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Adjusting global extinction rates to account for taxonomic
susceptibility

Steve C. Wang and Andrew M. Bush

Abstract.—Studies of extinction in the fossil record commonly involve comparisons of taxonomic
extinction rates, often expressed as the percentage of taxa (e.g., families or genera) going extinct
in a time interval. Such extinction rates may be influenced by factors that do not reflect the intrinsic
severity of an extinction trigger. Two identical triggering events (e.g., bolide impacts, sea level
changes, volcanic eruptions) could lead to different taxonomic extinction rates depending on fac-
tors specific to the time interval in which they occur, such as the susceptibility of the fauna or flora
to extinction, the stability of food webs, the positions of the continents, and so on. Thus, it is pos-
sible for an extinction event with a higher taxonomic extinction rate to be caused by an intrinsically
less severe trigger, compared to an event with a lower taxonomic extinction rate.

Here, we isolate the effects of taxonomic susceptibility on extinction rates. Specifically, we quan-
tify the extent to which the taxonomic extinction rate in a substage is elevated or depressed by the
vulnerability to extinction of classes extant in that substage. Using a logistic regression model, we
estimate that the taxonomic susceptibility of marine fauna to extinction has generally declined
through the Phanerozoic, and we adjust the observed extinction rate in each substage to estimate
the intrinsic extinction severity more accurately. We find that mass extinctions do not generally
occur during intervals of unusually high susceptibility, although susceptibility sometimes increas-
es in post-extinction recovery intervals. Furthermore, the susceptibility of specific animal classes
to extinction is generally similar in times of background and mass extinction, providing no evi-
dence for differing regimes of extinction selectivity. Finally, we find an inverse correlation between
extinction rate within substages and the evenness of diversity of major taxonomic groups, but fur-
ther analyses indicate that low evenness itself does not cause high rates of extinction.
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Introduction

Measuring extinction intensity by the per-
centage of taxa that go extinct is like measur-
ing the strength of an earthquake by the
amount of damage inflicted, either in lives lost
or property destroyed. In actuality, the dam-
age caused by an earthquake reflects two fac-
tors: the strength of the earthquake itself and
the susceptibility of the local population and
infrastructure. The former (intensity of cause)
can be measured on the familiar Richter scale,
but the latter (infensity of effect) is affected by
factors like population density and the resis-
tance of buildings to damage. From the stand-
point of an earthquake’s effects on society, the
amount of damage is the more important var-
iable, but for understanding the causes of an
earthquake, its physical intensity must be
known as well. Likewise, the proportion and
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identity of taxa going extinct in a geologic
time interval determine the consequences of
an extinction event for the history of life, but
these rates are a measure of the intensity of
effect, which may not directly reflect the in-
tensity of cause. Given the same environmen-
tal conditions or extinction trigger, two faunas
may have different extinction rates, just as two
locations may suffer different amounts of
death and damage from an earthquake of the
same intensity. Here, we attempt to infer the
intensity of cause of extinctions in the marine
fossil record, at least in a partial fashion. Spe-
cifically, we focus on the potential of faunas of
different taxonomic composition to suffer dif-
ferent extinction rates given causal triggers of
similar physical intensity. Our goal is to an-
swer the following questions: (1) Does the re-
lationship between the intensity of cause and
effect change in important ways through the
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Phanerozoic, or among mass extinctions, re-
coveries, and background intervals? (2) Are
there other ways, at a very broad scale, in
which the changing taxonomic composition of
the marine fauna affected extinction rates?

Other paleontologists have also examined
the relationship between extinction rates and
the changing composition of the marine biota,
ascribing the Phanerozoic decline in extinc-
tion rates to a shift in dominance from taxa
with high rates to those with low rates (Stan-
ley 1979, 2007; Sepkoski 1984, 1991; Van Valen
1985, 1987; Gilinsky 1994). Our goal is not to
replicate these efforts, but rather to analyti-
cally remove the effects of changing taxonom-
ic composition on observed extinction rates,
allowing us to see how changes in composi-
tion might bias our views of the intrinsic in-
tensity of extinction triggers. For example,
were the effects of some mass extinctions mit-
igated by a particularly extinction-resistant
fauna? Were the effects of other mass extinc-
tions especially severe because they affected
extinction-prone taxa? We also introduce a
method for analytically estimating how much
of the decline in extinction rates resulted from
the changing taxonomic composition of the
marine biosphere.

