The Incumbent is the monopolist

and is free to choose any price-quality combination for its product. For any pair (pM , qM) chosen

by the monopolist with pM > 0 and qM > 0, there exist a consumer M such that VM(pM , qM) =

θMqM − pM = 0 and, consequently, θM = pM
qM

is the threshold that separates the consumers in

two groups in the following way: consumers with θ ∈ [θM , θH ] derive non-negative utility from the

product (pM , qM) and buy it, whereas consumers with θ ∈ [θL, θM) derive negative utility from

the product and do not buy it.

The cost parameter of the Incumbent is cI . The Incumbent maximizes its profits (based on

7
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equation 1.2):

πM =
θH − θM
θH − θL

(pM −
1

2
cIq

2
M)→ max (1.3)

choosing optimal (pM , qM) or, given that pM = θMqM , choosing (θM , qM)4.

The solution is as follows5:

θ∗M =
2θH

3
(1.4)

q∗M =
2θH
3cI

(1.5)

p∗M =
4θ2

H

9cI
(1.6)

π∗M =
2θ3

H

27cI (θH − θL)
. (1.7)

It follows from (1.4)-(1.7) that the decrease in the cost parameter of the Incumbent cI results

in the product of higher quality and higher price; profits of the Incumbent increase too.

1.2.2 Duopoly

Assume that at some moment, the Entrant decides to enter the market with the product

(pE, qE); then the Incumbent shifts from (pM , qM) to a different price-quality combination (pI , qI).

Assume that due to the Incumbent’s experience in the field, it manages to capture the niche for

the product of higher quality (and of higher price too): qE < qI and pE < pI .

Recall that the cost parameter of the Incumbent is cI , and the cost parameter of the Entrant

is cE with cE ≥ cI > 0 or, equivalently, 0 < cI
cE
≤ 1 implying that the per unit manufacturing cost

of the Incumbent does not exceed the cost of the Entrant.

Firms decide on (pE, qE) and (pI , qI) such that each consumer either buys the product from

one of the firms or does not buy it at all. There are two threshold levels of θ associated with

(pE, qE) and (pI , qI): consumers with θE are indifferent between buying from the Entrant and not

buying at all; consumers with θI are indifferent between buying either from the Entrant or from

the Incumbent.

Thus, the market is served as follows:

• Consumers with θ ∈ [θL, θE) do not buy the product;

4It is technically easier to solve in terms of (θ, q) than in terms of (p, q) in case of two products.
5Detailed derivations are provided in Appendix A.1.
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• Consumers with θ ∈ [θE, θI) buy from the Entrant;

• Consumers with θ ∈ [θI , θH ] buy from the Incumbent.

Firms have to simultaneously decide on (pE, qE) (low-quality product) and (pI , qI) (high-quality

product).

The Nash equilibrium consists of (pE, qE) and (pI , qI) that maximize profits of both firms:

πE =
θI − θE
θH − θL

(
pE −

1

2
cEq

2
E

)
→ max (1.8)

πI =
θH − θI
θH − θL

(
pI −

1

2
cIq

2
I

)
→ max . (1.9)

The solution is as follows6:

θ∗E =
4θH(3cE − 2cI)

27cE − 16cI
(1.10)

θ∗I =
6θH(3cE − 2cI)

27cE − 16cI
(1.11)

q∗E =
4θH(3cE − 2cI)

(27cE − 16cI)cE
(1.12)

q∗I =
6θH(3cE − 2cI)

(27cE − 16cI)cI
. (1.13)

The profits are:

π∗E =
16θ3

H(3cE − 2cI)
3

(27cE − 16cI)3cE(θH − θL)
(1.14)

π∗I =
2θ3

H(9cE − 4cI)
2(3cE − 2cI)

2

cE(27cE − 16cI)
3cI(θH − θL)

. (1.15)

with the total duopolistic profits π∗D = π∗E + π∗I being equal to:

π∗D =
6θ3

H(3cE − 2cI)
2

(27cE − 16cI)
2cI(θH − θL)

. (1.16)

Thus, in the duopoly the profits of the Incumbent equal π∗I , whereas in the monopoly they

would equal π∗M . In order to understand to what extent the competition erodes the monopolistic

profits π∗M , introduce the ratio R =
π∗
I

π∗
M

that is illustrated in Figure 1.1. It is straightforward to

6Detailed derivations are provided in Appendix A.2.
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Figure 1.1: The ratio R =
π∗
I

π∗
M

as a function of cI
cE

compute that at cI = cE this ratio equals R = 0.51, and that lim cI
cE
→0R = 1.

Figure 1.1 shows that the ratio R =
π∗
I

π∗
M

is decreasing in cI
cE

. It also demonstrates that the

duopolistic profits π∗I constitute approximately 50−100% of the monopolistic profits π∗M depending

on the ratio of the cost parameters of the players cI
cE

. It implies that the Incumbents accomodates

the entry more easily when its cost parameter cI is small as compared to the cost parameter of

the Entrant cE.

It is easy to show that both
∂π∗
E

∂cI
< 0 and

∂π∗
I

∂cI
< 0 implying that the decrease in cI results

in the increase in the profits of both the Incumbent and the Entrant. Though not surprising

for the profits of the Incumbent, this result may seem unexpected for the profits of the Entrant.

Nevertheless, there exist an explanation for it.

It follows from (1.10)-(1.13) that the decrease in the cost parameter of the Incumbent cI leads

to higher quality of both products in equilibrium as
∂q∗E
∂cI

< 0 and
∂q∗I
∂cI

< 0. Threshold taste

parameters θ∗E and θ∗I behave in the same way implying that both the Incumbent and the Entrant

shift upwards along the θ-axis. This means that both of them move towards the consumers with

higher taste for the differentiated product; these consumers are willing to purchase goods of higher

quality paying higher price, hence increase in the profits of both firms.

10
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1.2.3 Merger and monopoly with two products

Assume that instead of entering the market on its own, the Entrant decides to enter the market

and merge with the Incumbent to form a monopoly producing two goods. In terms of competition

it is equivalent to the collusion between the players in the market: consumers still have the choice

between two products as in the duopolistic case, but the total profits are expected to be higher.

As there is only one firm in the market, the same cost parameter cI applies to both products.

Following the same logic as in Section 1.2.2, the solution to the merger problem is given by7:

θ∗1 = 0.6θH (1.17)

θ∗2 = 0.8θH (1.18)

q∗1 =
0.4θH
cI

(1.19)

q∗2 =
0.8θH
cI

, (1.20)

and the profits are:

π∗MG =
2θ3

H

25cI (θH − θL)
. (1.21)

Thus, a decrease in the cost parameter cI leads to an increase in the profits of the merged firm.

Comparing merger profits π∗MG with the monopolistic profits π∗M (1.7) yields:

π∗MG

π∗M
=

27

25
= 1.08. (1.22)

It implies that the merged firm, which is in fact a monopoly with two products, generates

slightly higher profits than the monopoly with one product.

I have conjectured in the beginning of this section that the profits of the merged firm should

be higher than the sum of the profits of the players in the duopoly. Figure 1.2 supports this claim

plotting the ratio RMG =
π∗
MG

π∗
D

as a function of cI
cE

.

It demonstrates that the merger profits π∗MG are always higher than the total duopolistic profits

π∗D implying that there exists positive synergy from the merger. It is easy to compute that RMG

at cI = cE equals RMG = 1.61, whereas lim cI
cE
→0RMG = 27

25
= 1.08. Therefore, merger results

in approximately 10 − 60% of the increase in the total profits of the players as compared to the

benchmark duopoly case. To summarize, the following relationship between the monopolistic

7Detailed derivations are provided in Appendix A.3.
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Figure 1.2: The ratio RMG =
π∗
MG

π∗
D

as a function of cI
cE

profits π∗M , duopolistic profits π∗D and the merger profits π∗MG exists:

π∗D ≤ π∗M < π∗MG (1.23)

for 0 < cI ≤ cE.

The synergy of the merger comes from the collusion between the players as they choose their

prices and qualities not independently, but in cooperation with each other. Therefore, the present

model generates the endogenous synergy. It relates, for example, to Lambrecht (2004) where

merger synergy is also endogenous, and it results from the production function exhibiting increas-

ing returns to scale.

So far, I have provided the static solutions for the monopoly, duopoly and merger. Now I

proceed to the dynamic part of the model that will make use of these results.

1.3 Dynamic equilibrium

At time t = 0 the Incumbent is the only player in the market. Its product is characterized by

the quality q∗M and the price p∗M , its profits equal π∗M (see equations 1.5-1.7). The cost parameter

12
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of the Incumbent at time t = 0 equals cI0; recall, that the cost function of the Incumbent is

increasing is cI .

Assume that there exist a third-party technology that allows the Incumbent to reduce its

manufacturing costs. At any time t ≥ 0 this technology is characterized by the cost parameter ct,

and ct is non-increasing over time. The technology can be thought of as a series of patents that

appear one after another so that every new patent provides a better technology than the existing

one. At the moment the new patent arrives to substitute for the old one, a downward jump in ct

occurs.

Following Farzin, Huisman, and Kort (1998) and Weeds (2002), I adopt the jump (Poisson)

process specification to describe the arrival of patents. In particular, the cost parameter ct follows:

dct = ctdq, (1.24)

with dq being a Poisson process with parameter λ:

dq =

{
−g with probability λdt

0 with probability 1− λdt.
(1.25)

Thus, a jump is associated with a fraction g ∈ (0; 1) of the decrease in cI . Assume that the

initial level of the cost parameter under this technology equals c0 = cI0, so that at time t = 0 this

technology offers no amelioration over the existing technology of the Incumbent.

As the third-party technology improves over time and the associated level of the cost parameter

decreases, the Incumbent may be interested in buying this technology at some time t = τ in order

to instantly reduce its cost parameter from cI0 to cτ . The price of the technology equals RD8. To

simplify the exposition, I assume that the Incumbent may buy this technology only once.

The Incumbent has a trade off between buying this technology earlier to start benefiting from

lower manufacturing costs and buying it later to wait for even better technology to arrive.

To summarize, the Incumbent has an opportunity (an option) to invest in the cost-reducing

technology at the price RD. It needs to solve the dynamic optimization problem to find the value

of ct at which it should buy the technology. Therefore, the cost parameter of the Incumbent cI

takes two values: it is equal to cI0 before the investment, and to cτ < cI0 after the investment

that occurs at some time t = τ . As to the cost parameter of the Entrant, it remains constant

throughout the model: cE = cI0.

8RD is an acronym for ‘research and development’.
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Introduce a new variable xt = ct
cI0

with the dynamics

dxt = xtdq, (1.26)

where dq as in (1.25), and x0 = c0
cI0

= cI0
cI0

= 1.

Since the technology cost parameter ct is less or equal to the initial value of the cost parameter

of the Incumbent cI0, then x ∈ (0, 1]. Now the problem of the Incumbent can be solved in terms

of the state variable xt. The Incumbent needs to find the trigger value of x for the investment

in the cost-reducing technology that would allow to instantly decrease the cost parameter of the

Incumbent from cI0 to xcI0.

One can rewrite the expressions for the profits of the players derived in Section 1.2 using the

normalization
2θ3H

cI0(θH−θL)
= 1 and the fact that cE = cI0 as:

π∗M =
1

27x
(1.27)

with π∗M0 = 1
27

,

π∗E =
8(3− 2x)3

(27− 16x)3
(1.28)

with π∗E0 = 8
1331

,

π∗I =
(9− 4x)2(3− 2x)2

(27− 16x)3x
(1.29)

with π∗I0 = 25
1331

,

π∗MG =
1

25x
(1.30)

with π∗MG0 = 1
25

.

In its turn, the Entrant has an option to enter the market at any time at a lump-sum entry cost

INV . Profits of the Entrant depend both on its cost parameter cE = cI0 and the cost parameter

of the Incumbent cI . At time t = 0 the cost parameter of the Incumbent equals cI0, the new state

variable x equals x0 = 1, and the profits of the Entrant equal π∗E0 = 8
1331

as follows from (1.28).

The Entrant does not control the evolution of the cost parameter of the Incumbent; the entry

decision made by the Entrant is based solely on the net present value at the time of entry. Let r

be the risk-free rate; then the NPV to the Entrant at time t = 0 is given by:

NPVE0 =
π∗E0

r
− INV =

8

r1331
− INV. (1.31)
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Let NPVE0 < 0 so that it is not profitable for the Entrant to enter at time t = 0. It is equivalent

to saying that the profitability index of the entry at time t = 0 is less than one: PI =
π∗
E0

rINV
< 1.

However, as it was demonstrated in Section 1.2.2, profits of the Entrant are decreasing in cI

and, consequently, in x:
∂π∗E
∂x

=
−144(3− 2x)2

(27− 16x)4 < 0. (1.32)

Then it may be profitable for the Entrant to enter later, namely immediately after the In-

cumbent invests in the cost-reducing technology at some time t = τ and its cost parameter cI

decreases from cI0 to cτ with xτ = cτ
cI0

. The NPV to the Entrant in the general case of x ∈ (0; 1]

is given by:

NPVE =
π∗E
r
− INV =

8(3− 2x)3

r(27− 16x)3
− 1

PI

π∗E0

r
. (1.33)

Thus, for any x ∈ (0; 1] the Entrant decides whether to enter or not based on the NPVE as in

(1.33). The Incumbent is aware that its decision about investing in the cost-reducing technology

may trigger the entry by the Entrant.

To summarize, the Incumbent’s initial profits are π∗M0, and it enjoys the monopolistic position.

The Entrant is out of the market. There are three possible scenarios for the future:

1. The Incumbent invests RD at the monopolistic trigger xM to obtain the stream of profits

π∗M(xM) in exchange for π∗M0, no subsequent entry happens. The conditions for this are:

• either no threat of competition (the Entrant does not exist at all);

• or negative NPVE to the Entrant at xM . It means that the investment INV required

from the Entrant to enter the market is too high for its entry to be profitable. In this

case the entry deterrence by the Incumbent takes place.

2. The Incumbent invests RD at the duopolistic trigger xD to obtain the stream of profits

π∗I (xD) in exchange for π∗M0 followed by the immediate entry of the Entrant that obtains

profits of π∗E(xD). For this to happen, NPVE to the Entrant at xD should be non-negative.

In this situation, the Incumbent accommodates the entry by adopting the technology at xD.

3. Instead of acting in the market independently, the Incumbent and the Entrant decide to

merge. Thus, the Incumbent invests RD at the merger trigger xMG, the Entrant imme-

diately enters provided its NPVE is non-negative at xMG, and each firm receives its share

of the profits of the merged firm π∗MG. The share of each firm is determined endogenously

together with the merger trigger xMG. This is another strategy of entry accommodation by
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the Incumbent which may increase its option value as compared to the duopolistic entry

accommodation in the previous scenario.

The Incumbent needs to solve three dynamic programming problems to find the triggers xM ,

xD and xMG. The remainder of Section 1.3 provides these solutions; in particular, Section 1.3.1

discusses the general approach to this type of problems, Section 1.3.2 solves for xM , Section 1.3.3

solves for xD, and, finally, Section 1.3.4 solves for xMG.

1.3.1 General solution to a dynamic programming problem

The Bellman equation in the continuation region is as follows (see, for example, Dixit and

Pindyck (1994)):

F (x) = π0 (x0) dt+
E (F (x+ dx))

1 + rdt
, (1.34)

where F (x) is the continuation value;

r is the risk-free (discount) rate;

x0 is the initial value of the state variable x;

x0 = 1 by construction;

π0 (x0) is the profits flow per unit time at x0;

π0(x0) = π∗M0 as at time t = 0 the Incumbent enjoys the monopolistic position in the market;

E (F (x+ dx)) = F (x) + λ (F (x(1− g))− F (x)) dt.

Then, the Bellman equation can be rewritten as9:

F (x) =
π0 (x0)

r + λ
+

λ

r + λ
F (x(1− g)) . (1.35)

As already described above, x follows a jump process with the downward jumps of fixed size

xg. Then after k jumps x takes the value xk = x0(1− g)k with x0 = 1, and the Bellman equation

(1.35) becomes:

F (x0) =
π0 (x0)

r
+

(
λ

r + λ

)k (
F
(
(1− g)k

)
− π0 (x0)

r

)
. (1.36)

In the stopping region (at the trigger x∗) I impose the ‘value-matching condition’:

F (x∗) = V (x∗) (1.37)

9Complete derivations for Section 1.3.1 are provided in Appendix A.4.
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with the stopping value V (x) as follows:

V (xτ ) =

∫ ∞
τ

π(xτ )e
−r(t−τ)dt− I =

π(xτ )

r
− I, (1.38)

where I is the investment required (it equals RD in the monopoly scenario 1 and duopoly scenario

2, and RD + INV in the merger scenario 3);

π(x) is the profits flow per unit time in the stopping region (for example, it equals π∗M in the

monopoly scenario 1).

