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Introduction

Organic geochemistry and palyno-
facies are standard methods used to
study sedimentary organic matter in
ancient sediments. Organic matter
(OM) in organic-rich rocks is mainly
constituted of amorphous organic
matter (AOM), which is commonly
observed at the scale of light micro-
scopy. In the studied Upper Kimme-
ridgian bituminous laminites at
Orbagnoux (France), deposited in a
lagoonal, backreef environment, most
of the OM is of the AOM type. This
AOM has been considered as a good
example for the preservation of OM
through vulcanization of lipids rather
than the selective preservationpathway
(Mongenot et al., 1997). The former
pathway is a process that can be re-
vealed only through organic geochem-
ical methods (Sinninghe Damsté et al.,
1988, 1989; Kohnen et al., 1991; Adam
et al., 1993), whereas selective preser-
vation can also be identified through
microscopical observations (Goth
et al., 1988; Largeau et al., 1990; Der-
enne et al., 1991). So far, previous

studies have claimed that petrograph-
ical observations support vulcaniza-
tion as the dominant preservation
pathway leading to an amorphization
of the preserved OM at the nanoscale
(Mongenot et al., 1997, 2000).
This study presents a new optical

investigation of this fossil AOM down
to the nanoscale using scanning elec-
tron microscopy (SEM) and transmis-
sion electron microscopy (TEM). The
aim was to re-evaluate petrographi-
cally the role of vulcanization in the
amorphization of OM. Observed
structures were compared with those
from a recent cyanobacterial analogue
(biofilm).

Geological and palaeoenvironmental
settings

The Upper Jurassic bituminous lami-
nites at Orbagnoux were deposited in
a carbonate platform environment,
which displays a shallowing-up trend
from pelagic to paralic deposition
(Figs 1 and 2). Organic-rich laminites
correspond to cyanobacterial mats
deposited in a lagoon sheltered from
the opened platform by a well-devel-
oped barrier reef (Bernier, 1984).
Recent sediments in Pacific atolls
containing cyanobacteria, and called
�kopara� deposits, have been proposed
as a recent sedimentological analogue
(Tribovillard et al., 2000).

Many authors have studied these
sediments because of their great
potential as petroleum source rocks
(Riche, 1904; Gubler and Louis, 1956;
Bernier and Courtinat, 1979; Bernier,
1984; Courtinat, 1989; Gorin et al.,
1989; Tribovillard et al., 1992, 1994,
1999; Mongenot et al., 1997; Tribovil-
lard, 1998). Five facies have been
identified, originating from the
development of cyanobacterial benthic
mats (light-coloured undulating lam-
inae), coccolith blooms (massive lime-
stones) and the interaction between
benthic, cyanobacterial activity and
coccolith settling (dark-coloured
undulating laminae, dark or light-col-
oured parallel laminae).
Extensive studies have been carried

out on the chemical structure of the
kerogen, source organisms and for-
mation pathways in the dark-coloured
laminae (Fig. 2). Bulk sediment Rock-
Eval pyrolysis data from the latter
indicate high hydrogen indices (780–
960 mg HC per g TOC) and a TOC
content averaging 7.2% (Mongenot
et al., 1997). The kerogen from these
laminites belongs to type I–II OM
(Gorin et al., 1989). These organic-
rich sediments are characterized by
sulphur-rich OM. The vulcanization
pathway, which is associated with
iron-poor organic-rich sediments, is
usually known in pelagic deposits,
although it can also take place in
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shallow peritidal environments where
bacterial activity is intense (Tribovil-
lard et al., 2000). In the Orbagnoux
kerogen, thiophenes are the dominant
sulphur organic component (Sarret
et al., 2002).

Methods

The studied fossil AOM originates
from the dark-coloured parallel lam-
inae (Fig. 2), whereas the recent bac-
terial analogue comes from a biofilm
developed in the laboratory from a
microbial mat sampled in a Brazilian
lagoon (Lagoa Vermehla located
about 100 km east of Rio de Janeiro
city; Vasconcelos, 1994). Fossil and
recent OM were studied microscopic-
ally after crushing of rock samples,
dissolution of the mineral fraction
through acids (32% HCl and 70%
HF), followed by heavy liquid separ-
ation (ZnCl2 at a specific gravity of
2.0) of heavy minerals (standard
palynological preparation technique,

e.g. Steffen and Gorin, 1993). In this
study, the effect of acid treatment has
been evaluated on recent bacteria, and
no noticeable artefact has been shown
to be generated on the organic mater-
ial. Subsequently, two microscopical
techniques have been used to analyse
the morphology and structure of OM
at the nanoscale: SEM (Jeol JSM
6400, France) on gold-coated samples
and TEM (Philips EM 208, France)
on ultrathin sections. SEM provides
surface morphological information
down to micrometre scale. Prior to
microscopical study, the recent bac-
terial material was dried using the
critical point drying method. In TEM,
70-nm thick ultrathin sections were
coloured with uranyl acetate for
15 min and permitted the investiga-
tion of internal textures and structures
at a scale of 100 lm down to 10 nm.
Many ultrathin sections were investi-
gated in each sample so as to provide
a representative overview of the gen-
eral organic fabrics.