Simpson’s Paradox: Do Smokers
Live Longer?

Comparisons of taxonomic extinction rates
(whether using percentage extinction or an-
other metric) are the basis of many quantita-
tive studies of mass extinction events (e.g.,
Raup and Sepkoski 1982, 1984; Benton 1995;
Wang 2003; Bambach et al. 2004; MacLeod
2004; Rohde and Muller 2005; Bambach 2006).
However, such comparisons of aggregate ex-
tinction rates can be misleading. It is possible
for one event to have a higher extinction rate
for each of several subgroups within the data
set, yet for another event to have a higher ex-
tinction rate for the data set as a whole. This
apparent contradiction can appear when sub-
groups with different extinction rates change
in relative abundance through time—a statis-
tical artifact known as Simpson’s paradox
(Simpson 1951).

Examples of Simpson’s paradox appear in
the statistical literature on a variety of sub-
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jects, including gender bias in graduate ad-
missions (Bickel et al. 1975), airline on-time
rates (Barnett 1994), and racial bias in capital
punishment (Gross and Mauro 1984). A clas-
sic example of Simpson’s paradox occurred in
a study on heart disease and a follow-up
study conducted 20 years later (Appleton et al.
1996). The authors found, surprisingly, that
women who smoked had a lower death rate af-
ter 20 years than women who had never
smoked (24% mortality rate versus 31%, re-
spectively). Because this finding contradicted
a priori medical knowledge, the authors in-
vestigated further, dividing the women into
subgroups according to age. A different pic-
ture then emerged: the smokers’ death rate
equaled or exceeded the non-smokers’ death
rate in every age subgroup, as would be ex-
pected. Why, then, when the subgroups were
aggregated, did smoking appear to increase
longevity?

This apparent paradox occurred because
the smokers’ age distribution differed from
that of the non-smokers. The non-smokers in-
cluded a higher percentage of older women
(who grew up when smoking among women
was less common), and older women have in-
herently higher death rates regardless of
whether or not they smoke. The smokers, on
the other hand, disproportionately included
younger women. Once age differences in the
two groups were taken into account, it became
clear that smoking did indeed increase mor-
tality.

This kind of pattern defines Simpson’s par-
adox: trends in aggregated percentages dis-
appear or even reverse themselves when one
partitions the data into subgroups, such as age
groups. In this example, discovering Simp-
son’s paradox was not difficult: the aggregat-
ed data were clearly misleading, because we
knew a priori that smoking is detrimental to
one’s health. We also knew that age is related
to mortality rate, so it was natural to separate
the data into subgroups by age.

In other cases, however, Simpson’s paradox
can be more insidious. We may have no a
priori belief that an aggregated data set is
yielding a misleading conclusion, so we may
not suspect a need to partition the data into
subgroups. Even if we have reason to subdi-
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TaBLE 1. Diversity of major molluscan classes in the Ordovician (Ashgillian) and end-Permian (Djhulfian) mass
extinctions. Columns give the number of genera going extinct in the interval (Extinct), total diversity in the interval
(Diversity), and extinction rate (Percent) for each extinction event. These data demonstrate Simpson’s paradox: the
Permian has a higher intrinsic severity, because the extinction rate for each class is higher in the Permian than in
the Ordovician. However, when the classes are combined, the overall molluscan extinction rate is higher in the
Ordovician. This misleading effect occurs because the Ordovician fauna has a large number of extinction-suscep-
tible cephalopods, whereas the Permian fauna has a large number of extinction-resistant gastropods. Data are from
Sepkoski’s genus compendium (2002), as compiled by Bambach (1999) and Bambach et al. (2004); non-integer counts
are due to fractional allocation of poorly-resolved genera.