Note that the uncertainty about the future cash flows of the players is resolved at the time of

the technology adoption τ , so that once the firms know the value of xτ , their future profits are

deterministic and known.

Combining (1.36) with (1.37) yields:

F (x0) =
π0(x0)

r
+

(
λ

r + λ

)k∗ (π ((1− g)k
∗)− π0(x0)− Ir
r

)
, (1.39)

where x∗ = (1− g)k
∗

is the continuous trigger value of x;

k∗ is the continuous number of jumps needed to reach x∗.

It is clear from (1.39) that λ
r+λ

plays the role of discount factor in this model.

Since F (x0) is the option value to the Incumbent at time t = 0, I need to maximize it with

respect to k∗ to find the number of jumps needed to reach the trigger value x∗. At the moment,

I do not consider the problem of overshooting, I discuss it later taking the monopoly case as an

example.

1.3.2 Monopoly with one product

In this section I solve the simplest monopoly case. The Incumbent needs to find the monop-

olistic trigger xM at which it is optimal to invest in the cost-reducing technology to decrease the

value of the cost parameter cI from cI0 to xMcI0.

Assume first that the price of the technology is constant and equal to RD. This is a common

assumption in the literature that I will later relax.

Under no threat of entry, the Incumbent needs to maximize its option value FM based on
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(1.39):

max
k
FM =

π∗M0

r
+

(
λ

r + λ

)k(π∗M ((1− g)k
)

r
− π∗M0

r
−RD

)
=

=
1

27r
+

1

r

(
λ

r + λ

)k (
1

27(1− g)k
− 1

27
−RDr

)
,

(1.40)

since π0(x0) = π∗M0 = 1
27

;

π(x) = π∗M(x) = 1
27x

;

I = RD;

and x = (1− g)k.

The continuous solution10 to (1.40) consists of the continuous monopolistic trigger xcM (pre-

sented in Figure 1.3) and kcM which is the continuous number of jumps needed to reach the trigger

xcM (presented in Figure 1.4):

xcM = (1− g)k
c
M =

ln λ
r+λ
− ln(1− g)

(1 + r RD
π∗
M0

) ln λ
r+λ

(1.41)

kcM = ln
ln λ

r+λ
− ln(1− g)

(1 + r RD
π∗
M0

) ln λ
r+λ

/ ln(1− g). (1.42)

Throughout the paper the following values of parameters are used to plot the graphs: g = 0.1,
1

1+r RD
π∗
M0

= 0.8.

Some properties of the monopolistic trigger xcM are:

lim
λ
r+λ
→0
xcM =

1

1 + r RD
π∗
M0

< 1 (1.43)

xcM

∣∣∣
λ
r+λ

=1−g
= 0 (1.44)

and xcM ∈ (0; 1) for λ
r+λ

< 1− g.

Because of the discrete nature of x, there exists a problem of overshooting. Therefore, either

[kcM ] or [kcM ] + 1 should be used instead of kcM for the number of jumps to be a natural number11.

10Complete derivations for Section 1.3.2 are provided in Appendix A.5.
11[x] stands for ‘integer part of x’
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Figure 1.3: Continuous monopolistic trigger xcM

Figure 1.4: Continuous number of jumps kcM needed to reach the trigger xcM
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Monopolistic trigger xM is then defined as xM = (1− g)kM with

kM = arg max
(
FM

(
(1− g)[kcM ]

)
, FM

(
(1− g)[kcM ]+1

))
, (1.45)

where FM is the option value to the Incumbent at time t = 0 as in (1.40).

For example, at g = 0.1, 1
1+r RD

π∗
M0

= 0.8 and λ
r+λ

= 0.7 the solution is:

• kcM = 5.44;

• FM
∣∣
k=5

> FM
∣∣
k=6

;

• then kM = 5 with xM = (1− g)kM = 0.59.

The same algorithm should be applied to transform any continuous trigger in the discrete one.

Now I relax the assumption of the cost-reducing technology price RD being constant. Let RD

be a linear decreasing function of x:

RD(x) = RD0 + β (1− x) = RD0 + β
(
1− (1− g)k

)
, (1.46)

where RD0 is equal to the constant technology price RD above and β > 0. This functional form

of RD ensures that the investment cost (technology price) is increasing in the amount of cost

reduction it provides.

Then the Incumbent needs to solve the following problem:

max
k
F g
M =

1

27r
+

1

r

(
λ

r + λ

)k (
1

27(1− g)k
− 1

27
− r

(
RD0 + β

(
1− (1− g)k

)))
, (1.47)

where F g
M is the option value to the Incumbent in the general case of increasing technology price

(investment cost).

The solution to (1.47) is given by12:

xcgM =
E −

√
E2 − 4

Kβ

2
, (1.48)

12Detailed derivations are provided in Appendix A.5.
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where xcgM is the continuous monopolistic trigger in the general case of non-constant RD;

E is as follows:

E =

(
1 + rRD0

π∗
M0

)
ln λ

r+λ

Kβ

(
ln λ

r+λ
− ln(1− g)

) +
ln λ

r+λ

ln λ
r+λ

+ ln(1− g)
, (1.49)

Kβ is as follows:

Kβ =
β

πM0∗(ln λ
r+λ
−ln(1−g))

r(ln λ
r+λ

+ln(1−g))

, (1.50)

and provided β satisfies the following condition:

0 < β <
π∗M0

(
ln λ

r+λ
− ln(1− g)

)
r
(
ln λ

r+λ
+ ln(1− g)

) , (1.51)

so that Kβ ∈ (0; 1).

Proposition 1 The continuous monopolistic trigger in the general case of increasing investment

cost xcgM is always smaller than the continuous monopolistic trigger in the case of constant cost

xcM . This means that the Incumbent always invests later under increasing cost than under constant

cost.

The option value to the Incumbent under increasing cost F g
M (xgM) is always lower than the

option value to the Incumbent under constant cost FM (xM).

Proof. The fact that xcgM < xcM is proven in Appendix A.5.

Then F g
M (xgM) < FM (xgM) < FM (xM), where the first inequality follows from the fact that

F g
M (x) < FM (x) for x ∈ (0; 1] because of increasing investment cost, and the second inequality

follows from the fact that FM is maximized at xM .

Figure 1.5 plots both xcM and xcgM at Kβ = .8 and g = 0.1, 1
1+r RD

π∗
M0

= 0.8 (as before). Both

triggers demonstrate the same behavior (as expected), with xcgM being always smaller than xcM ;

besides, both of them decrease in λ
r+λ

meaning that higher probability of a jump λ allows the

Incumbent to wait longer in order to invest at lower trigger and obtain higher profits.

1.3.3 Duopoly

In this section I relax the assumption of no competition and solve the dynamic problem for

the duopoly. Recall that under duopoly, the Incumbent invests in the cost-reducing technology at

the duopolistic trigger xD followed by the immediate entry of the Entrant.
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Figure 1.5: Monopolistic triggers for both constant and increasing investment cost

First, I solve the problem of the Entrant. As it has been already demonstrated in the beginning

of Section 1.3, the Entrant computes its NPV to decide on entry. Then, given the values of the

input parameters, it is possible to compute the threshold value xE such that:

NPVE (xE) =
π∗E (xE)

r
− INV =

=
8(3− 2xE)3

r(27− 16xE)3
− 1

PI

π∗E0

r
= 0.

(1.52)

Therefore, for any x ≤ xE the entry is profitable as it has non-negative NPV . Figure 1.6

displays xE as a function of the profitability index PI. It demonstrates that the solution exist

only for PI > 0.55. The intuition behind is quite straightforward: when entry cost is too high,

the entry never happens.

Now I solve the problem of the Incumbent who expects the Entrant to enter immediately after

the Incumbent’s investment at the duopolistic trigger xD. From (1.29), the Incumbent’s profits

are:

π∗I =
(9− 4x)2(3− 2x)2

(27− 16x)3x
. (1.53)
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Figure 1.6: Entry region of the Entrant

Define a function R (x) as:

R (x) =
π∗I
π∗M

=
27(9− 4x)2(3− 2x)2

(27− 16x)3 . (1.54)

It is straightforward to demonstrate that the profits of the Incumbent π∗I are always smaller

than the profits of the monopolist π∗M , or, in other words, that 0 < R (x) < 1. In particular,

R′(x) < 0 and R(x) ∈ [ 675
1331

; 1) for x ∈ (0; 1].

Therefore, the duopolistic problem of the Incumbent is just a slightly modified monopolistic

problem13 presented in (1.40). The Incumbent needs to maximize its option value under duopoly

FD:

max
k
FD =

1

27r
+

1

r

(
λ

r + λ

)k (
π∗I

(
(1− g)k

)
− 1

27
−RDr

)
=

=
1

27r
+

1

r

(
λ

r + λ

)k (
R((1− g)k)

27(1− g)k
− 1

27
−RDr

)
.

(1.55)

The continuous solution to (1.55) consists of the continuous duopolistic trigger xcD and kcD

13The present problem is solved for the constant investment cost RD. Derivations concerning the second order
condition are presented in Appendix A.6.

23



CHAPTER 1

which is the continuous number of jumps needed to reach the trigger xcD:

xcD = (1− g)k
c
D =

(
ln λ

r+λ
− ln(1− g)

)
R((1− g)k

c
D) + ∂R

∂k
(kcD)

(1 + r RD
π∗
M0

) ln λ
r+λ

(1.56)

kcD = ln

(
ln λ

r+λ
− ln(1− g)

)
R((1− g)k

c
D) + ∂R

∂k
(kcD)

(1 + r RD
π∗
M0

) ln λ
r+λ

/ ln(1− g). (1.57)

Comparing the results for the monopoly from Section 1.3.2 with the above results for the

duopoly yields the following proposition:

Proposition 2 The duopolistic trigger xcD is always smaller than the monopolistic trigger xcM .

Thus, under the threat of entry the Incumbent always invests later as compared to the no-threat-

of-entry situation.

The option value to the Incumbent under the threat of entry FD(xD) is always lower than the

option value to the Incumbent under no threat of entry FM(xM); therefore, competition erodes the

option value to the Incumbent.

Proof. It follows from (1.57) that:

xcD = xcMR((1− g)k) +
∂R
∂k

(1 + r RD
πM0

) ln λ
r+λ

< xcM (1.58)

since R((1− g)k) ∈ (0; 1), ∂R
∂k
> 0 for g ∈ (0; 1) and ln λ

r+λ
< 0 for λ

r+λ
∈ (0; 1).

Then FD(xD) < FM(xD) < FM(xM), where the first inequality follows from the fact that π∗I < π∗M
for x ∈ (0; 1), and the second inequality follows from the fact that FM is maximized at xM .

The following proposition summarizes the optimal strategy of the Incumbent absent merger

opportunities:

Proposition 3 The optimal strategy of the Incumbent is:

1. Compute xM , xD and xE;

2. In case inequality xM > xE holds, invest at xM to obtain the stream of profits π∗M(xM), the

Entrant will not enter (‘first-best’ choice); otherwise, invest at xD to obtain the stream of

profits π∗I (xD), the Entrant enters immediately to obtain the stream of profits π∗E(xD)(‘second-

best’ choice for the Incumbent). The former does not erode the option value to the Incumbent,

whereas the latter does.
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The Entrant does not enter at all in the first case when xM > xE, so its NPV is zero, and it

enters in the second case with NPV at the moment of entry equal to NPVE (xD).

1.3.4 Merger and monopoly with two products

Assume that the Incumbent and the Entrant are given the opportunity to merge. It implies

that at the merger trigger xMG several actions take place simultaneously:

• The Incumbent invests RD in the cost-reducing technology;

• The Entrant enters with its product at a lump-sum entry cost INV ;

• Firms merge, each firm receives its share of the total profits π∗MG.

In order to persuade the Entrant to merge, the Incumbent should offer to the Entrant the

share of the total profits sE such that NPV to the Entrant would be at least equal to its NPV

without the merger opportunity.

There exist two mutually exclusive situations described in Proposition 3:

1. In case xM > xE, the Entrant would never enter the market without the merger opportunity;

therefore, it is sufficient to offer to the Entrant NPV equal to zero:

NPVE1 =

(
λ

r + λ

)kMG1
(
sE
π∗MG(xMG1)

r
− INV

)
= 0, (1.59)

where NPVE1 is NPV to the Entrant in the first case (discounted to time t = 0);

xMG1 is the merger trigger in the first case;

kMG1 is the number of steps needed to reach xMG1.

2. On the contrary, in case xE ≥ xM the Entrant would enter the market at xD to obtain

non-negative NPV ; then it should be offered the following:

NPVE2 =

(
λ

r + λ

)kMG2
(
sE
π∗MG(xMG2)

r
− INV

)
=

=

(
λ

r + λ

)kD (π∗E(xD)

r
− INV

)
= NPVED,

(1.60)

where NPVE2 is NPV to the Entrant in the second case (discounted to time t = 0);

NPVED is the NPV to the Entrant at the duopolistic trigger xD (discounted to time t = 0);
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xMG2 is the merger trigger in the second case;

kMG2 is the number of steps needed to reach xMG2.

Solve (1.59) first. The Entrant is entitled to the share sE of the merged entity:

sE =
rINV

π∗MG

, (1.61)

and the Incumbent is left with VI :

VI =
π∗MG

r
(1− sE)−RD =

π∗MG

r
−RD − INV. (1.62)

Therefore, the Incumbent needs to maximize its option value FMG1 based on (1.39):

max
k
FMG1 =

1

27r
+

1

r

(
λ

r + λ

)k (
1

25(1− g)k
− 1

27
− r(RD + INV )

)
=

=
1

27r
+

27

25r

(
λ

r + λ

)k (
1

27(1− g)k
− 25

27

(
1

27
+ r(RD + INV )

))
.

(1.63)

The structure of this problem is identical to that of the monopolistic problem; the continuous

solution14 to (1.63) consists of the continuous merger trigger xcMG1 and kcMG1 which is the number

of steps needed to reach xMG1:

xcMG1 = (1− g)k
c
MG1 =

(
ln λ

r+λ
− ln(1− g)

)
25
27

(1 + rRD+INV
π∗
M0

) ln λ
r+λ

(1.64)

kcMG1 = lnxcMG1/ ln(1− g). (1.65)

Comparing the monopolistic trigger xcM derived in (1.41) with the merger trigger xcMG1 (1.65)

yields that xcMG1 > xcM if the following inequality holds:

25

27

(
1 + r

RD + INV

πM0

)
< 1 + r

RD

πM0

. (1.66)

Proposition 4 In case xM > xE and provided that (1.66) holds, it follows that the merger trigger

xcMG1 is always greater than the monopolistic trigger xcM . This means that the merger occurs earlier

than the cost-reducing investment in the absence of the merger opportunity would occur.

14Since πMG∗ = 27
25π

∗
M , the second order condition is satisfied for π∗

MG also.
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Besides, option value to the Incumbent with the merger opportunity FMG1(xMG1) is higher than

the option value under monopoly FM(xM).

Proof. xcMG1 > xcM ⇔ (1.66).

Then FMG1(xMG1) > FMG1(xM) > FM(xM), where the first inequality follows from the fact that

FMG1 is maximized at xMG1, and the second inequality follows from the fact that FMG1 > FM for

x ∈ (0; 1] when (1.66) holds.

In case (1.66) does not hold, then xM ≥ xMG1 and FMG1(xMG1) > FM(xM) for some relatively

large xMG1, whereas FMG1(xMG1) ≤ FM(xM) for relatively small xMG1. As INV increases, the

difference FMG1(xMG1) − FM(xM) decreases to becomes negative at some point, and the merger

becomes less attractive than monopoly to the Incumbent. In this case, the Incumbent does not

offer the merger to the Entrant.

Now solve (1.60). The share of the merged entity accruing to the Entrant equals:

sE =
r

π∗MG

(
NPVED(
λ
r+λ

)kMG2
+ INV

)
, (1.67)

and the Incumbent obtains VI :

VI =
π∗MG

r
(1− sE)−RD =

π∗MG

r
− NPVED(

λ
r+λ

)kMG2
− INV −RD (1.68)

The Incumbent needs to maximize its option value FMG2 based on (1.39):

max
k
FMG2 =

1

27r
+

1

r

(
λ

r + λ

)k(
1

25(1− g)k
− rNPVED(

λ
r+λ

)k − 1

27
− r(RD + INV )

)
=

=
1

27r
−NPVED +

1

r

(
λ

r + λ

)k (
1

25(1− g)k
− 1

27
− r(RD + INV )

)
.

(1.69)

It follows from (1.63) and (1.69) that:

FMG2 = FMG1 −NPVED (1.70)

implying that the merger trigger is the same in both cases:

xcMG = xcMG1 = xcMG2 = (1− g)k
c
MG =

(
ln λ

r+λ
− ln(1− g)

)
25
27

(1 + rRD+INV
π∗
M0

) ln λ
r+λ

. (1.71)
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Besides, option value to the Incumbent is lower in the second case exactly by NPVED. Thus,

NPVED is the price the Incumbent needs to pay in order to persuade the Entrant to merge.