Results

Kimmeridgian laminites

In standard light microscopy, AOM
particles appear as grumose (sensu
Combaz, 1980) kerogen without any
structure (Fig. 3). Under the SEM,
AOM is characterized by an alveolar
network. Alveoli are holes which show
a large size range in both SEM and
TEM (Figs 4a,b and 5). Their size
ranges from 5 lm to 150 nm. Imprints
of shells are sometimes observed with-
in this network (Fig. 6).
Fossil bacteria are well preserved

with coccoid and filamentous forms
within the size range of bacteria
(respectively 1–5 lm in diameter
and 10–50 lm in length, Fig. 7). In
ultrathin sections, filamentous bac-
teria showing a characteristic cell
wall with a double membrane can
be recognized (Fig. 8). Several 1- to
2-lm thick laminated bodies (Fig. 9)
showing a specific internal organiza-

Fig. 1 Geological setting of the Upper Jurassic bituminous laminites at Orbagnoux (modified after Bernier, 1984).
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tion can also be observed. They
comprise a succession of light-
(125 nm thick) and dark-coloured
(�300 nm thick) laminae, referred
to as ultralaminae (cf. Derenne et al.,
1991).

Recent cyanobacterial biofilm

Prior to acid etching, the recent cyano-
bacterial biofilm (Fig. 10) shows
different bacterial communities which
include coccoid bacteria (2–4 lm in
diameter) and filamentous bacteria
(20–50 lm in length). Microorganisms
are surrounded by the exopolymeric

substances (EPS) they secrete, the
whole being attached to either an
inert or living surface (Madigan et al.,
2003). In the studied biofilm, the
structure resulting from the mixing
of EPS and bacteria displays depres-
sions and an alveolar network perpen-
dicular to the biofilm surface
(Fig. 11). Cyanobacteria can easily
be recognized because they contain
typical components such as cytoplas-
mic inclusions and 60- to 100-nm wide
thylakoids, responsible for photo-
synthesis (Fig. 12).
After acid etching, bacterial internal

structures remain recognizable. Thyla-

koids associated with cytoplasmic
inclusions are well preserved with sizes
similar to those in the unetched
biofilm (Fig. 13). They often appear
on their own following the break-up
of the bacterial cell wall. Moreover,
in TEM, EPS form a typical,
well-defined, alveolar network with
different orders of magnitude varying
in size from 5 lm to 150 nm (Figs 14
and 15).

Discussion

The presence of cyanobacteria in sedi-
mentary rocks has been already iden-
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Fig. 2 Schematic lithological column of the bituminous laminites at Orbagnoux (modified after Tribovillard et al., 2000).
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tified through organic geochemistry
(lipids), and bacterial remains such as
sheaths have been observed in SEM
(Kazmierczak et al., 1996). Previous
studies at Orbagnous using TEM
(Mongenot et al., 1997, 1999) indicate
that AOM is entirely composed of gel-
like, nanoscopically amorphous, sul-
phur-rich, organic particles. The latter
authors� observations refer to the
lower part of the Orbagnoux section
(Fig. 2), where dark-coloured parallel
laminae are the most characteristic
and abundant. Although the precise
location of their studied sample(s) is
not available, the two samples studied
here in this lower interval (Fig. 2)
present the same lithological charac-
teristics (Mongenot et al., 2000) and
similar Rock-Eval parameters (TOC
greater than 6%, HI greater than 800).
In order to confirm the observations
made in this lower interval, another
sample with similar lithological facies
and Rock-Eval parameters was also
studied in the upper interval of the
section where dark-coloured parallel
laminae are less frequent (Fig. 2). The
investigation of these three samples
through a combination of TEM and
SEM methods reveals that in fact
AOM has a complex structure at the
nanoscale. The subsequent compar-
ison between fossil AOM and the
recent biofilm leads to the following
observations:

1 Both AOM and biofilm exhibit a
similar alveolar structure in the
same size range (compare Figs 4b
and 11, Figs 5 and 14). The biofilm
structure is constituted by EPS, and
consequently, that observed in the
fossil AOM can be interpreted as
the relics of a biofilm framework.
This correlation precludes that this
morphology may be related to dia-
genesis. Moreover, the ubiquitous
presence of alveoli in the recent
biofilm (which contains less than
5% of calcite) makes it highly
improbable that most of the alveoli
observed in the fossil AOM might
be attributed to solution cavities
resulting from the loss of mineral
phases.