Ordovician Permian
Extinct Diversity Percent Extinct Diversity Percent
Cephalopoda 77.9 103.9 75 37.3 48.3 77
Bivalvia 48.1 80.1 60.0 48.3 80.3 60.1
Gastropoda 31.6 73.6 43 52.2 101.2 52
Mollusca 157.6 257.6 61 137.8 229.8 60

vide the data, there may no natural criterion
by which to do so. In the smoking example, if
Simpson’s paradox had not been evident when
we partitioned the data by age, perhaps it
might have arisen had we partitioned the data
by geographic region, race, or some other fac-
tor. Because we cannot possibly account for (or
have data for) all possible partitioning factors,
it may be all but impossible to detect Simp-
son’s paradox in some cases.

Simpson’s Paradox:
Ordovician vs. Permian Molluscs

Simpson’s paradox can also arise in pale-
ontological examples, thereby making com-
parisons of aggregate percentages mislead-
ing. Here we show that Simpson’s paradox
arises when comparing extinction rates for
molluscs during the Ordovician (Ashgillian)
and end-Permian (Djulfian) mass extinctions.
We consider only the three most diverse clas-
ses within Mollusca: Cephalopoda, Gastrop-
oda, and Bivalvia. Other molluscan classes
(e.g., Monoplacophora, Polyplacophora, Sca-
phopoda) have relatively low diversity during
these stages; including them would not sub-
stantially alter our point, and we omit them
for simplicity. To measure the taxonomic se-
verity of each extinction event, we use per-ge-
nus proportional extinction rate: the number
of genera having their last appearance in the
stage divided by total diversity in the stage, a
metric commonly used in the literature. The
data are from Sepkoski’s genus compendium
(2002), as compiled by Bambach (1999) and
Bambach et al. (2004).

Considering all three classes combined,
61% of genera went extinct in the Ordovician
extinction, compared to 60% in the Permian
extinction (Table 1). Thus, it seems that the
earlier extinction had a more severe effect on
molluscan diversity, if only by a small amount
(whether or not this difference is statistically
significant is not important here). However,
when each class is examined separately, the
opposite conclusion holds: the Permian ex-
tinction was in fact more severe for each in-
dividual class, much more so for gastropods.

Even though a higher percentage of mollus-
can genera go extinct in the Ordovician ex-
tinction (higher intensity of effect), it is mis-
leading to infer that this extinction event was
intrinsically more severe than the Permian ex-
tinction (intensity of cause). Instead, the Or-
dovician had a higher proportion of extinc-
tion-susceptible taxa (cephalopods, which
have the highest extinction rate in both inter-
vals). If we compare only aggregated extinc-
tion rates, however, this conclusion is ob-
scured because of Simpson’s paradox. To infer
intensity of cause, it is therefore necessary to
account for the effect of changing taxonomic
susceptibility of the fauna in each interval. See
Figure 1 for a graphical explanation of how
Simpson’s paradox arises in this example.

Goals and Methods

In general, extinction rates in an interval are
affected both by the susceptibility of the taxa
present and by factors intrinsic to that interval
(e.g., bolide impact, anoxia, climate). To ac-
curately infer intrinsic extinction severity, it is
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FIGURE 1. A visual representation of Simpson’s para-

dox. For each class, the gray line indicates the genus-lev-
el extinction rates in the end-Ordovician (Ashgillian)
and the end-Permian (Djhulfian) mass extinctions. The
black line indicates the aggregated extinction rates in
each mass extinction. Size of symbols indicates relative
diversity (differences have been exaggerated for empha-
sis.) The end-Permian extinction was more severe for
each of the three classes individually (upward-sloping
gray lines). However, when the classes are aggregated,
the end-Ordovician appears more severe overall (down-
ward-sloping black line). This apparent paradox occurs
because the aggregated Ordovician rate (black square at
left) is pulled upward by the relatively high proportion
of extinction-prone cephalopods (large circle at top left),
compared to the relatively low proportion of extinction-
resistant gastropods (small circle at bottom left). In con-
trast, the aggregated Permian rate (black square at right)
is pulled downward by the relatively high proportion of
gastropods (large circle at bottom right), compared to
the relatively low proportion of cephalopods (small cir-
cle at top right).