The following proposition summarizes the optimal dynamic strategy of the Incumbent:

Proposition 5 The optimal strategy of the Incumbent is as follows:

1. Compute xM , xE, xD and xMG.

2. In case xM > xE, compare FMG1(xMG) with FM(xM). If FMG1(xMG) > FM(xM), invest at

xMG; otherwise, invest at xM . Recall that xM > xE implies that without the opportunity to

merge (in the duopolistic setup), the Incumbent would invest at the monopolistic trigger xM ,

the Entrant would never enter (entry cost INV is too high).

3. In case xM ≤ xE, compare FMG2(xMG) with FD(xD). If FMG2(xMG) > FD(xD), invest at

xMG; otherwise, invest at xD. In the duopolistic setup the Incumbent would invest at xD

followed by the immediate entry.

The shares of the merging firms in the total profits π∗MG are determined endogenously together

with the timing of the merger. This accords, for example, with Lambrecht (2004) that discusses

the mergers motivated by economies of scale.

1.4 Conclusion

In this paper I investigated the technology adoption, entry and merger decisions in the dynamic

model of vertical product differentiation. I have solved the model for the monopoly, duopoly

and merger (which is equivalent to a monopoly with two products) and outlined the equilibrium

strategies of the Incumbent and the Entrant.

I have demonstrated that the Incumbent under the threat of entry always invests in the cost-

reducing technology later as compared to the no-threat-of-entry (monopoly) case. Besides, the

option value to the Incumbent under the threat of entry is lower as compared to the monopoly.

I have also shown that relatively high cost of entry may prevent the Entrant from entering the

market even after the cost-reducing investment by the Incumbent. The Incumbent, being aware

of this fact, behaves as under no threat of entry and invests in cost reduction at the monopolist

trigger. On the contrary, when the cost of entry is relatively low, the Entrant enters as soon as the

Incumbent invests which takes place at the duopolistic trigger. In the first case, the competition

does not reduce the option value to the Incumbent as the Entrant does not exercise its option to
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enter. In the second case, the competition erodes the option value to the Incumbent since the

Entrant exercises its option.

The monopolistic problem has been investigated using two alternative specifications for the

price of the new technology: in the first case, the price of the technology was constant, whereas

in the second, more general case, the price of the new technology was increasing in the amount of

cost reduction it provides. I have demonstrated that the increasing investment cost (price of the

technology) makes the Incumbent postpone the technology adoption as compared to the constant

price situation. Besides, increasing investment cost reduces the option value to the Incumbent.

I have demonstrated that the merger generates the endogenous synergy in this model. I have

proven that the merger may not only increase the option value to the Incumbent as compared to

the monopoly case, but it may also give the Entrant the opportunity to finally enter the market

as a part of the merged firm whereas its independent entry would be unprofitable.

When the firms are given the opportunity to merge, the Incumbent can choose between the

monopolistic and merger trigger or between the duopolistic and merger trigger. Clearly, it chooses

the trigger that enhances the option value to the Incumbent more. Thus, the Incumbent is always

better off in the result of the merger; the Entrant is at least as well off as before merging.
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2.1 Introduction

Since the beginning of the ongoing financial crisis, the world has witnessed many once-strong

firms being fire-sold to their former competitors, and quite often these deals were for cash. Cash

takeovers normally follow the typical scheme: bidder makes an offer specifying price per target’s

share, takeover period etc. Target’s shareholders either accept this offer agreeing to sell their

shares at the price offered, or reject it. The next round of takeover negotiations may then follow.

A recent all-cash takeover of BG Group over Pure Energy Resources Limited is a telling

example: on February 9, 2009 BG Group announced all-cash offer for Pure of A$6.40 per share

which was at that time superior to the offer made in December by a competing bidder Arrow

Energy Limited (Arrow ’s offer was A$2.70 in cash and 1.21 Arrow shares for each Pure share,

being worth A$5.39 per Pure share on February 6, 2009).

On February 18, Pure recommended BG Group’s offer of A$8 per share (this price increase by

BG Group was a response to an earlier Arrow ’s offer update of A$3.00 in cash and 1.57 Arrow

shares for each Pure share).

On April 6, 2009 the takeover offer was closed; at that moment, BG Group owned 99.74%

shares of Pure with the final price being A$8.25.1

As BG Group stated itself2:

BG Groups Offer gives Pure shareholders the certainty of cash at a time of heightened

uncertainty in world equity and financial markets.

Thus, both bidders and targets understand the superiority of cash deals over stock or stock-

and-cash ones at the times of low market valuations.

The fact that periods of high market valuations often coincide with periods of intense merger

activity (especially stock merger activity) - the so called ‘merger waves’ - has been extensively

documented in merger literature: see, for example, Andrade, Mitchell, and Stafford (2001) and

Martynova and Renneboog (2008) for surveys on mergers.

The starting point of this paper can be formulated as follows: out of the last three completed

merger waves examined in the literature (the 1960s, 1980s and 1990s), the waves of the 1960s and

1990s were characterized by high market valuations and dominance of stock as preferred medium

of payment, whereas market valuations in the 1980s were lower with larger fraction of deals being

paid by cash. The research questions is: Is it possible to build a dynamic model of mergers that

1See http://www.bg-group.com/MediaCentre/Press/Pages/Releases.aspx for more information on the deal.
2http://www.bg-group.com/MediaCentre/Press/Pages/9Feb2009.aspx
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would agree with existing empirical evidence on merger waves and market valuation? The answer

is yes.

This paper investigates the connection between the market valuation and a type of the merger

(stock, cash) using real options setup. The study relates to the literature that uses real options

approach to dynamically investigate merger decisions, in particular timing and terms of merg-

ers. Lambrecht (2004), Morellec and Zhdanov (2005) and Hackbarth and Morellec (2008) model

mergers as dynamic option exercise games between target and bidder(s) in which both timing and

terms of mergers are determined endogenously.

In particular, Lambrecht (2004) studies mergers motivated by the economies of scale under

complete, symmetric information and explains the procyclicality of merger waves.

On the contrary, Morellec and Zhdanov (2005) relate to Shleifer and Vishny (2003) in assuming

that outside investors have imperfect information about the parameters of the model (namely,

about the synergy created by the merger); thus, both models generate short-run abnormal returns

that conforms to empirical evidence.

Morellec and Zhdanov (2005) allow for competition between the bidders resulting in negative

abnormal returns to the winning bidder; besides, they explain how outside investors update their

information about perceived synergy of merger observing actions (or, rather, inaction) of bidder(s);

learning is also discussed in Grenadier (1999) and Lambrecht and Perraudin (2003).

In Lambrecht (2004), merger synergy comes from the production function that must display

increasing returns to scale, whereas in Morellec and Zhdanov (2005) and Hackbarth and Morellec

(2008) merger surplus is linear in the pre-merger values of the firms and depends on the exogenous

synergy parameter(s).

While Lambrecht (2004), Morellec and Zhdanov (2005) and Hackbarth and Morellec (2008)

consider mergers for stock only (with Lambrecht (2004) examining both friendly and hostile stock

mergers), this paper aims at analyzing both stock and cash mergers. Though neither Lambrecht

(2004), nor Morellec and Zhdanov (2005) and Hackbarth and Morellec (2008) do not explicitly

label mergers modeled in their papers as stock mergers, I believe that this is the case: in this type

of merger each firm obtains shares in the new entity in exchange for the shares in the stand-alone

firms (one risky asset is exchanged for another one), whereas in the cash merger the target is paid

a lump-sum cash price (risky asset is exchanged for risk-free one). Literally, bidder in the cash

merger is entitled to 100% of shares of the merged enrity; this situation can not be modeled within

the original setup of Lambrecht (2004), Morellec and Zhdanov (2005) or Hackbarth and Morellec

(2008) because in those models terms of merger are solved for endogenuously.

Thus, for the two setups considered (the first one by Lambrecht (2004) and the second one by
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Morellec and Zhdanov (2005) and Hackbarth and Morellec (2008)), I extend the original model

offering the opportunity of a cash merger to the players and then solve cash merger problem.

The model of Lambrecht (2004) depends on one stochastic process only and allows to obtain

closed-form solutions. On the contrary, the setup of Morellec and Zhdanov (2005) and Hackbarth

and Morellec (2008) depending on two correlated stochastic processes requires numerical solution;

to this end, I use the Least Squares Monte Carlo approach (LSM) by Longstaff and Schwartz

(2001).

In both setups, I solve for terms and timing of cash mergers. I compute option values to

the players and introduce a measure of market valuation as weighed average of individual firm

valuation in the second setup. I am able to demonstrate that in both setups, stock mergers should

occur at high market valuation and at times of low market valuation cash mergers (or both types

of mergers) should be observed. Thus, my conclusion agrees with existing empirical evidence on

dominance of stock mergers at times of high market.

My results also partially accord with the prediction proposed in Shleifer and Vishny (2003)

that one should observe more stock mergers at times of high markets and more cash takeovers at

times of low markets.

I also investigate the dynamics of the intra-industry mergers within the first setup. I solve for

the optimal order of mergers inside an industry for different initial capital allocations; I demon-

strate that stock mergers in more concentrated industries occur at higher market valuation (i.e.

later) as compared to mergers in less concentrated industries.

The paper is organized as follows: Section 2.2 examines cash mergers in the Lambrecht (2004)

setup, Section 2.3 discusses cash merger in the Morellec and Zhdanov (2005) setup, Section 2.4

investigates the dynamics of the intra-industry mergers, Section 2.5 summarizes the results.

2.2 Stock vs. cash mergers under increasing returns to

scale

This part of the paper is based on Lambrecht (2004) that examines the timing and terms

of stock mergers (both friendly mergers and hostile takeovers) in partial equilibrium framework

under complete information, increasing returns to scale (which are the only source of merger

synergies) and risk-neutral firms. Lambrecht (2004) also assumes that mergers aim at maximizing

shareholder value, thus avoiding the discussion of agency problem.
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Lambrecht (2004) demonstrates that stock mergers are procyclical and provides closed-form

solutions for the timing and terms of stock mergers. He also shows that stock mergers happen at

globally efficient threshold.

In Section 2.2.1 I briefly re-state the setup and results of Lambrecht (2004); next, in Sec-

tion 2.2.2, I augment the original model of Lambrecht (2004) with cash mergers. The aim is to

demonstrate that cash mergers happen at lower market valuations than stock ones.

2.2.1 Stock mergers

In Lambrecht (2004), price-taking firm’s instantaneous profits πt are:

πt = ptL
aKb − wLL, (2.1)

where pt is the stochastic output price;

L and K are labor and capital inputs respectively;

wL is the unit cost of labor;

a and b are positive constants such that a < 1 and a+ b > 1, so that there are increasing returns

to scale when both inputs are considered to be variable (as in the case of merger).

Thus, stochastic shock (output price) pt is common for all the firms in the industry (as opposed

to Morellec and Zhdanov (2005) and Hackbarth and Morellec (2008) where firms face correlated

stochastic shocks) and is governed by the following geometric Brownian motion:

dpt = µptdt+ σptdWt, (2.2)

where Wt is the standard Brownian motion;

µ and σ are constants such that µ < r and σ > 0 and r is the risk-free interest rate.

Firm’s instantaneous profits maximized with respect to labor input are:

π∗t = f(wL, a)Kθpγt (2.3)

where f(wL, a) is a known function of wL and a;

θ = b
1−a > 1 and γ = 1

1−a > 1.

Then the value of the firm equals to:

V (pt) = EQ

[∫ ∞
t

π∗t e
−rtdt =

f(wL, a)Kθpγt

r − µγ − σ2γ(γ−1)
2

]
= cpγtK

θ, (2.4)
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where EQ is the expectation under is risk-neutral measure Q;

c = f(wL,a)

r−µγ−σ
2γ(γ−1)

2

subject to γ < β2;

β2 is the positive root of the equation:

1

2
σ2β(β − 1) + µβ − r = 0. (2.5)

Thus, in the case of two firms with the capital inputs equal to K1 and K2 and the lump-sum

merger costs equal to M1 and M2, the total merger surplus is equal to:

S(pt) = max (VM (pt)− V1 (pt)− V2 (pt)−M1 −M2, 0)

= max
(
cpγt

(
(K1 +K2)θ −Kθ

1 −Kθ
2

)
−M1 −M2, 0

)
,

(2.6)

where VM is the post-merger value of the new firm;

V1 and V2 are pre-merger values of firm 1 and firm 2.

In (2.6), the total benefits of the merger equal to cpγt

(
(K1 +K2)θ −Kθ

1 −Kθ
2

)
; they are

positive since θ = b
1−a > 1, i.e. for increasing returns to scale.

After the merger the firm i (i = 1, 2) is entitled to the fraction si of the new entity with

s1 + s2 = 1. The surplus accruing to firm i equals:

Si(pt) = max (siVM (pt)− Vi (pt)−Mi, 0)

= max
(
cpγt

(
si (K1 +K2)θ −Kθ

i

)
−Mi, 0

)
.

(2.7)

Since the merger surplus of each of the merging firms in a convex increasing function of the

stochastic output price pt, the merger option is exercised by firm i the first time process pt reaches

the threshold p∗i from below.

It is demonstrated in Lambrecht (2004) that the in the continuation region (for pt < p∗i ) the

option to merge of firm i OMi satisfies:

rOMi = µptOM
′
i +

σ2

2
p2
tOM

′′
i (2.8)

with the general solution being:

OMi = Bi
1p
β1
t +Bi

2p
β2
t (2.9)

where β1 and β2 are negative and positive root of (2.5).

Since limpt→0OMi = 0, then Bi
1 = 0; the value matching and smooth pasting conditions at p∗i

are:
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OMi(p
∗
i ) = c (p∗i )

γ
(
si (K1 +K2)θ −Kθ

i

)
−Mi (2.10)

OM ′
i(p
∗
i ) = cγ (p∗i )

γ−1
(
si (K1 +K2)θ −Kθ

i

)
. (2.11)

The solution is:

OMi(pt) =
(
cpγt

(
si (K1 +K2)θ −Kθ

i

)
−Mi

)( pt
p∗i

)β2
(2.12)

with the merger threshold for firm i being:

p∗i =

 β2

β2 − γ
Mi

c
(
si (K1 +K2)θ −Kθ

i

)
 1

γ

. (2.13)

Taking into account that merger threshold of firms should be equal p∗1 = p∗2 = p∗ and the fact

that s1 + s2 = 1 allows to solve for the merger threshold p∗ and for optimal shares s1 and s2:

p∗ =

 β2

β2 − γ
M1 +M2

c
(

(K1 +K2)θ −Kθ
1 −Kθ

2

)
 1

γ

(2.14)

si =
Mi

(
(Ki +Kj)

θ −Kθ
j

)
+MjK

θ
i

(Mi +Mj) (Ki +Kj)
θ

. (2.15)

It is demonstrated in Lambrecht (2004) that threshold p∗ coincides with the socially optimal

threshold derived from the point of view of social maximizer and based on total surplus S(pt)

rather than on individual surplus of each firm Si(pt); this means that the merger described by p∗

and (s1, s2) is Pareto optimal and constitutes Nash equilibrium.

Merger threshold (2.14) will serve as benchmark for analysis of cash mergers in Section 2.2.2.

The choice of roles of bidder and target for this type of merger is completely immaterial not

only for merger terms and timing, but also for welfare consequences (surplus distribution) of the

merger. The solution does not directly involve ‘the bidder’ and ‘the target’; it is enough to have

two firms willing two merge.
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2.2.2 Market valuation of stock vs. cash mergers

In the cash merger bidder buys the firm of target paying a lump-sum price P (and not a share

of the merged entity as in the stock merger in Section 2.2.1).