2 Thylakoids observed in the acid-
etched biofilm (Fig. 13) closely
resemble the ultralaminae present
in fossil AOM (Fig. 9). Therefore,
part of the ultralaminae in Orbag-
noux AOM can be interpreted as

30 µm
7 µm

Fig. 3 Palynofacies slide: fossil amorphous organic matter (AOM) in transmitted
light microscopy.

1 µm

alveoli

a b

1µm

Fig. 4 (a) Fossil amorphous organic matter (AOM) in scanning electron microscopy
(SEM) characterized by alveoli with different orders of magnitude. (b) Fossil AOM in
SEM showing depressions in alveoli.

500 nm

Cavity

Fig. 5 Fossil amorphous organic matter (AOM): ultrathin section in transmission
electron microscopy showing the alveolar network.
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originating from cyanobacteria
rather than only from microalgae
as previously thought (Derenne
et al., 1991).

3 The presence in fossil AOM of ultra-
laminae and other structured ele-
ments such as filamentous and
coccoid bacteria (Figs 7–9) sheds
new light onOMpreservationmech-
anisms. So far, AOM at Orbagnoux
has been described as gel-like and
amorphous at the nanoscale by
Mongenot et al. (1997, 1999). This
amorphization is commonly attrib-
uted to the vulcanization preserva-
tion pathway,which is well identified
through organic geochemistry (Sin-
ninghe Damsté et al., 1988, 1989;
Mongenot et al., 2000). The better
resolution of the data presented here
permits the distinction of structures
that can be attributed to cyanobac-
terial biofilms. The presence of these
structures indicates that the selective
preservation pathway (Derenne
et al., 1991) in Orbagnoux dark
laminae has been strongly under-
estimated and/or that the vulcani-
zation pathway in the Orbagnoux
palaeoenvironment does not result
in OM amorphization.

Conclusions

The combined use of SEM and TEM
leads to a better characterization of
AOM at the nanoscale. These tech-
niques show clearly that this AOM is
nanostructured, whereas it has been
previously described as gel like and
amorphous. The morphological inter-
pretation of these structures is sup-
ported by similar observations on one
type of recent cyanobacterial biofilm
and can be summarized as follows:

1 alveolar structures are reminiscent
of bacterial exopolymeric sub-
stances (EPS) within the cyanobac-
terial biofilm;

2 fossil AOM at Orbagnoux is dom-
inated by the presence of bacterial
structures (filamentous and coccoid
bacteria, EPS);

3 ultralaminae can be directly related
to cyanobacterial thylakoids,
whereas it has so far been ascribed
only to microalgal cell walls.

These results demonstrate that
AOM at Orbagnoux is structured at
the nanoscale, by contrast to what has

10 µm

Imprint of organism

Fig. 6 Fossil amorphous organic matter (AOM) in scanning electron microscopy
showing an imprint of organism.

10 µm

Coccoid bacteria

Filamentous bacteria

Fig. 7 Fossil amorphous organic matter (AOM) in scanning electron microscopy:
communities of filamentous and coccoid bacteria.

2 µm

Cell membrane 

Cell wall 

Fig. 8 Fossil amorphous organic matter (AOM): ultrathin section in transmission
electron microscopy illustrating a filamentous bacterium characterized by typical cell
wall and cell membrane.
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always been observed before (Monge-
not et al., 2000). This amorphous
aspect has been interpreted as the
result of the vulcanization process
which is well documented through
geochemical analyses. The identifica-
tion of a strong microscopic cyano-
bacterial imprint highlights the so-far
underestimated contribution of the
selective preservation pathway and/or
that the vulcanization pathway does
not automatically lead to OM
amorphization.
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micropaléontologie et sédimentologie.
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500 nm

Cavity

Fig. 14 Recent biofilm after acid etching: ultrathin section in transmission electron
microscopy showing the exopolymeric substances (EPS) alveolar network.

Alveolus

EPS

Fig. 15 Recent biofilm after acid etching: scanning electron microscopic picture
illustrating alveoli and filaments within exopolymeric substances (EPS).
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