important to account for taxonomic suscepti-
bility, thereby reducing the possibility of
equivocal or misleading findings due to Simp-
son’s paradox. Our goal in this paper is to pre-
sent a general framework for accounting for
such effects at the class level and on a global
scale over the Phanerozoic. On such a broad
scale, Simpson’s paradox in the strict sense de-
scribed above is less likely to hold, given the
large number of classes involved. However, it
is nonetheless the case that the distribution of
class susceptibilities can mitigate or exacer-
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bate underlying extinction rates. To model
such effects, we use an additive logistic re-
gression model. In this model, the extinction
rate of a given class in a given interval is mod-
eled as a function of a class-specific suscepti-
bility coefficient and an interval-specific se-
verity coefficient. The interval-specific severi-
ty coefficients reflect the intrinsic extinction
severity in each interval, after adjusting for the
effects of taxonomic susceptibility. Our goal is
analogous to that of demographers who cal-
culate age-adjusted mortality rates for cities or
other geographic areas: we adjust for differ-
ences in susceptibility of taxa in different time
intervals in order to arrive at a susceptibility-
adjusted extinction rate.

The Logistic Regression Model

A regression function is any function that
models the relationship between the expected
value (mean) of a response variable, Y, and
one or more explanatory variables. A familiar
example is linear regression, in which Y is
quantitative. Logistic regression is analogous
but used when Y is binary (dichotomous), tak-
ing on values that are typically labeled 0/1 or
Success/Failure (Hosmer and Lemeshow
2000). In our case, Y represents whether a ge-
nus went extinct in a given interval, with Y =
1 indicating that the genus went extinct and Y
= 0 indicating that it did not. For a 0/1 vari-
able, the expected value is equal to the prob-
ability that Y = 1. This probability, which we
denote by r,, corresponds to the extinction
rate of a genus in class 7 in substage t. To mod-
el m, as a function of taxonomic susceptibility
and substage-level effects, we use the follow-
ing logistic regression model:

m, = 1/{1 + exp[-(B + x; + )]} (1)

The left-hand side of this equation denotes the
probability that a genus in class i goes extinct
in substage t. The right-hand side is the logis-
tic function applied to the sum B + k; + 7,
where the coefficient (3 represents the baseline
extinction level for a genus in an average class
in an average substage; K, represents the av-
erage extinction susceptibility of class i (that
is, the propensity of a genus in class i to go
extinct in an average Phanerozoic substage);
and T, represents the extinction severity of
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substage f (that is, the propensity of a genus
in an average class to go extinct in substage t).
(A helpful mnemonic is B = Baseline, k =
Class, 7 = Time.) Applying the logistic func-
tion constrains the estimated values for T, to
lie between 0 and 1, as must be the case for
probabilities. (We have chosen to scale the k
and T coefficients so that zero represents an
average class or substage. The coefficients may
be scaled in other equivalent ways, but this
choice is most intuitively interpretable.)

With some algebra, model (1) is equivalent
to the following;:

log[wij/(l

The left-hand side of this equation represents
the logarithm of the odds of extinction (i.e., the
probability of extinction divided by the prob-
ability of survival) for a genus in class i in sub-
stage t. The log odds, also known as the logit
of m,, rescales the probability m, over the en-
tire real line. A probability greater than 0.5
corresponds to a positive logit value; a prob-
ability of 0.5 corresponds to a logit of zero;
and a probability less than 0.5 corresponds to
a negative logit.

This model assumes that intrinsic severity
of each substage is the same for each class in
that substage, and that the class and substage
effects are additive, with no interactions be-
tween the two. These assumptions are obvi-
ously a simplification; below we investigate
how well the model agrees with observed
data.

In summary, the logistic regression model
allows us to partition observed extinction lev-
els for each genus in each interval into a com-
ponent associated with the susceptibility of
the class to which the genus belongs (k;) and
a component associated with the intrinsic se-
verity of that substage (1,). Using such a mod-
el, we avoid being misled by Simpson’s para-
dox in inferring the intrinsic severity of ex-
tinctions in Phanerozoic substages. Instead,
we are able to examine extinction severity
through time in a way that is independent of
changes in taxonomic composition. Similarly,
we are able to estimate the extinction suscep-
tibility of each class independently of the in-
tervals in which they were extant.