The solution for the target is as follows: in the continuation region of the target (for pt > pT ),

differential equation (2.8) for the option of the target OT (instead of OMi) holds with the general

solution (2.9) and B2 = 0 since limpt→∞OT = 0. Usual value-matching and smooth pasting

conditions apply:

OT (pT ) = P − cpγTK
θ
T −MT (2.16)

OT ′(pT ) = −cγpγ−1
T Kθ

T . (2.17)

The solution is:

OT (pt) =
(
P − cpγTK

θ
T −MT

)( pt
pT

)β1
, (2.18)

where β1 is the negative root of (2.5);

pT is the cash merger threshold of the target:

pT =

(
β1

β1 − γ
P −MT

cKθ
T

) 1
γ

. (2.19)

The solution for the bidder is as follows: in the continuation region of the bidder (for pt < pB),

differential equation (2.8) for the option of the bidder OB (instead of OMi) holds with the general

solution (2.9) and B1 = 0 since limpt→0OB = 0. Usual value-matching and smooth pasting

conditions are:

OB(pB) = cpγB

(
(KB +KT )θ −Kθ

B

)
−MB − P (2.20)

OB′(pB) = cγpγ−1
B

(
(KB +KT )θ −Kθ

B

)
(2.21)

The solution is:

OB(pB) =
(
cpγB

(
(KB +KT )θ −Kθ

B

)
−MB − P

)( pt
pB

)β2
, (2.22)

where pB is the cash merger threshold of the bidder:

pB =

 β2

β2 − γ
MB + P

c
(

(KB +KT )θ −Kθ
B

)
 1

γ

. (2.23)
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The bidder is willing to exercise a cash merger option when the state variable pt first hits the

threshold pB from below, whereas the target is willing to exercise when pt first hits pT from above;

thus, for the merger to be exercised, the following condition should hold:

pB ≤ pt ≤ pT , (2.24)

or, after simplifications,

β2

β2 − γ
MB + P

(KB +KT )θ −Kθ
B

<
β1

β1 − γ
P −MT

Kθ
T

. (2.25)

Solving (2.25) for P yields:

P ≥

(
(KB +KT )θ −Kθ

B

)
MT

β1
β1−γ +Kθ

TMB
β2

β2−γ
β1

β1−γ (KB +KT )θ − β1
β1−γK

θ
B −

β2
β2−γK

θ
T

(2.26)

provided the following inequality holds:

β1

β1 − γ
(KB +KT )θ − β1

β1 − γ
Kθ
B −

β2

β2 − γ
Kθ
T > 0. (2.27)

Since β2
β2−γ >

β1
β1−γ > 0 by the properties of the solution, inequality does not always hold implying

that cash merger equilibrium does not always exists. Thus, depending on the model parameters,

one can distinguish between two types of outcomes:

1. (2.27) holds; both stock and cash merger equilibria exist;

2. (2.27) does not hold; only stock merger equilibrium exists.

Assume that (2.27) holds i.e. cash merger equilibrium exists; to determine the relationship

between the stock merger trigger p∗ in (2.14) and the cash merger corridor [pB, pT ] solve p∗ < pB

to obtain:

P ≥

(
(KB +KT )θ −Kθ

B

)
MT +Kθ

TMB

(KB +KT )θ −Kθ
B −Kθ

T

. (2.28)

The fact that β2
β2−γ >

β1
β1−γ > 0 means that (2.26) implies (2.28) and, consequently:

p∗ < pB < pT . (2.29)
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Consider an example with a = 0.4, b = 1.9, µ = 0.01, r = 0.08, σ = 0.2, KB = KT = 100,

MB = MT = 3, c = 1; (2.27) holds and price P should satisfy P ≥ 73.5.

Setting P = 200, one obtains the following values for bidder’s and target’s threshold: pB =

0.00245471, pT = 0.002532. The stock merger threshold p∗ (see 2.14) equals p∗ = 0.000321576 and

(2.29) holds.

Inequality (2.29) suggests that when market valuation (as measured by the state variable

pt) is in the interval [pB, pT ], both cash and stock mergers are observed; as pt increases, only

stock mergers should be observed. This conclusion agrees quite well with empirical evidence on

procyclicality of merger waves and dominance of stock mergers at high market valuations.

Now I proceed to a more complicated setup of Morellec and Zhdanov (2005) and Hackbarth

and Morellec (2008) that employs two correlated stochastic processes (instead of one in this setup)

and is based on linear synergy instead of synergy stemming from economies of scale.

2.3 Stock vs. cash mergers under linear merger synergy

I follow Morellec and Zhdanov (2005) and Hackbarth and Morellec (2008) in the setup of my

model. Consider an industry consisting of two firms (bidder and target) with capital stock K and

Q; present value of the cash flows of the firms are X and Y that are governed by the stochastic

differential equations:

dXt = µXXtdt+ σXXtdW
X
t (2.30)

dYt = µY Ytdt+ σY YtdW
Y
t (2.31)

where WX
t and W Y

t are standard correlated Brownian motions with correlation coefficient ρ;

µX , µY , σX and σY are constants such that µX < r, µY < r, σX > 0 and σY > 0 and r is the

risk-free interest rate.

Assume also that investors are risk-neutral.

In case of a merger, combined value of the merged firms equals:

V (X, Y ) = KX +QY + α (K +Q) (X − Y ) , (2.32)

where KX is the pre-merger value of the bidder;

KY is the pre-merger value of the target;

α is positive and reflects merger synergy;

α (K +Q) (X − Y ) is the merger surplus.
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It follows from (2.32) that for the merger to be profitable, the bidder should have higher

valuations per unit capital than the target; it means that the roles of bidder and target are pre-

determined as opposed to Lambrecht (2004) where any of the firms can act as a bidder. ‘Valuation

per unit capital’ may be thought of as Tobin’s q or M/B ratio.

I choose the complete information setup of Hackbarth and Morellec (2008) as opposed to

incomplete information with learning as in Morellec and Zhdanov (2005) for better comparison

with the results from the previous section; both Morellec and Zhdanov (2005) and Hackbarth and

Morellec (2008) assume that the option to merger has infinite horizon.

First I briefly repeat the results of the stock merger as in Morellec and Zhdanov (2005) and

Hackbarth and Morellec (2008), and then I solve this model for the cash takeover game (I follow

the same order as in Section 2.2).

2.3.1 Stock mergers

Stock merger is modeled as a simultaneous game with bidder and target giving up their pre-

merger values of the firms to get a share in the new merged entity.

Payoffs to the bidder P s
B and to the target P s

T at the stock merger are as follows:

P s
B (X, Y ) = max (sBV (X, Y )−KX, 0)

P s
T (X, Y ) = max ((1− sB)V (X, Y )−QY, 0) ,

(2.33)

where sB is the share of the merged entity accruing to the bidder.

In the continuation region option to the bidder OBs and to the target OTs satisfy the following

differential equations:

rOBs =
1

2
σ2
XX

2OBs
XX +

1

2
σ2
Y Y

2OBs
Y Y + ρσXσYXY O

Bs
XY + µXO

Bs
X + µYO

Bs
Y (2.34)

rOTs =
1

2
σ2
XX

2OTs
XX +

1

2
σ2
Y Y

2OTs
Y Y + ρσXσYXY O

Ts
XY + µXO

Ts
X + µYO

Ts
Y (2.35)

subject to the following value-matching conditions:

OBs (Xs, Y s) = sBV (Xs, Y s)−KXs (2.36)

OTs (Xs, Y s) = (1− sB)V (Xs, Y s)−QY s, (2.37)

where XS and Y S is the stock exercise bound.
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Though options to both bidder and target depend on two stochastic processes X (2.30) and Y

(2.31), but since the payoffs P s
B and P s

T are both linear in X and Y , it is demonstrated in Morellec

and Zhdanov (2005) and Hackbarth and Morellec (2008) that terms and timing of the mergers

can be solved in terms of the ratio R = X
Y

.

In particular, option values to bidder and target satisfy:

OBs (X, Y ) = Y (sBV (R∗, 1)−KR∗)
(
R
R∗

)λ2
OTs (X, Y ) = Y ((1− sB)V (R∗, 1)−Q)

(
R
R∗

)λ2 , (2.38)

where Rs is the stock merger threshold:

Rs =
λ2

λ2 − 1
, (2.39)

sB is the share of the merged firm accruing to the bidder:

sB =
K

K +Q
, (2.40)

and λ2 is the positive root of the equation:

1

2

(
σ2
X − 2ρσXσY + σ2

Y

)
λ (λ− 1) + (µX − µY )λ = r − µY . (2.41)

Merger occurs as soon as process R = X
Y

first hits the threshold Rs = λ2
λ2−1

from below. This

result is similar in spirit to the one in Lambrecht (2004) where the state variable pt also needs to

hit the threshold p∗ from below.

Morellec and Zhdanov (2005) and Hackbarth and Morellec (2008) also demonstrate that the

stock merger equilibrium coincides with the central-planner equilibrium where the central planner

is maximizing merger surplus. It means that the payoff of the central planner equals:

P s
CP (X, Y ) = max (V (X, Y )−KX −QY, 0) =

= max (α (K +Q) (X − Y ) , 0) ,
(2.42)

and the option to the central planner OCPs equals the sum of bidder’s OBs and target’s OTs

options:

OCPs (X, Y ) = Y (V (R∗, 1)−KR∗ −Q)
(
R
R∗

)λ2 =

= Y (α (K +Q) (R∗ − 1))
(
R
R∗

)λ2 . (2.43)
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Solution to the stock merger problem summarized in this section will provide the benchmark

for the cash merger problem presented in the next section.

2.3.2 Cash mergers and market valuation

The bidder offers a lump-sum price P for the whole firm of the target. Payoffs to the bidder

P c
B and to the target P c

T at the cash merger are as follows:

P c
B (X, Y ) = max (V (X, Y )−KX − P, 0) =

= max (QY + α (K +Q) (X − Y )− P, 0)

P c
T (X, Y ) = max (P −QY, 0)

(2.44)

In the continuation region options to the bidder OBc and to the target OTc satisfy the following

differential equations:

rOBc =
1

2
σ2
XX

2OBc
XX +

1

2
σ2
Y Y

2OBc
Y Y + ρσXσYXY O

Bc
XY + µXO

Bc
X + µYO

Bc
Y (2.45)

rOTc =
1

2
σ2
Y Y

2OTc
Y Y + µYO

Tc
Y (2.46)

subject to the following value-matching conditions:

OBc (Xc, Y c) = QY c + α (K +Q) (Xc − Y c)− P (2.47)

OTc (Xc, Y c) = P −QY c, (2.48)

where Xc and Y c is the exercise boundary.

Since the value function of the bidder OBc (Xc, Y c) (2.47) is not homogeneous neither in X,

nor in Y , it is not possible to reduce the solution to the ratio X
Y

as it was done for the stock

mergers in Morellec and Zhdanov (2005) and Hackbarth and Morellec (2008) (see Section 2.3.1)

and I have to rely on numerical methods to solve this problem.

I use Longstaff and Schwartz (2001) least squares Monte Carlo (LSM) approach that is rel-

atively simple and convenient for multi-factor models3. This method was also used in another

real options paper by Cortazar, Gravet, and Urzua (2008) to solve the three-factor model for the

copper mine valuation based on traditional Brennan and Schwartz (1985) setup.

3MATLAB codes for LSM estimation are available from the author on demand.
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Parameter calibration for LSM Least squares approach requires setting a finite time horizon

(as opposed to infinite horizon in the original papers); for the major part of the solution I choose

a horizon of 5 years (T=5). Remaining parameters are set as follows:

• risk-free interest rate r = 0.06, dividend payout rates for the bidder δX = 0.005 and for

the target δY = 0.035 implying drifts of µX = 0.055 and µY = 0.025, volatilities σX = 0.2

and σY = 0.2, correlation between stochastic processes of the firms ρ = 0.75 are set as in

Hackbarth and Morellec (2008) (see Table I on page 1227);

• estimation is based on N = 100, 000 paths as in Longstaff and Schwartz (2001) with y = 10

exercise points per year for the sample simulation in Table 2.5 and interchangeably y = 10

and y = 50 otherwise4;

• though Hackbarth and Morellec (2008) consider mergers of equals with K = Q, Andrade,

Mitchell, and Stafford (2001) report that the median relative size of the target was 11.7%

in 1973-1998; that is why I set the capital stock of the bidder K = 100 and of the target

Q = 12;

• initial values of X and Y are set to X0 = Y0 = 1 implying that 1) both bidder and tar-

get are neither undervalued, nor overvalued and 2) initial merger synergy computed as

α (X0 − Y0) (K +Q) is zero;

• lump-sum price P offered for the whole firm of the target is set to P = 12 implying zero

merger premium for the target;

• synergy parameter α is set to α = 0.4 resulting in reasonable merger premium of 22% for

cash merger and 52% for stock merger over a 5-year horizon (see Table 2.2).

Since the solution for the cash merger based on LSM hinges on the assumption about chosen

finite horizon, it is not directly comparable to the infinite-horizon solution derived in Morellec and

Zhdanov (2005) and Hackbarth and Morellec (2008) and presented in Section 2.3.1. Thus, I need

to solve stock merger problem using LSM with finite horizon too.

LSM: short algorithm description for both cash and stock merger problems

1. simulate X and Y obtaining N simulation paths for y exercise points per year;

4y=50 was used in the original paper by Longstaff and Schwartz (2001).

44



CHAPTER 2

2. compute state variables and payoffs:

cash: state variables for the bidder SB = V (X, Y )−KX = QY + α (K +Q) (X − Y ), for

the target ST = QY ;

payoffs to the bidder P c
B = max (QY + α (K +Q) (X − Y )− P, 0) and to the target P c

T =

max (P −QY, 0);

stock: state variable for the central planner SCP = α (X − Y ) (K +Q);

payoff to the central planner PCP = max (α (K +Q) (X − Y ) , 0).

Appendix B.1 explains in detail why it is possible to solve the stock merger problem from

the point of view of central planner setting sB = K
K+Q

and provided α (K +Q) > Q (that

can be rewritten as K
K+Q

> 1− α) is satisfied; in this paper K
K+Q

= 0.8929 > 1− α = 0.6.

3. apply LSM as follows5:

cash: for the merger option to be exercised at some point both bidder and target should

independently prefer immediate exercise to option continuation at this point;

stock: central planner should prefer immediate exercise to continuation;

4. compute option values:

cash: to the bidder OBc
LSM and to the target OTc

LSM as sample mean;

stock: to the central planner OCPs
LSM as sample mean; separately to the bidder OBs

LSM

and to the target OTs
LSM as sample mean of discounted payoffs at exercise to the bidder

(sBV (Xs, Y s)−KXs) e−rtex and to the target ((1− sB)V (Xs, Y s)−QY s) e−rtex (tex is the

time of option exercise);

5. compute average market valuation6 MARKET cLSM (MARKET sLSM), average merger pre-

mium PREM c
LSM (PREM s

LSM), and average ratio Rc
LSM (Rs

LSM) at the time of exercise

using the sub-sample of paths where the merger is exercised at some point as a mean of the

following quantities:
KXc

LSM+QY cLSM
K+Q

(
KXs

LSM+QY sLSM
K+Q

)
, P
QY c
− 1

(
(1−sB)V (Xs,Y s)

QY s
− 1
)

and Xc

Y c(
Xs

Y s

)
.

Table 2.1 presents the results of LSM simulations over different time horizons: 1, 5, 25 and

50 years together with the result for infinite horizon based on Morellec and Zhdanov (2005) and

Hackbarth and Morellec (2008) (see Section 2.3.1 for detailed derivations).

Option values to the players increase as time horizon becomes longer; for the stock merger case,

option values converge monotonically to the infinite horizon option which is perfectly intuitive.

5As regressors, I use a constant and the first three powers of the state variable.
6There are only two firms in the model and, consequently, market valuation depends on X and Y only.
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‘Total’ for cash merger options is always lower than for respective stock merger options reflecting

the fact that stock merger is the ‘first-best’ choice as shown in Morellec and Zhdanov (2005),

Hackbarth and Morellec (2008) and, though for a different setup, in Lambrecht (2004).

Market valuation as measured by MARKET cLSM for cash merger and MARKET sLSM for stock

mergers demonstrates desired behavior: for all of the estimated time horizons, market valuation

for cash merger is always lower than the market valuation for the stock merger; to prove that

this relationship holds generally, I will simulate a cross-section of mergers and conduct regression

analysis later in the paper.

The behavior of merger premium of the stock merger PREM s
LSM has one quite striking prop-

erty: while the size of the premium remains quite reasonable over 1-year and 5-year horizon (18%

and 52% respectively), it becomes very high over 50-year horizon (689%) and reaches even higher

level of 1066% over an infinite horizon.

Average ratio Xs

Y s
for the stock merger (Rs

LSM) also climbs very high over an infinite horizon

reaching the level of 9.24, whereas the same ratio for the cash merger remains reasonable.

These large (and unrealistic) magnitudes may suggest that firms do not really consider horizons

of such length; that is why the choice of 5-year horizon seems quite appropriate.

Table 2.2 compares the results of LSM estimation over 1-year and 5-year horizon for different

number of exercise point per year: 10 and 50. Results suggest that loss in computational accuracy

when switching from 50 to 10 exercise points per year is acceptable, whereas gains in computational

speed are significant; henceforth, I conduct LSM estimation based on 10 exercise points per year

(y = 10).

Finally, Figures 2.1 illustrates exercise boundaries for the stock and cash mergers separately

for the benchmark example with T = 5 and y = 10 (for estimation results see row 4 of Table 2.2),

whereas Figure 2.2 puts them together for better comparison.

Figure 2.2 demonstrates that when capital valuations of both bidder and target are relatively

high, only stock mergers should be observed; on the contrary, when valuations are relatively

low, both cash and stock merger may be observed. Taking into account the fact that correlation

between X and Y is positive in this example (ρ = 0.75), one concludes that when market valuation

(as measured by weighted average of firm’s valuations) is high, stock mergers should be observed,

whereas at low market valuations both types of merger may be observed.

Tables 2.3 and 2.4 provide estimation results for the price P computed as P = −0.6 + 1.35QY

with parameters estimated from a sample of cash mergers; one can see that for this functional

form of P cash mergers demonstrate the same long-run behavior as stock mergers: MARKET cLSM
and Rc

LSM increase significantly over 50-year horizon; on the contrary, cash merger premium
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(a) Stock merger (b) Cash merger

Figure 2.1: Exercise boundaries for the stock and cash mergers separately at T = 5, y = 10 and
remaining parameters as above

Figure 2.2: Exercise boundaries for the stock and cash mergers at T = 5, y = 10 and remaining
parameters as above
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Table 2.5: Parameters calibration

Parameter Benchmark Sample simulation rule
example U [a, b] Other

a b
T 5 = 5
y 10 = 10
r 0.06 0.04 0.08
δX 0.005 0 0.01
δY 0.035 0.03 0.04
σX 0.2 0.15 0.25
σY 0.2 0.15 0.25
ρ 0.75 -1 1
K 100 75 125
Q 12 9 15
α 0.4 0.35 0.45
X0 1 0.5 2.5
Y0 1 = X0

P 12 = QY0

U [a, b] stands for uniform distribution with parameters a and b.
Parameters Y0 and P are set so as to ensure that initial synergy and initial merger premium are both
equal to zero (as in estimations in Tables 2.1 and 2.2).
Drifts are µX = r − δX , µY = r − δY .

PREM c
LSM stays under 35% due to the scific functional form of P . However, on 5-year horizon

there is no huge qualitative difference between constant price P as in Tables 2.1 and 2.2 and linear

price P as in Tables 2.3 and 2.4; for the rest of the Section, I use the first setup with constant

price P .

In order to conduct more general test of a hypothesis that stock mergers should be observed

at high market valuations, and cash mergers should occur at low market valuations, I simulate a

sample of 1000 merger situations (without initially specifying the type of a merger) with majority

of input parameters drawn from independent uniform distributions (see Table 2.5 for details).

A fragment of 15 simulated merger situations is presented in Appendix B.2: Table B.1 presents

estimation results, and Table B.2 provides input parameters.

One can easily see that though the sum of bidder’s and target’s stock merger options is always

greater than the sum of cash merger options (reflecting the fact that stock merger is the ‘first-best’),

but in some cases both bidder’s and target’s stock merger options are greater than respective cash

merger options, and in the remainder of cases target’s stock option is greater than target’s cash
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Table 2.6: Payoff matrix

Target
CASH STOCK

Bidder
CASH OBc

LSM , OTc
LSM 0 , 0

STOCK 0 , 0 OBs
LSM , OTs

LSM

options, whereas bidder’s stock option is smaller than bidder’s cash option.

Generally, when both stock and cash merger options are available to the players, the payoff

matrix of the game looks like the one presented in Table 2.6. Each player has two pure strategies:

play CASH or play STOCK; if players’ strategies do not match, then payoffs to both players are

zero.

It is easy to see that there are two Nash equilibria in this game: play CASH,CASH and play

STOCK,STOCK. Depending on the relative size of payoffs, one needs to distinguish between

two following situations in order to formulate rules of equilibrium selection:

1. OBs
LSM ≥ OBc

LSM and OTs
LSM > OTc

LSM ; see, for example, row 2 of Table B.1. It means that

Nash equilibrium STOCK,STOCK is both payoff and risk dominant over Nash equilibrium

CASH,CASH; thus, rational players should both agree on playing STOCK,STOCK.

2. OBs
LSM < OBc

LSM and OTs
LSM > OTc

LSM ; see, for example, row 1 of Table B.1. It means

that neither of equilibria is payoff dominant; thus, Nash equilibria CASH,CASH and

STOCK,STOCK are played with the same probability.

Having established equilibrium selection rules, I proceed to regression analysis using the sim-

ulated sample.

Table 2.7 demonstrates that MARKETLSM has negative effect on probability of a cash merger

in both probit and logit models: coefficient on MARKETLSM is negative and statistically signif-

icant at the 1% significance level.

Thus, regression analysis in Table 2.7 shows that in this setup, cash mergers should be observed

at low market valuations, and stock mergers should be observed at high market valuations agreeing

with empirical evidence on dominance of stock mergers at high market valuations.
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Table 2.7: Regression analysis

Probit Logit
constant -10.24256** -16.82325**

(-7.97) (-7.92)
MARKETLSM -11.72748** -21.26603**

(-13.18) (-11.99)
r 76.8797** 138.9899**

(8.23) ( 7.91)
δX -111.3395** -198.6983**

(-4.00) (-3.97)
σX 24.03141** 42.40887**

(7.54) (7.29)
σY -6.76513* -11.16768*

(-2.38) (-2.23)
ρ -3.874487** -7.021367**

(-13.32) (-12.12)
Q .0093608 -

( 1.70)
X0 16.77087** 30.33026**

(12.85) (11.78)
Pseudo R2 0.6747 0.6726

LR χ2 755.82 753.5
p-value of LR 0.0000 0.0000

Number of observations 1000 1000
Goodness-of-fit Pearson test OK OK

Only last specification shown; z-score values in parentheses; 5% and 1% significance levels denoted by *
and ** respectively.
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2.4 Dynamics of the intra-industry mergers

This section is based on the results for stock mergers obtained in Lambrecht (2004) and uses

the same definitions as Section 2.2, in particular:

option value to firm 1 equals:

OM1(pt) =
(
c (p∗)γ

(
s1 (K1 +K2)θ −Kθ

1

)
−M1

)( pt
p∗

)β2
(2.49)

option value to firm 2 equals:

OM2(pt) =
(
c (p∗)γ

(
(1− s1) (K1 +K2)θ −Kθ

2

)
−M2

)( pt
p∗

)β2
(2.50)

globally optimal threshold p∗ is:

p∗ =

 β2

β2 − γ
M1 +M2

c
(

(K1 +K2)θ −Kθ
1 −Kθ

2

)
 1

γ

(2.51)

share of firm 1 equals:

s1 =
M1

(
(K1 +K2)θ −Kθ

2

)
+M2K

θ
1

(M1 +M2) (K1 +K2)θ
. (2.52)

Consider an industry consisting of three firms that differ in capital stock (K1, K2 and K3) and

merger costs (M1, M2 and M3). Assume that only two firms can merge at a time, but later this

combined entity may merge with the third firm. The questions are: What is the optimal order

in which firms should merge? How does it change with changes in initial capital allocation? How

does market valuation influence merger process in the industry?

Without loss of generality, assume that in the first step firm 1 merges with firm 2 creating firm

12; in the second step, the merged firm 12 merges with firm 3.

Solving backwards, one needs first to determine the terms and timing of the merger between

firm 12 and firm 3; using the formulas above yields:

p2 =

 β2

β2 − γ
M1 +M2 +M3

c
(

(K1 +K2 +K3)θ − (K1 +K2)θ −Kθ
3

)
 1

γ

(2.53)
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for the optimal timing of merger p2;

OM12(pt) =
(
cpγ2

(
s12 (K1 +K2 +K3)θ − (K1 +K2)θ

)
−

−M1 −M2

)(
pt
p2

)β2
= Bpβ2t

(2.54)

for the option value to firm7 12 OM12;

OM3(pt) =
(
cpγ2

(
(1− s12) (K1 +K2 +K3)θ −Kθ

3

)
−M3

)( pt
p2

)β2
(2.55)

for the option value to firm 3 OM3;

s12 =
(M1 +M2)

(
(K1 +K2 +K3)θ −Kθ

3

)
+M3 (K1 +K2)θ

(M1 +M2 +M3) (K1 +K2 +K3)θ
(2.56)

for the share of firm 12 in the new entity s12.

Now we are back to the first stage: firm 1 is merging with firm 2 to create a new firm 12. The

benefit from merging is twofold: first, participating firms share synergy stemming directly from

the merger; second, they acquire the opportunity to merge with the firm 3 later to get even more

benefits from this new merger.

The option to merge of firm 1 OM1 reflects this twofold benefit and satisfies the following value

matching and smooth pasting conditions:

OM1(p1) = cpγ1

(
s1 (K1 +K2)θ −Kθ

1

)
−M1 + s1OM12 =

= cpγ1

(
s1 (K1 +K2)θ −Kθ

1

)
−M1 + s1Bp

β2
1

(2.57)

OM ′
1(p1) = cγpγ−1

1

(
s1 (K1 +K2)θ −Kθ

1

)
+ s1Bβ2p

β2−1
1 (2.58)

where p1 is the merger threshold for the merger between firm 1 and firm 2;

s1 is the share of the new merged entity accruing to firm 1.

Applying the same logic as in Section 2.2.1 yields that the option to firm 1 is of the form

OM1 = Apβ2t . Writing down corresponding conditions for firm 2 and solving for OM1 and for

7B =
cpγ

2 (s12(K1+K2+K3)
θ−(K1+K2)

θ)−M1−M2

p
β2
2
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OM2 yields:

OM1(pt) =
(
cpγ1

(
s1 (K1 +K2)θ −Kθ

1

)
−M1 + s1Bp

β2
1

)( pt
p1

)β2
(2.59)

OM2(pt) =
(
cpγ1

(
(1− s1) (K1 +K2)θ −Kθ

2

)
−M2+

+ (1− s1)Bpβ21

)(
pt
p1

)β2 (2.60)

where the merger threshold p1 equals:

p1 =

 β2

β2 − γ
M1 +M2

c
(

(K1 +K2)θ −Kθ
1 −Kθ

2

)
 1

γ

(2.61)

and the share of the new firm 12 accruing to firm 1 is:

s1 =
M1

(
(K1 +K2)θ −Kθ

2

)
+M2K

θ
1

(M1 +M2) (K1 +K2)θ
. (2.62)

It is important to notice that neither merger threshold p1, nor share of firm 1 s1 change as

compared to the baseline model without an option to merge with firm 3 later (compare p1 to p∗ in

(2.51) and s1 to s1 in (2.52)). This means that the extension of the original model with an extra

option does not drive away the equilibrium from being Pareto-optimal.

The strategy of the players now can be summarized as follows:

1. p1 < p2 means that both mergers occur at optimal thresholds:

• Firm 1 merges with firm 2 at p1 to establish a new firm 12;

• Firm 12 merges with firm 3 at p2.

2. p1 ≥ p2 means that one of the mergers happens at sub-optimal threshold8:

• Firm 1 merges with firm 2 at p1 to establish a new firm 12;

• Firm 12 merges with firm 3 at the same (sub-optimal in this stage) threshold p1. Option

value of this merger is computed based on (2.54) and (2.55) using p1 rather than p2 as

it would be at the optimal threshold.

8I assume here that this is the merger in the second stage that occurs at sub-optimal threshold, but it can also
be vice versa.
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Option values to the firms are OM1, OM2 and OM3 as in (2.59), (2.60) and (2.55) respectively.

Table 2.8 presents numerical examples for different initial capital allocations in the industry:

equal firms with K1 = K2 = K3 = 33 (Panel A, least concentrated industry), firms of comparable

size with K1 = 20, K2 = 30, K3 = 50 (Panel B), one large firm with K3 = 80 and two small firms

with K1 = K2 = 10 (Panel C, most concentrated industry).

The main conclusion drawn from Table 2.8 is that stock mergers in more concentrated industries

(Panel C) occur at higher market valuation (i.e. later) as compared to mergers in less concentrated

industries (Panel A). Table 2.8 also demonstrates that total value of options to merge OM is

highest in Panel A and decreasing in industry concentration. Analysis in this Section should be

extended to the industries with larger number of firms to obtain clearer picture.

2.5 Conclusion

In this paper I have compared the terms and timing of cash vs. stock mergers for two different

settings: in the first one by Lambrecht (2004), the synergy comes from increasing returns to scale

and stochastic shock is the same for both bidder and target; the second one, with the synergy

linear in pre-merger valuations of the firms, encompasses correlated stochastic processes for the

firms and is based on Morellec and Zhdanov (2005) and Hackbarth and Morellec (2008).

I have demonstrated that cash mergers should generally happen at low market valuation, and

stock mergers may happen at both low and high market valuations; this conclusion conforms to

existing empirical evidence. It partially supports prediction made by Shleifer and Vishny (2003)

for the static model.

I have investigated the dynamics of the intra-industry mergers within the first setup. I solved

for the optimal order of mergers inside an industry for different initial capital allocations to

demonstrate that stock mergers in more concentrated industries occur at higher market valuation

(i.e. later) as compared to mergers in less concentrated industries.
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Table 2.8: Intra-industry mergers

p1 p2 Firm 1 Firm 2 Firm 3 Total Stage 1 Stage 2
Panel A (HHI=3333)

K1 K2 K3 K
33 33 33 99
OM1 OM2 OM3 OM

1.928 1.947 17.131 17.131 8.500 42.763 1+2 12+3
1.928 1.947 17.131 8.500 17.131 42.763 1+3 13+2
1.928 1.947 8.500 17.131 17.131 42.763 2+3 23+1

Panel B (HHI=3800)
K1 K2 K3 K
20 30 50 100
OM1 OM2 OM3 OM

2.053 1.817 10.229 15.945 14.280 40.454 1+2 12+3
2.150 2.009 8.805 7.370 23.935 40.109 1+3 13+2
1.947 2.356 3.872 13.219 22.887 39.978 2+3 23+1

Panel C (HHI=6600)
K1 K2 K3 K
10 10 80 100
OM1 OM2 OM3 OM

2.286 2.356 3.961 3.961 15.487 23.409 1+2 12+3
3.186 3.319 2.046 1.158 19.450 22.654 1+3 13+2
3.186 3.319 1.158 2.046 19.450 22.654 2+3 23+1

HHI denotes Herfindahl-Hirschman index: HHI = 10000
K2

1+K2
2+K2

3
K2 .

K is total capital in the industry.
OM is the total value of options to merge.
Parameters are set as follows: merger costs Mi = 0.05Ki, c = 1, γ = 1.4, θ = 1.2, µ = 0.03, σ = 0.2,
r = 0.06 implying β2 = 1.5 so that the condition γ < β2 holds, p0 = 1.
Value 1 + 2 in the column Stage 1 means that in the first stage firm 1 merges with firm 2 to create a new
firm 12; analogously, value 12 + 3 in the column Stage 2 means that in the second stage firm 12 merges
with firm 3.
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Menu costs in international trade: a

dynamic story
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3.1 Introduction

The concept of ‘menu costs’ is the important element of the New Keynesian economics paradigm.

It refers to the costs the firms have to incur to change their prices. The seminal study by Mankiw

(1985) investigated the behavior of monopolies in the presence of menu costs and the reasons for

price stickiness1.

Clearly, menu costs are also important for international trade since they induce the exporters

to adjust their export prices not as often as they would optimally do in in the absence of menu

costs.

Imagine an exporter facing the appreciation of the home currency and, consequently, decrease

in profits. The easiest way to keep profits stable is to adjust prices constantly (then the exchange

rate pass-through equals one), but this would give rise to menu costs and may result in worsened

relationships with customers. The other extreme is not to adjust prices at all (then the exchange

rate pass-through equals zero) and to exercise the option to exit as soon as the exchange rate

jumps out of the certain corridor as in Dixit (1989).

I would like to investigate an intermediate case: an exporter has a number of opportunities

to adjust prices paying the sunk menu costs each time; in this case, an average exchange rate

pass-through lies between zero and one. The main goal of the study is to solve for the optimal

timing of export price adjustments and estimate respective option values.

This paper aims to investigate the influence of menu costs on the behavior of export prices in

the dynamic, real options setting. The related real options literature that studies the influence

of exchange rates movements on such strategic decisions of multinational firms as extry/exit and

market segmentation provides necessary background and benchmarks.

Thus, Friberg (2001) studies the implications of the exchange rate volatility for market seg-

mentation decision by an exporting firm. Exporter operates on two markets; it can either charge

the same price everywhere (so that the ‘law of one price’ would hold), or segment markets at sunk

cost. Friberg (2001) argues that the value of the option to segment increases in the exchange rate

volatility. His study is related to Dixit (1989) that investigates the entry and exit decisions by ex-

porters and demonstrates that there exists a band of exchange rates where no entry-exit happens;

1In his blog http://gregmankiw.blogspot.com/2007/04/menu-costs.html, Pr Mankiw explains the origins
of the term ‘menu costs’ as follows:

I did not make up the name. The earliest reference I can find to the term in J-stor journals is in
‘Relative Shocks, Relative Price Variability, and Inflation’ by Stanley Fischer, published in 1981, the
exact year I was a first-year grad student at MIT. I undoubtedly picked up the name in Stan’s course.
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the exchange rate pass-through is close to zero within this band and close to one otherwise.

Broll and Eckwert (1999) develops a model where a risk-averse firm supplies either to the home

market, or to the foreign market (depending on the realization of the exchange rate at the time

when decision is made); markets are segmented, and exchange rate pass-through is set to zero.

Broll and Eckwert (1999) demonstrate that export volume increases in exchange rate volatility for

moderate degrees of risk aversion.