As an example of how logistic regression

_T"z'j]:B'l'Ki"'Tt, (2)
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TaBLE 2. Estimated B, k, and 7 coefficients from the lo-
gistic regression model given by equation (1), applied to
the mollusc data in Table 1. These values were estimated
by maximum likelihood using an iterative least-squares
algorithm; calculations were carried out in R (R Devel-
opment Core Team 2007). A, Extinction intensity for
each substage, given both on a logit scale (1,) and on a
probability scale (m,). For instance, a genus in an average
molluscan class has a 0.60 probability of going extinct
in the Ordovician extinction and a 0.64 probability of
going extinct in the Permian extinction. The logistic re-
gression model controls for differences in the taxonomic
susceptibility of fauna extant in an interval, thereby
avoiding misleading conclusions due to Simpson’s par-
adox (cf. Table 1). B, Extinction susceptibility for each
class, given both on a logit scale (k,) and on a probability
scale (m;). For instance, a bivalve genus has a 0.60 prob-
ability of going extinct in an average substage (where
““average’’ refers to the average of the Ordovician and
Permian extinctions). Note that coefficients are normal-
ized to sum to 0 on a logit scale.

A. Results by substage

Ordovician Permian
Coefficient T, —0.088 0.088
Probability , 0.60 0.64
B. Results by class
Bivalvia Cephalopoda Gastropoda
Coefficient k; —0.086 0.673 —0.587
Probability 0.60 0.76 0.48

partitions class and substage effects, we apply
this technique to the mollusc data set in Table
1. The values of the (3, k, and T coefficients do
not have closed-form solutions, but they can
be estimated by maximum likelihood using an
iterative least-squares algorithm. For all anal-
yses we used the software R (R Development
Core Team 2007) for Mac OS X. Table 2 gives
the estimated coefficients for each class and
each substage. The estimated value of the
baseline B equals 0.497.

These coefficients (1, and k;) are on the logit
scale rather than the more intuitive probabil-
ity scale. To convert these coefficients to prob-
abilities (), we use equation (1). For instance,
the intrinsic extinction severity of the end-
Permian, adjusted for taxonomic susceptibili-
ty, is calculated by substituting f = 0.497, k =
0 (representing an average molluscan class),
and 7 = 0.088 into equation (1). Thus, a genus
in an average molluscan class (that is, one hav-
ing average extinction susceptibility) would
be expected to have a 1/{1 + exp[—(0.497 + 0
+ 0.088)]} = 0.64 probability of extinction in
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the end-Permian extinction. The other proba-
bilities in the table are calculated similarly.

Molluscs had a higher aggregate extinction
rate in the Ordovician extinction compared to
the Permian extinction (Table 1). Once we ad-
just for taxonomic susceptibility, however, we
see that the Permian extinction had a greater
intensity of cause: the adjusted extinction rate
was T = 0.64, compared to T = 0.60 for the Or-
dovician extinction, so a genus in an average
molluscan class would be more likely to per-
ish in the Permian extinction (Table 2). In the
raw aggregated data (Table 1, Fig. 1), the true
severity of the Permian is masked by the rel-
atively lower taxonomic susceptibility of fau-
na extant in that interval—in particular by the
relatively higher number of extinction-resis-
tant gastropod genera and the lower number
of extinction-prone cephalopod genera.

Table 2 also gives estimates for the k; coef-
ficients on the logit scale and their corre-
sponding probabilities. These values repre-
sent the extinction susceptibility of each class,
with k = 0 representing an average molluscan
class. As expected, cephalopods have high
susceptibility and gastropods have low sus-
ceptibility. Note that these probabilities do not
necessarily equal the raw extinction rates for
each class, as the latter may be skewed by the
unequal distribution of the class in different
extinction events. For instance, a class that
reached its peak of diversity in the Late Perm-
ian may have a higher raw extinction rate than
a class that peaked in the Ordovician, even if
both classes have the same inherent extinction
susceptibility. If a class is disproportionately
represented in substages with high turnover,
its observed extinction rate will overstate its
true extinction susceptibility.