Botteron, Chesney, and Gibson-Asner (2003) rely on real options framework to analyze the

decision of the firm to become partially or fully multinational; they derive a corridor of exchange

rates inside which the firm remains fully local, and outside of which it delocalizes its production

and/or sales. They also introduce competition to show how it may trigger a preemptive delocaliza-

tion. Though the present paper deals with a different type of strategic decision of the firm (namely,

export price renegotiation), the general approach is similar to the one in Botteron, Chesney, and

Gibson-Asner (2003).

In this paper I solve for the timing of optimal export price adjustments for both infinite and

finite horizon case. The former relies on traditional real options techniques providing closed form

solutions for the export price adjustment thresholds and option values as, for example, in Dixit

and Pindyck (1994) or Botteron, Chesney, and Gibson-Asner (2003), whereas the finite horizon

problem employs binomial method for option pricing first proposed by Cox, Ross, and Rubinstein

(1979). For the finite horizon case I also derive the optimal exercise boundary of the first price

adjustment and explain how to obtain the respective boundaries for the second and further price

adjustments. In both cases I demonstrate how menu costs make export prices sticky.

According to Broll and Eckwert (1999), exchange rate movements do not have any systematic

effect on the prices in the country of destination; they also argue that the degree of the exchange

rate pass-through differs very much across countries and industries and is normally much less than

100% according to the empirical literature. This observation together with the fact that export

prices should be sticky (because of menu costs) provided another research question to be dealt

with in this paper: how volatile are export prices relative to the exchange rates? I show that

aggregate export prices are approximately four to five times less volatile than the exchange rates;

I also show how volatility changes with the correlations between the pairs of exchange rates in

case of multiple exporters.

Thus, this paper’s contribution is twofold. First, it provides a simple yet powerful partial

equilibrium model of international trade in the presence of menu costs; it demonstrates that even

relatively small menu costs may cause export price stickiness. Second, this paper contributes to

the literature on real options developing a model of sequential options for both infinite and finite
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horizon.

The paper is organized as follows: Section 3.2 gives the overview of the model, Section 3.3

investigates the properties of the model under the assumption of the infinite horizon, Section 3.4

provides the numerical solution for the finite horizon, Section 3.5 presents the results of numerical

simulation, Section 3.6 concludes.

3.2 Model description

Consider a firm in the Home country that produces both for domestic consumption and for

exports to the Foreign country. Constant risk-free rates of interest are δ in the Home country and

r in the Foreign country; following the literature, I assume that the dynamics of the exchange rate

process2 X(t) under the risk-neutral probability measure is described by a geometric Brownian

motion:

dXt = (δ − r)Xtdt+ σXtdWt, (3.1)

where Wt is a standard Browninan motion and σ2 is the constant volatility of the exchange rate.

Consider a very simple setup:

• Home and Foreign markets are uncorrelated to ensure that exchange rate movements do not

affect profits in the Home market;

• firm exports one unit of the product per unit time and Foreign demand is inelastic (the firm

is really small as compared to the size of the Foreign market);

• optimal price as measured in Home currency is constant and equals PH ;

• initial export price as measured in Foreign currency is set to P0 = PH
X0

with X0 being the

value of the exchange rate at time zero;

• menu costs associated with price renegotiation are constant and equal to M (measured in

Home currency);

• production costs and profits in the Home market are normalized to zero to simplify the

exposition;

2The exchange rate is the price of the unit of the Foreign currency measured in the Home currency.
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• the instantaneous profit flow of the firm is given by:

π (Xt, Pt) = PtXt, (3.2)

where Pt is the export price at time t (initially set to P0 as above);

• the the value of the firm measured as the sum of future discounted profits is:

V (Xt, Pt) = EQ
[∫ ∞

t

PtXse
−δsds

]
=

PtXt

δ − (δ − r)
=
PtXt

r
, (3.3)

where EQ is the expectation under the risk-neutral measure Q;

V0 = V (X0, P0) = PH
r

.

It is clear that an appreciation in the Home currency results in the foreign sales decrease, and,

consequently, in the decrease in the value of the firm V . To compensate for the exchange rate

appreciation at some time τ , the exporter needs to renegotiate the export price and to increase it

to the new level Pτ = PH
Xτ

= P0X0

Xτ
. If this renegotiation were not costly, it would be optimal for the

exporter to continuously adjust its export price to compensate for the exchange rate appreciation.

Unfortunately, one has to pay menu costs to adjust prices, therefore, prices are generally sticky

and are adjusted in a discrete way.

Thus, the exporter waits until the exchange rate process hits from above some endogenous

threshold Xτ to pay fixed menu costs M and to switch to the new, optimal level of export price

Pτ . What happens next? As time passes and exchange rates continues to appreciate, exporter

faces exactly the same problem as before: export profits are decreasing. The remedy is the same:

to wait until Xt goes down to hit another threshold Xτ2 , to pay menu costs M and to adjust

the export price to the level Pτ2 = PH
Xτ2

. The adjustment procedure must be repeated as often as

needed.

Then the optimal dynamic price adjustment strategy of the exporter can be summarized as

follows:

1. Start at X0 with export price equal to P0 = PH
X0

;

2. As Xt first hits the threshold X1 from above, pay M to switch from P0 to P1 = P0X0

X1
= PH

X1

(Naturally, P1 will be higher than P0.);

3. As Xt first hits the next threshold X2 from above, pay M to switch from P1 to P2 = PH
X2

;

4. Repeat previous step switching sequentially from X2 to X3, then from X3 to X4 and so on.
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It is clear that menu costs M is the crucial element that is responsible for discreteness of

export price changes and for the frequency of export price adjustments: increasing menu costs

not only diminish the option value accruing to the exporter, but also result in less frequent price

adjustment; in particular, first adjustment occurs later.

One can restate this problem in terms of options: the exporter has a put-type real option ON

that allows for a number of export price adjustments under the condition of paying fixed menu

costs M at each adjustment. Under the assumption of the infinite horizon, the number of price

adjustments is infinite (this problem is discussed in Section 3.3), whereas under the assumption of

the finite horizon the number of price adjustments is finite (this problem is presented in Section

3.4).

3.3 Options with infinite horizon

This section uses the well-known techniques developed in the literature on real options; for the

main reference source, one can refer to Dixit and Pindyck (1994).

First I solve for the value O and exercise threshold X∗ of a perpetual option that allows for

one price adjustment from P0 to P ∗; this solution will serve us as a benchmark. The payoff to this

option equals:

PF ∗ (Xt) = max

(
V0 −

XtP0

r
−M, 0

)
= max

(
V0 − V0

Xt

X0

−M, 0

)
(3.4)

as P0 = PH
X0

and V0 = PH
r

.

In the continuation region (for Xt > X∗) this option satisfies the following ODE:

δO = (δ − r)XO′ + σ2

2
X2O′′ (3.5)

with the general solution being:

O = B1X
β1 +B2X

β2 , (3.6)

where β1 and β2 are negative and positive roots of the characteristic equation 1
2
σ2β(β − 1) +

(δ − r) β − δ = 0 and B2 = 0 since limX→∞O = 0.

At the exercise threshold X∗ the option O should satisfy the following value-matching and
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smooth-pasting conditions:

O (X∗) = PF ∗ (X∗) = V0 − V0
X∗

X0

−M (3.7)

O′ (X∗) = − V0

X0

. (3.8)

Solving for X∗ yields a familiar expression for an exercise threshold of a perpetual put option:

X∗ =
β1

β1 − 1
X0

V0 −M
V0

. (3.9)

The option value is then:

O (Xt) =

(
V0 −M − V0

X∗

X0

)(
Xt

X∗

)β1
=
V0 −M
1− β1

(
β1 − 1

β1

V0

V0 −M

)β1 (Xt

X0

)β1
(3.10)

In particular, O (X0) which is the option value at time t = 0 equals:

O (X0) =
V0 −M
1− β1

(
β1 − 1

β1

V0

V0 −M

)β1
. (3.11)

Equations 3.9-3.11 provide a starting point for the analysis. First, the option value O (X0)

does not depend on the initial level of the exchange rate X0; this is due to the infinite-horizon

nature of the problem in addition to the fact that export price adjustments fully compensate for

the exchange rate movements, so that the problem is stationary in terms of the XtPt.

Second, the coefficient β1
β1−1

is less than one since β1 < 0. It implies that the threshold X∗ is

smaller than the NPV threshold XNPV = X0
V0−M
V0

that is solved for as the root of the equation

O1 (XNPV ) = 0. Thus, price adjustment in the real options setting occurs later than it would

occur under the traditional NPV rule. It is also possible to compute the ‘prohibitive menu costs’

level as the solution to the equation X∗ (Mp) = 0 to obtain Mp = V0. The results is not striking

at all: when the menu costs are equal to the value of the firm itself, it certainly makes no sense

to do a price adjustment.

To conclude, one can see that the optimal threshold X∗ is a fraction of the initial exchange

rate level X0; it means that the price renegotiation is a reaction to a certain percentage of the

appreciation of the Home currency.

With these results in hand, I proceed to solve the general infinite-stage problem. I need to find

the value of the option to perform infinite number of price adjustments O∗inf paying a fixed cost

65



CHAPTER 3

M at each adjustment.

The solution follows the same lines as the one presented above (equations 3.4-3.11). Due to

the stationary nature of the problem, it is sufficient to consider the situation between the two

price adjustments; initial exchange rate level is X0 with initial export price being P0 = PH
X0

. At

the moment of price adjustment (when Xt first hits the threshold Xinf from above), the exporter

benefits from optimizing the export price and from obtaining the option to perform an infinite

series of price adjustments again. Thus, he payoff to the option equals:

PFinf (Xt) = max

(
PH
r
− XtPH

X0r
+O∗inf −M, 0

)
, (3.12)

while the value-matching condition is given by:

Oinf (Xinf ) = PFinf (Xinf ) =
PH
r
− XinfPH

X0r
+O∗inf −M =

= V0 +O∗inf −M − V0
Xinf

X0

. (3.13)

Therefore, the expressions for the threshold Xinf and the option value Oinf are as follows:

Xinf =
β1

β1 − 1
X0

V0 +O∗inf −M
V0

(3.14)

Oinf (Xt) =

(
V0 +O∗inf −M − V0

Xinf

X0

)(
Xt

Xinf

)β1
=

=
V0 +O∗inf −M

1− β1

(
Xt

Xinf

)β1
=

=
V0 +O∗inf −M

1− β1

(
β1 − 1

β1

V0

V0 +O∗inf −M

)β1 (
Xt

X0

)β1
. (3.15)

Then Oinf (X0) which is at the same time equal to O∗inf is as follows:

Oinf (X0) = O∗inf =
V0 +O∗inf −M

1− β1

(
β1 − 1

β1

V0

V0 +O∗inf −M

)β1

=

=
1

1− β1

(
β1 − 1

β1

V0

)β1 (
V0 +O∗inf −M

)1−β1 . (3.16)
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The value of the option to perform infinite number of price adjustments O∗inf can be found

from (3.16); generally, the closed-form solution does not exist, therefore I will use the numerical

example to demonstrates how the model works.

The values of the input parameters are as follows: δ = 0.05, r = 0.09, σ = 0.2, PH = 12,

X0 = 1.2 implying P0 = 10 and V0 = 133.33; menu costs M are set to equal 1% of the initial

annual profits PH so that M = 0.12.

Given these values of parameters, there exist two values of O∗inf that satisfy (3.16): o1 =

185.5868 and o2 = 207.1656. To understand which of o1 and o2 is relevant to the solution, it is

useful to notice that the sequence of options On (n = 1, 2, 3, ... is the number of adjustments

made under this option) is generated by the iterated function in the following way: O1 = f (0),

O2 = f (O1), O3 = f (f (O1)) etc. where f (x) is the following function:

f (x) =
1

1− β1

(
β1 − 1

β1

V0

)β1
(V0 −M + x)1−β1 . (3.17)

Then it follows that o1 and o2 are the fixed points of the sequence of options, with o1 being an

attractive fixed point (for any value of x around this fixed point the sequence converges to o1) and

o2 not being an attractive fixed point. Therefore, I conclude that o1 = 185.5868 is the solution to

the option problem.

Thus, the value of the option to perform infinite number of price adjustments is O∗inf = 185.5868

and the price adjustment threshold equals Xinf = β1
β1−1

X0
V0+O∗

inf−M
V0

= 0.9673X0 = 1.1608.

Figure 3.1 illustrates the behavior of the option sequence On for 1 ≤ n ≤ 600. It shows

that the sequence converges to O∗inf = 185.5868 quite fast; the option with as many as 100 price

adjustments captures most of the O∗inf option value.

Summarizing, the option value at t = 0 and at the time of any price adjustment equals

O∗inf = 185.5868, whereas the option value in between the price adjustments is given by:

Oinf (Xt) =
V0 +O∗inf −M

1− β1

(
β1 − 1

β1

V0

V0 +O∗inf −M

)β1 (
Xt

X0

)β1
= 185.5868

(
Xt

X0

)β1
, (3.18)

where X0 is either the starting value or the exchange rate threshold of the previous price adjust-

ment.

The price adjustment thresholds are computed as follows: Xn = 0.9673nX0 with X1 = Xinf as

in the computations above.

The remaining question is: how much time does it take to reach the threshold? The expected
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Figure 3.1: Option values for different number of price adjustments

first passage time to hit the barrier Xinf starting from X0 for δ − r − σ2

2
< 0 is given by3:

tinf =
ln
(

X0

Xinf

)
|α|

= 0.5538 (3.19)

where α = δ − r − σ2

2
and time is measured in years.

Thus, export price adjustment occurs on average once in 6.6 months as the Foreign currency

depreciates by (1− 0.9673)100 = 3.27% as compared to the moment of the previous price adjust-

ment.

The infinite horizon model developed in this section outlines the structure of the solution, but

it has one main drawback: it hinges on the quite unrealistic assumption of the infinite horizon;

therefor, in the next section I ameliorate the model introducing a finite expiration of the option

to perform N price adjustments.

3See Ingersoll (1987), p. 353-354 for reference.
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3.4 Options with finite horizon

To solve for the value of the option that allows to perform N price adjustments over some finite

horizon T , I am using the traditional binomial method for the American put option valuation (first

proposed by Cox, Ross, and Rubinstein (1979)). I have preferred it to the finite difference method

originally proposed by Schwartz (1977) or to the quadratic approximation method by Barone-Adesi

and Whaley (1987) due its extreme simplicity and ready availability of the exercise boundary.

I set the horizon to be T = 3 years as it seems reasonable that the drift and volatility of the

exchange rate process will not dramatically change over this horizon. It should also be empha-

sized that T is the maturity of the compounded option to perform the whole series of N price

adjustments.

It is natural to ask oneself: what is the optimal number N of switches? Strictly speaking, the

number of switches is infinite since an option with another option embedded inside has more value

than the one without it; that is, the sequence of options ON (1 ≤ N) should be monotonically

increasing in N until the fixed point is reached. The problem with the finite horizon model is the

computational time needed to compute the value of the option with other options embedded; thus,

one has to trade off between the quality of the solution and the price one needs to pay to obtain

this solution. In this section I limit myself to the option to perform 5 export price adjustments;

as I will demonstrate later, the results are quite satisfactory.

The logic of the solution is the same as in Section 3.3 for the infinite horizon: first I am

computing the value of the option to perform exactly one price adjustment F1. The payoff to this

option is given by (3.4) that I repeat here:

PF ∗ (Xt) = max

(
V0 − V0

Xt

X0

−M, 0

)
, (3.20)

where X∗ is the exercise boundary. The payoff at the boundary is as follows:

PF ∗ (X∗) = max

(
V0 −X∗

V0

X0

−M, 0

)
. (3.21)

Due to the specific form of the payoff different from the usual option payoff max (K −X, 0),

initial value for the option calculation is equal to X0
V0
X0

= V0, and the strike price is V0−M . Thus,

the value of the option to perform one price adjustment is the function of the initial price V0,

strike price V0 −K, risk-free rates δ and r and the horizon T = 3; the total number of time-steps

n is set to n = max (50T, 50).
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Table 3.1: Option values under finite horizon of 3 years

F1 F2 F3 F4 F5

22.2191 29.4739 33.2950 35.6949 37.3426

100F2−F1

F1
100F3−F2

F2
100F4−F3

F3
100F5−F4

F4

32.65 12.96 7.21 4.62

The values of the input parameters are as follows: δ = 0.05, r = 0.09, σ = 0.2, PH = 12, X0 = 1.2
implying P0 = 10 and V0 = 133.33; menu costs M are set to equal 1% of the initial annual profits (PH):
M = 0.12. Fi denotes the value of the option to perform i price adjustments for 1 ≤ i ≤ 5.

Then, given the same set of parameters4 as in Section 3.3, the value of the option to perform

one price adjustments is F1 = 22.2191 over a horizon of T = 3 years.

To compute the value of the option to perform exactly two price adjustments over the three

year horizon, one needs to do the following: at each time step starting from the pen-ultimate one

T − j T
n

(1 ≤ j ≤ n
T

) increase the strike price by the option value F1 computed as above but on

the horizon of T −
(
T − j T

n

)
= j T

n
years. It means, in fact, that at each node of the binomial tree

another binomial tree for the option value F1

(
j T
n

)
is constructed; naturally, it requires more time

that a simple F1 computation. The option value F2 = 29.4739.

The value of the option to perform three price adjustments F3 follows the same lines: at each

time step T − j T
n

(except for those at time T ), increase the strike price by the value of the option

to perform two price adjustments F2 on the horizon j T
n

. The value of the option F3 = 33.2950.

Table 3.1 presents the results of computations up to the option value F5. It shows that FN

is an increasing concave function of N repeating the pattern for the infinite horizon model (see

Figure 3.1 for comparison).

The exercise boundary of the first price adjustment for F1 and F2 is presented in Figure 3.2.

These graphs are based on 1000 time steps for F1 and 1000 time steps for both the the main

computation and the ‘embedded’ option for F2.

Figure 3.2 demonstrates that in case of the option allowing for two price adjustments F2,

exercise boundary of the first adjustments is reached earlier than in case of F1; it means that if

the firm has only one opportunity to adjust its export price then it waits longer.

The exercise boundary of the second price adjustment in case of the option F2 can be drawn

only after the coordinates of the first price adjustment - exchange rate Xt and hitting time t - are

4The values of the input parameters are as follows: δ = 0.05, r = 0.09, σ = 0.2, PH = 12, X0 = 1.2 implying
P0 = 10 and V0 = 133.33; menu costs M are set to equal 1% of the expected initial annual profits (PH): M = 0.12.
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Figure 3.2: Exercise boundary of the first price adjustment for F1 and F2

determined, because this boundary is different for each combination of Xt and t.

The same is true for the option to perform three price adjustments F3: first the exercise

boundary for the first price adjustment should be drawn; then, after the position of the first hit is

determined, one can construct the exercise boundary of the second price adjustment. Last, after

the position of the second hit is identified, the exercise boundary of the third price adjustment

can be drawn.

As Table 3.1 demonstrates, the increase in option value from F4 to F5 is less than 5%, whereas

the computational time needed for the option F5 is around 5 hours. That is why I decide to limit

the number of price adjustments to 5.

To summarize the findings of Sections 3.3 and 3.4, I have demonstrated that even small menu

costs (equal to 1% of annual profits in this model) of export price adjustment may result in

significant export price stickiness; even under the assumption of infinite horizon of the option to

renegotiate the prices (see Section 3.3), the price adjustment occurs on average once in 6.6 months.

This could help explain why the exchange rate movements do not significantly affect the ag-

gregate price level; in the next section I am demonstrating this mechanism.
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3.5 Simulations

In this section I simulate the behavior of three exporters in the Foreign market under the

assumption of correlated exchange rates. I use the infinite-horizon setup from Section 3.3 because

of the availability of the closed-form solution. The values of the parameters are set as follows:

risk-free rates for the three exporting countries are r1 = 0.04, r2 = 0.07 and r3 = 0.09 with the

risk-free rate in the Foreign country being r = 0.09 as in Sections 3.3 and 3.4, volatilities of the

increments of the exchange rate processes are as follows: σ1 = 0.25, σ2 = 0.2 and σ3 = 0.3,

correlation between the first and the second exchange rate is ρ12 = 0.3, correlation between the

first and the third exchange rate is ρ13 = −0.4. The starting value of the exchange rate process

and the optimal price in the Home market are identical for all the exporting countries and equal

X1
0 = X2

0 = X3
0 = X0 = 1.2 and P 1

H = P 2
H = P 3

H = PH = 12 implying the initial export price of

P 1
0 = P 2

0 = P 3
0 = 10 as in Sections 3.3 and 3.4. Menu cost are set to 1% of PH as before. I assume

that market shares of the exporters are equal; thus, the average price P̄t in the Foreign market is

computed as the simple average of exporters’ prices with the initial price being P̄0 = 10

Assuming as much similarity between the exporters as possible allows us to concentrate on the

effects of exchange rates movements on the export price in the Foreign market; in order to do so I

compute the exchange rate thresholds for each of the exporters using the algorithm from Section

3.3 to obtain the following expressions for the exchange rate thresholds:

X1
n = 0.9646nX0

X2
n = 0.9709nX0 ,

X3
n = 0.9700nX0 (3.22)

where X1
n, X2

n and X3
n are the exchange rate thresholds for the nth export price adjustment for

the first, second and third exporters respectively.

Next I simulate N = 10000 realizations of the exchange rates using 50 exercise points per year;

then I obtain the time series of the export price for each exporter separately according to the

rule: as soon as the first threshold is reached (or, to be precise, overshoot because of the discrete

nature of the simulations), adjust the export price, then wait for the next threshold to be reached

to adjust the price again and so on. Having obtained the time series of export prices for each of

the exporters and for all random paths, I compute the time series of the average export price P̄t

as the simple average of the exporters’ prices.

Figure 3.3 presents the dynamics of the exchange rates together with the export prices for
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three randomly chosen paths. Though I use the infinite-horizon solution based on Section 3.3,

I restrict the time period over which the behavior of exporters is observed to three years; thus,

I assume that the exporters continue their activity after three-year horizon is reached. Figure

3.3 demonstrates that the average export price is less volatile than the export prices of individual

exporters, and that all the export prices are less volatile than the corresponding exchange rates for

each of the three random paths conforming to the empirical evidence. It also shows that average

export price stays constant for several months (in particular, the average period between the price

adjustments equals to 1.54 months in the whole sample).

Next I estimate annualized volatility of the log returns σ̂P̄ for the average export price series

P̄t to find that σ̂P̄ = 0.0516. Comparing this value with the volatilities of the increments of the

exchange rate processes σ1 = 0.25, σ2 = 0.2 and σ3 = 0.3, one clearly sees that average export

price is much less volatile than the exchange rates in this market.

Figure 3.4 exhibits σ̂P̄ as a function of the correlations ρ12 and ρ13. It demonstrates that

σ̂P̄ is generally lower when both correlations are negative - the effect that should be attributed

to diversification of imports (these are imports from the point of view of the Foreign country);

besides, σ̂P̄ stays below the level of 10% which is about two times lower than the lowest of σ’s

which is σ2 = 0.2 in this case.

To summarize, the present model generates sticky export prices (especially over relatively short

periods of time) and incomplete pass-through that conforms quite well to the existing empirical

evidence.

3.6 Conclusion

In this paper I have investigated the behavior of export prices under the assumptions of menu

costs of price adjustment and stochastic exchange rates. I have solved for the timing of optimal

export price adjustments for both infinite and finite horizon case.

In the former case I have provided closed form solutions for the export price adjustment thresh-

olds and option values as, for example, in Dixit and Pindyck (1994), whereas in the latter case

I have used the binomial method for option pricing first proposed by Cox, Ross, and Rubinstein

(1979). For the finite horizon case I have also derived the optimal exercise boundary of the first

price adjustment and explained how to obtain the respective boundaries for the second and further

price adjustments. In both cases I demonstrated that even small menu costs could make export

prices sticky; I have also provided the numerical simulations results in order to show how the

present model could generate results conforming to the empirical evidence on incomplete (and
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(a) Exchange rates for three exporting countries (path 1) (b) Average price in the foreign market (path 1)

(c) Exchange rates for three exporting countries (path 2) (d) Average price in the foreign market (path 2)

(e) Exchange rates for three exporting countries (path 3) (f) Average price in the foreign market (path 3)

Figure 3.3: Exchange rates and export price dynamics over the three-year period for 3 randomly
chosen paths
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Figure 3.4: Estimated volatility of log returns for the average export price

different over the countries and industries) exchange rate pass-through.

The model can certainly be extended to incorporate the downward sloping demand curve for

the exported product (instead of the ‘small firm’ assumption and inelastic demand that are being

used now).

Besides, since the exporters normally sell on their home markets too, the model may also

take into account the sales in the home market that can be correlated with the export market.

It could then be interesting to explore the effect of the correlation between the Home and the

Foreign market on the price adjustment decision by the exporter, and, in particular, to investigate

whether there exists any diversification effect in case of negative correlation.

75



APPENDIX

76



Appendix A

Derivations for Chapter 1

77



APPENDIX A

A.1 Derivations for Section 1.2.1

The Incumbent decides on (pM , qM) subject to the constraint:

VM = θMqM − pM ≥ 0. (A.1)

Setting VM = 0 yields:

pM = θMqM . (A.2)

The Incumbent maximizes its profits:

πM =
θH − θM
θH − θL

(pM −
1

2
cIq

2
M) =

θH − θM
θH − θL

(θMqM −
1

2
cIq

2
M)→ max (A.3)

choosing (θM , qM).

First order conditions are:

∂πM
∂qM

(θ∗M , q
∗
M) =

θH − θ∗M
θH − θL

(θ∗M − cIq∗M) = 0 (A.4)

and
∂πM
∂θM

(θ∗M , q
∗
M) =

q∗M
θH − θL

(−2θ∗M +
1

2
cIq
∗
M + θH) = 0. (A.5)

From (A.4) and (A.5) the solution (θ∗M , q
∗
M) is as follows:

θ∗M =
2θH

3
(A.6)

q∗M =
2θH
3cI

. (A.7)

Then

p∗M =
4θ2

H

9cI
(A.8)

and the profits of the Incumbent are:

π∗M =
2θ3

H

27cI (θH − θL)
. (A.9)
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To ensure that πM has a maximum at (θ∗M , q
∗
M), check second order conditions at this point:

∂π2
M

∂q2
M

∣∣∣
(θ∗M ,q

∗
M )

= − θHcI
3 (θH − θL)

< 0 (A.10)

∂π2
M

∂qM∂θM

∣∣∣
(θ∗M ,q

∗
M )

=
∂π2

M

∂θM∂qM

∣∣∣
(θ∗M ,q

∗
M )

=
θH

3 (θH − θL)
(A.11)

∂π2
M

∂θ2
M

∣∣∣
(θ∗M ,q

∗
M )

= − 4θH
3cI (θH − θL)

< 0. (A.12)

Since the determinant of the Hessian matrix is positive, the Hessian matrix is negative definite

and πM is maximized at (θ∗M , q
∗
M).

A.2 Derivations for Section 1.2.2

Firms decide on (pE, qE) and (pI , qI) (such that qE < qI and pE < pI) subject to the following

constraints:

VE = θEqE − pE ≥ 0 (A.13)

VI = θIqI − pI ≥ 0 (A.14)

θEqE − pE ≥ θEqI − pI (A.15)

θIqI − pI ≥ θIqE − pE (A.16)

with θI > θE by construction.

Setting VE = θEqE − pE = 0 yields:

pE = θEqE. (A.17)

Then set θIqI − pI = θIqE − pE to obtain:

pI = θI(qI − qE) + pE = θI(qI − qE) + θEqE. (A.18)

Check whether (A.14) is satisfied:

VI = θIqI − pI = θIqI − (θI(qI − qE) + θEqE) = qE(θI − θE) > 0. (A.19)
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Check whether (A.15) is satisfied:

θEqE − pE = 0 (A.20)

and then:

θEqI − pI = θEqI − (θI(qI − qE) + θEqE) = (θE − θI)(qI − qE) < 0. (A.21)

Firms maximize their profits:

πE =
θI − θE
θH − θL

(pE −
1

2
cEq

2
E) =

θI − θE
θH − θL

(θEqE −
1

2
cEq

2
E)→ max (A.22)

πI =
θH − θI
θH − θL

(pI −
1

2
cIq

2
I ) =

=
θH − θI
θH − θL

(θI(qI − qE) + θEqE −
1

2
cIq

2
I )→ max

(A.23)

choosing (θE, qE) and (θI , qI) correspondingly.

First order conditions for the Entrant are:

∂πE
∂qE

(θ∗E, q
∗
E) =

θI − θ∗E
θH − θL

(θ∗E − cEq∗E) = 0 (A.24)

∂πE
∂θE

(θ∗E, q
∗
E) =

q∗E
θH − θL

(−2θ∗E +
1

2
cEq

∗
E + θI) = 0. (A.25)

From (A.24) and (A.25): {
θ∗E = 2

3
θI

q∗E = 2
3cE

θI .
(A.26)

First order conditions for the Incumbent are:

∂πI
∂qI

(θ∗I , q
∗
I ) =

θH − θ∗I
θH − θL

(θ∗I − cIq∗I ) = 0 (A.27)

∂πI
∂θI

(θ∗I , q
∗
I ) =

1
2
cI(q

∗
I )

2 − 2θ∗I (q
∗
I − qE) + θH(q∗I − qE)− θEqE
θH − θL

= 0. (A.28)

From (A.27) and (A.28):{
θ∗I = cIq

∗
I

1
2
cI(q

∗
I )

2 − 2θ∗I (q
∗
I − qE) + θH(q∗I − qE)− θEqE = 0.

(A.29)

80



APPENDIX A

At the Nash equilibrium, (A.26) and (A.29) combine into:
θ∗E = 2

3
θ∗I

q∗E = 2
3cE

θ∗I

θ∗I = cIq
∗
I

1
2
cI(q

∗
I )

2 − 2θ∗I (q
∗
I − q∗E) + θH(q∗I − q∗E)− θ∗Eq∗E = 0.

(A.30)

Substitute θ∗E, q∗E and q∗I =
θ∗I
cI

into the last equation of (A.30):

(θ∗I )
2

2cI
− 2θ∗I

(
θ∗I
cI
− 2θ∗I

3cE

)
+ θH

(
θ∗I
cI
− 2θ∗I

3cE

)
− 4(θ∗I )

2

9cE
= 0; (A.31)

θ∗I
2cI
− 2θ∗I

(
3cE − 2cI

3cEcI

)
+ θH

(
3cE − 2cI

3cEcI

)
− 4θ∗I

9cE
= 0; (A.32)

θH

(
3cE − 2cI

3cEcI

)
= θ∗I

(
2

(
3cE − 2cI

3cEcI

)
+

4

9cE
− 1

2cI

)
. (A.33)

The solution to (A.33) is as follows:

θ∗I =
6θH(3cE − 2cI)

27cE − 16cI
(A.34)

and then

θ∗E =
4θH(3cE − 2cI)

27cE − 16cI
(A.35)

q∗I =
6θH(3cE − 2cI)

(27cE − 16cI)cI
(A.36)

q∗E =
4θH(3cE − 2cI)

(27cE − 16cI)cE
. (A.37)

Substituting the above solution into the profit functions of the firms (A.22) and (A.23) yields:

π∗E =
16θ3

H(3cE − 2cI)
3

(27cE − 16cI)3cE(θH − θL)
(A.38)

π∗I =
2θ3

H(9cE − 4cI)
2(3cE − 2cI)

2

cE(27cE − 16cI)
3cI(θH − θL)

. (A.39)
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Second order conditions for the Entrant at q∗E, q∗I , θ
∗
E, θ∗I are:

∂π2
E

∂q2
E

= − 2cE (3cE − 2cI) θH
(27cE − 16cI) (θH − θL)

< 0 (A.40)

∂π2
E

∂qE∂θE
=

∂π2
E

∂θE∂qE
=

2 (3cE − 2cI) θH
(27cE − 16cI) (θH − θL)

(A.41)

∂π2
E

∂θ2
E

= − 8 (3cE − 2cI) θH
cE (27cE − 16cI) (θH − θL)

< 0 (A.42)

The determinant of the Hessian matrix is
48(1.5cE−cI)2θ2H

(27cE−16cI)(θH−θL)2
> 0; thus, Hessian matrix is

negative-definite and πE is maximized at q∗E, q∗I , θ
∗
E, θ∗I for cI

cE
≤ 1.

Second order conditions for the Incumbent at q∗E, q∗I , θ
∗
E, θ∗I are:

∂π2
I

∂q2
I

= − cI (9cE − 4cI) θH
(27cE − 16cI) (θH − θL)

< 0 (A.43)

∂π2
I

∂qI∂θI
=

(9cE − 4cI) θH
(27cE − 16cI) (θH − θL)

< 0 (A.44)

∂π2
I

∂θ2
I

= − 4(3cE − 2cI)
2θH

cIcE (27cE − 16cI) (θH − θL)
< 0 (A.45)

The determinant of the Hessian matrix is positive for cI
cE
∈ (0; 0.924); this is a technical problem

that may be ameliorated by the proper calibration of parameters of the model or by checking that

the duopolistic trigger is smaller than 0.924 (which is highly probable).

Still, πM is maximized at q∗E, q∗I , θ
∗
E, θ∗I for cI

cE
∈ (0; 0.924).

A.3 Derivations for Section 1.2.3

The firm decides on (p1, q1) and (p2, q2) (such that q1 < q2 and p1 < p2) subject to the following

constraints:

V1 = θ1q1 − p1 ≥ 0 (A.46)

V2 = θ2q2 − p2 ≥ 0 (A.47)

θ1q1 − p1 ≥ θ1q2 − p2 (A.48)

θ2q2 − p2 ≥ θ2q1 − p1 (A.49)
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with θ2 > θ1 by construction.

Setting V1 = θ1q1 − p1 = 0 yields:

p1 = θ1q1. (A.50)

Then set θ2q2 − p2 = θ2q1 − p1 to obtain:

p2 = θ2(q2 − q1) + p1 = θ2(q2 − q1) + θ1q1. (A.51)

Check whether (A.47) is satisfied:

V2 = θ2q2 − p2 = θ2q2 − (θ2(q2 − q1) + θ1q1) = q1(θ2 − θ1) > 0. (A.52)

Check whether (A.48) is satisfied:

θ1q1 − p1 = 0 (A.53)

and then:

θ1q2 − p2 = θ1q2 − (θ2(q2 − q1) + θ1q1) = (θ1 − θ2)(q2 − q1) < 0. (A.54)

The firm maximizes its profits:

πMG =
θ2 − θ1

θH − θL
(p1 −

1

2
cIq

2
1) +

θH − θ2

θH − θL
(p2 −

1

2
cIq

2
2) =

=
θ2 − θ1

θH − θL
(θ1q1 −

1

2
cIq

2
1) +

θH − θ2

θH − θL
(θ2(q2 − q1)+

+ θ1q1 −
1

2
cIq

2
2)→ max

(A.55)

choosing (θ1, q1) and (θ2, q2).

The first order conditions are:

∂πMG

∂q1

=
(θ∗1 − θ∗2) (−θ∗1 − θ∗2 + cIq

∗
1 + θH)

θH − θL
= 0 (A.56)

∂πMG

∂θ1

=
q∗1 (0.5cIq

∗
1 − 2θ∗1 + θH)

θH − θL
= 0 (A.57)

∂πMG

∂q2

=
(θH − θ2) (−cIq∗2 + θ∗2)

θH − θL
= 0 (A.58)

∂πMG

∂θ2

=
−0.5cIq

∗
1

2 + 0.5cIq
∗
2

2 + 2q∗1θ
∗
2 − 2q∗2θ

∗
2 − q∗1θH + q∗2θH

θH − θL
= 0. (A.59)
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Solving the system of first order conditions (A.56)-(A.59) yields:

θ∗1 = 0.6θH (A.60)

θ∗2 = 0.8θH (A.61)

q∗1 =
0.4θH
cI

(A.62)

q∗2 =
0.8θH
cI

(A.63)

and the profits are:

π∗MG =
2θ3

H

25cI (θH − θL)
. (A.64)

To ensure that πMG has a maximum at θ∗1, θ
∗
2, q
∗
1, q
∗
2, check second order conditions at this point:

∂π2
MG

∂q2
1

=
cI (θ1 − θ2)

(θH − θL)
< 0 (A.65)

∂π2
MG

∂q1∂q2

=
∂π2

MG

∂q2∂q1

= 0 (A.66)

∂π2
M

∂q2
2

=
cI (θ2 − θH)

(θH − θL)
< 0. (A.67)

Since by construction θ1 < θ2 < θH , the Hessian matrix is negative-definite for any θ1, θ2, q1, q2,

and it follows that πMG is maximized at θ∗1, θ
∗
2, q
∗
1, q
∗
2.

A.4 Derivations for Section 1.3.1

The Bellman equation is:

F (x) = π0 (x0) dt+
E (F (x+ dx))

1 + rdt
. (A.68)

Multiplying both sides of (A.68) by (1 + rdt) and keeping the terms of order dt only yields:

F (x) (1 + rdt) = π0(x0)dt+ F (x) + λdt (F (x(1− g))− F (x)) , (A.69)

then

F (x)rdt = π0(x0)dt+ λdtF (x(1− g))− F (x)λdt, (A.70)
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and

F (x) (r + λ) dt = π0(x0)dt+ λdtF (x(1− g)) . (A.71)

Dividing both sides of (A.71) by (r + λ) dt yields:

F (x) =
π0 (x0)

r + λ
+

λ

r + λ
F (x(1− g)) . (A.72)

Since xk = x0(1 − g)k with x0 = 1 and k being the number of jumps needed to reach xk, one

can rewrite (A.71) as:

F (x0) =
π0 (x0)

r + λ
+

λ

r + λ
F (1− g) =

=
π0 (x0)

r + λ
+

λ

r + λ

(
π0 (x0)

r + λ
+

λ

r + λ
F
(
(1− g)2

))
=

=
π0 (x0)

r + λ
+

λ

r + λ

(
π0 (x0)

r + λ
+

λ

r + λ

(
π0 (x0)

r + λ
+

λ

r + λ
(...)

))
=

=
π0 (x0)

r + λ
×

1−
(

λ
r+λ

)k
1− λ

r+λ

+

(
λ

r + λ

)k
F
(
(1− g)k

)
=

=
π0 (x0)

r

(
1−

(
λ

r + λ

)k)
+

(
λ

r + λ

)k
F
(
(1− g)k

)
=

=
π0 (x0)

r
+

(
λ

r + λ

)k (
F
(
(1− g)k

)
− π0 (x0)

r

)

(A.73)

A.5 Derivations for Section 1.3.2

The problem of the Incumbent in the general case of non-constant investment cost RD is as

follows:

max
k
F g
M =

π∗M0

r
+

1

r

(
λ

r + λ

)k (
π∗M
(
(1− g)k

)
− πM0 − rRD

(
(1− g)k

) )
. (A.74)

The first order condition is:

∂F g
M

∂k

∣∣
k=kcgM

=
1

r

(
λ

r + λ

)kcgM (
ln

λ

r + λ

(
π∗M

(
(1− g)k

cg
M

)
−

− πM0 − rRD
(

(1− g)k
cg
M

))
+
∂π∗M
∂k
− r∂RD

∂k

)
= 0,

(A.75)
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where (1− g)k
cg
M = xcgM is the continuous monopolistic trigger for the general solution;

kcgM is the (continuous) number of jumps needed to reach xcgM .

Since π∗M
(
(1− g)k

)
= 1

27(1−g)k , then
∂π∗
M

∂k
= − ln(1−g)

27(1−g)k and the general solution (for non-constant

investment cost RD) to (A.75) is as follows:

ln λ
r+λ
− ln(1− g)

(1− g)k
cg
M

=

(
1 + r

RD
(
(1− g)k

cg
M

)
π∗M0

)
ln

λ

r + λ
+ r

∂RD
∂k

π∗M0

(A.76)

where xcgM = (1− g)k
cg
M .

In particular, in the case of constant investment cost RD the general solution above reduces

to:

xcM = (1− g)k
c
M =

ln λ
r+λ
− ln(1− g)(

1 + r RD
π∗
M0

)
ln λ

r+λ

. (A.77)

Consider again the general case RD = RD0 + β
(
1− (1− g)k

)
as in (1.46). Then ∂RD

∂k
=

−β(1− g)k ln(1− g) and (A.76) transforms into:

ln λ
r+λ
− ln(1− g)

(1− g)k
cg
M

=

(
1 + r

RD0

π∗M0

)
ln

λ

r + λ
+

+
rβ
(
ln λ

r+λ
+ ln(1− g)

)
π∗M0

(
ln λ

r+λ

ln λ
r+λ

+ ln(1− g)
− (1− g)k

cg
M

)
,

(A.78)

where RD0 is equal to the constant investment cost RD.

Define:

A = ln
λ

r + λ
− ln(1− g) < 0 (A.79)

B =

(
1 + r

RD0

π∗M0

)
ln

λ

r + λ
< 0 (A.80)

C =
rβ
(
ln λ

r+λ
+ ln(1− g)

)
π∗M0

< 0 (A.81)

D =
ln λ

r+λ

ln λ
r+λ

+ ln(1− g)
> 0. (A.82)
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It is straightforward to show that A
B
< D:

D − A

B
=

ln λ
r+λ

ln λ
r+λ

+ ln(1− g)
−

ln λ
r+λ
− ln(1− g)(

1 + rRD0

π∗
M0

)
ln λ

r+λ

=

=
rRD0

π∗
M0

ln2 λ
r+λ

+ ln2(1− g)(
ln λ

r+λ
+ ln(1− g)

) (
1 + rRD0

π∗
M0

)
ln λ

r+λ

> 0.

(A.83)

Then xcM (A.77) can be rewritten as:

xcM =
A

B
, (A.84)

and xcgM is the solution to the following quadratic equation based on (A.78):

A = xcgM (B + C (D − xcgM)) . (A.85)

The roots of (A.85) are:

xcgM 1, 2 =

B
C

+D ±
√(

B
C

+D
)2 − 4A

C

2
, (A.86)

with the first (smaller) root being greater than zero and less than A
B

:

xcgM 1 =

B
C

+D −
√(

B
C

+D
)2 − 4A

C

2
<
A

B
⇔ A

B
< D, (A.87)

and the second root being greater than A
C

:

xcgM 2 =
A

C

1

xcgM 1

>
A

C
× B

A
>
A

C
(A.88)

since B
A
> 1.
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The second order condition for the general case of non-constant RD is as follows:

∂2F g
M

∂k2

∣∣
k=kcgM

=
1

r

(
λ

r + λ

)kcgM (
ln

λ

r + λ

(
∂π∗M
∂k
− r∂RD

∂k

)
+

+
∂2π∗M
∂k2

− r∂
2RD

∂k2

)
.

(A.89)

In the case of constant RD (A.89) reduces to:

∂2FM
∂k2

∣∣
k=kcM

=
1

r

(
λ

r + λ

)kcM (∂π∗M
∂k

ln
λ

r + λ
+
∂2π∗M
∂k2

)
=

=
ln(1− g)

27r (1− g)k
c
M

(
λ

r + λ

)kcM (
− ln

λ

r + λ
+ ln(1− g)

)
< 0,

(A.90)

ensuring that kcM is the point of maximum.

Return to the general case of non-constant RD. After all necessary substitutions (A.89) be-

comes:

∂2F g
M

∂k2

∣∣
k=kcgM

=
β ln(1− g)

(
ln λ

r+λ
+ ln(1− g)

)
(1− g)k

cg
M

(
λ

r + λ

)kcgM
×

×

((
(1− g)k

cg
M

)2

−
πM0

(
ln λ

r+λ
− ln(1− g)

)
βr
(
ln λ

r+λ
+ ln(1− g)

) ) . (A.91)

To ensure the negativity of the second order condition (A.91) for xcgM = (1− g)k
cg
M ∈ (0; 1] it is

enough to choose β such that:

πM0

(
ln λ

r+λ
− ln(1− g)

)
βr
(
ln λ

r+λ
+ ln(1− g)

) > 1, (A.92)

or, in terms of β:

β <
πM0

(
ln λ

r+λ
− ln(1− g)

)
r
(
ln λ

r+λ
+ ln(1− g)

) . (A.93)

Define β as:

β = Kβ

πM0

(
ln λ

r+λ
− ln(1− g)

)
r
(
ln λ

r+λ
+ ln(1− g)

) , (A.94)

where Kβ ∈ (0; 1).
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Notice that one can rewrite the condition (A.92) as:

A

C
> 1 (A.95)

using the definitions (A.79)-(A.82).

Combining (A.95) with (A.88) yields:

xcgM 2 >
A

C
> 1 (A.96)

provided that β satisfies (A.93).

Thus, it follows from (A.84), (A.87), (A.88) and (A.96) that only the smaller root xcgM 1 is

relevant to the solution in the general case of non-constant investment cost RD (the larger root

xcgM 2 is greater than one) and:

xcgM 1 < xcM (A.97)

provided β satisfies (A.94).

Substituting (A.79)-(A.82) into the expression for xcgM 1 (A.87) yields:

xcgM 1 =
E −

√
E2 − 4

Kβ

2
, (A.98)

where

E =

(
1 + rRD0

π∗
M0

)
ln λ

r+λ

Kβ

(
ln λ

r+λ
− ln(1− g)

) +
ln λ

r+λ

ln λ
r+λ

+ ln(1− g)
. (A.99)

A.6 Derivations for Section 1.3.3

The second order condition of the Incumbent is as follows:

∂2FD
∂k2

∣∣
k=kcD

=
1

r

(
λ

r + λ

)kcD (∂π∗I
∂k

ln
λ

r + λ
+
∂2π∗I
∂k2

)
=

=
1

r
∂π∗
I

∂k

(
λ

r + λ

)kcD (
ln

λ

r + λ
+

∂2π∗
I

∂k2

∂π∗
I

∂k

)
=

=
1

r
∂π∗
I

∂k

(
λ

r + λ

)kcD (
ln

λ

r + λ
+ t ln(1− g)

) (A.100)
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where t ∈ (−1; − 839
2255

] for (1− g)k
c
D ∈ (0; 1] and

∂π∗
I

∂k
> 0.

Since ln λ
r+λ

< ln(1−g) by the properties of the model, then ln λ
r+λ

< ln(1−g) < (−t) ln(1−g)

and (A.100) is negative for (1− g)k
c
D ∈ (0; 1].
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B.1 Derivations for Section 2.3.2

Recall from (2.33) that payoffs to the bidder P s
B and to the target P s

T at the stock merger are:

P s
B (X, Y ) = max (sBV (X, Y )−KX, 0) (B.1)

P s
T (X, Y ) = max ((1− sB)V (X, Y )−QY, 0) . (B.2)

Then, the state variables for the bidder and the target for LSM would be:

SsB (X, Y ) = sBV (X, Y )−KX =

= sB (KX +QY + α (K +Q) (X − Y ))−KX =

= X (sB (K + α (K +Q))−K) + Y sB (Q− α (K +Q)) =

= Xk1 + Y k2

(B.3)

SsB (X, Y ) = (1− sB)V (X, Y )−QY =

= (1− sB) (KX +QY + α (K +Q) (X − Y ))−QY =

= X (1− sB) (K + α (K +Q)) +

+Y ((1− sB) (Q− α (K +Q))−Q) =

= Xq1 + Y q2.

(B.4)

Solving for the share sB such that k1
k2

= q1
q2

yields:

sB =
K

K +Q
. (B.5)

Substituting sB = K
K+Q

into the expressions for the state variables (B.3) and (B.4) yields:

SsB (X, Y ) =
(X − Y ) (αK (K +Q)−KQ)

K +Q
= (X − Y ) aB (B.6)

SsT (X, Y ) =
(X − Y ) (αQ (K +Q) +KQ)

K +Q
= (X − Y ) aT (B.7)

summing up to SsB + SsT = (X − Y )α (K +Q) = (X − Y ) (aT + aB) = SCP .

Thus, at sB = K
K+Q

all state variables (SsB, SsT and SCP ) depend on exactly the same stochastic

process X − Y ; it means that the same matrix PR = R (R′R)−1R′ will be used to compute fitted

values in regressions based on either of these state variables1.

1R denotes the matrix of regressors.
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It is clear that for sB = K
K+Q

the payoffs to the players are as follows:

P s
B (X, Y ) = max

(
(X − Y ) (αK (K +Q)−KQ)

K +Q
, 0

)
(B.8)

P s
T (X, Y ) = max

(
(X − Y ) (αQ (K +Q) +KQ)

K +Q
, 0

)
(B.9)

PCP = max (α (K +Q) (X − Y ) , 0) . (B.10)

Payoffs (B.8)-(B.10) have the same sign if the condition α (K +Q) > Q holds; they are all

positive for X > Y (which is the necessary condition for the synergy to be positive ans for the

merger to be economically meaningful) and they are all negative for X < Y . Thus, positiveness

of the payoff to the central planner PCP implies positiveness of P s
B and P s

T given α (K +Q) > Q.

Besides, the ratios
P sB
PCP

and
P sT
PCP

are constant over time for X > Y (and not defined otherwise).

This means that one can solve then stock merger problem from the point of view of central

planner (instead of solving it for the bidder and the target) setting sB = K
K+Q

and provided that

condition α (K +Q) > Q holds.

It is not surprising that the same conclusion along with the same share sB and the same

necessary condition α (K +Q) > Q appear in the original infinite horizon model by Morellec and

Zhdanov (2005).

Thus, one can choose sB = K
K+Q

provided α (K +Q) > Q (that can be rewritten as K
K+Q

>

1− α) is satisfied; in this paper K
K+Q

= 0.8929 > 1− α = 0.6.

B.2 LSM sample simulation
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T
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20.19
9.47

29.66
16.30

2.77
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2.72
3.52
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0.86

1.44
1.66

3
19.40

6.29
25.69

8.40
1.43

9.83
2.46

3.83
0.19

0.55
1.23

1.42
4

20.39
7.27

27.66
12.84

2.59
15.42

2.50
3.26

0.31
0.66

1.32
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5
6.13

2.41
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5.44
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0.41
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4.34
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1.41
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2.32

0.33
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0.31

1.45
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11.76
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3.33
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