One might ask how logistic regression is
able to separate the effect of each class from
the effect of each substage. For example, if tri-
lobites have an elevated extinction rate in the
Ashgillian, is this a property of trilobites or a
property of the Ashgillian? If each class were
extant in only one substage, then separating
the class effect and the substage effect would
indeed be impossible. However, because there
are multiple classes in each substage, and
multiple substages for each class, there is suf-
ficient information to distinguish class and
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substage effects. For example, we can examine
Ashgillian extinction rates in other classes be-
sides trilobites to see if they are elevated as
well; if so, we are likely seeing a property of
the Ashgillian rather than of any particular
class. Similarly, we can examine trilobite ex-
tinction rates in other substages, particularly
substages in which extinction rates are not
generally elevated. If trilobite extinction rates
in such substages are similarly high, then we
are likely seeing a property of trilobites rather
than of any particular substage.

In summary, the logistic regression model is
able to distinguish taxon-level effects from in-
terval-level effects. We are thus able to esti-
mate extinction rates for each substage ad-
justed for taxonomic susceptibility, and to es-
timate extinction rates for genera in each class
adjusted for relative diversity changes over
time. We now apply these methods to global
data over the entire Phanerozoic.

Data

We fit the logistic regression model given by
equation (1) to genus-level data from 107 stag-
es and substages (properly ages and subages,
but henceforth referred to as substages as per
common usage) from the Sepkoski compen-
dium (Sepkoski 2002), as compiled by Bam-
bach (1999) and Bambach et al. (2004). Many
new diversity analyses currently use the Pa-
leobiology Database (PBDB; http://paleodb.
org) because it contains geographically ex-
plicit data that can be subsampled (e.g., Alroy
et al. 2001; Krug and Patzkowsky 2007). We
have chosen to use the older data of Sepkoski
for several reasons. First, we wanted a large
number of time intervals for our logistic re-
gression, and in order to increase the amount
of data within time bins, analyses of the PBDB
are typically conducted at coarser temporal
resolution than analyses of Sepkoski’s data.
Second, we wanted good coverage of rare and
poorly preserved taxa, as well as common and
robust taxa, and felt that this was better
achieved with Sepkoski’s data. To take advan-
tage of subsampling, one must reduce sam-
pling intensity in all time intervals to the level
of the most poorly sampled time interval, and
this would eliminate much information on
some taxa. It could also increase the effects of
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FIGURE 2. Diversity histories for 45 taxa from Sepkoski’s genus compendium (2002), as compiled by Bambach
(1999) and Bambach et al. (2004). Intensity of gray shading indicates diversity (genus richness). In our analyses, we
omit Archaeocyatha, Blastoidea, Cricoconarida, Hyolithida, Mammalia, Orthothecimorpha, Pterasidomorphes, and
Stylophora, because they have low diversities or short ranges. Timescale from Sepkoski (2002) uses 107 stages and
substages. Mass extinctions are indicated by asterisks. Note that the x-axis scale is proportional to the number of

substages in each period, not to time.

incompleteness, such as the Signor-Lipps ef-
fect. On this note, Foote (2007) presented an
analysis of Sepkoski’s data that suggested that
the rates of extinction in many time intervals
may be severe overestimates due to back-
smearing, and others are subject to error
terms of some magnitude as well. Ideally, we
could run our analysis while taking these re-
sults into account, but this is not possible
without class-level extinction and origination
data.

We considered only classes with 40 or more
genera, because smaller classes would have
little effect on the analysis. We excluded a
number of additional classes because they had
a limited temporal range. These classes might
have created analytical problems because
some were extant predominantly in high-ex-

tinction substages, whereas others predomi-
nated in low-extinction substages. For in-
stance, archaeocyathids had high diversity in
the Cambrian, a time of elevated extinction
rates, whereas mammals had high diversity in
the Neogene, a time of diminished extinction
rates. The presence of such combinations
(analogous to collinearity in linear regression
or confounded effects in analysis of variance)
makes it difficult to estimate the class and
substage coefficients (the k; and 7,). To avoid
such a possibility, we excluded the Archaeo-
cyatha, Blastoidea, Cricoconarida, Hyolithida,
Mammalia, Orthothecimorpha, Pterasido-
morphes, and Stylophora. This left 37 classes
with sufficiently long temporal ranges for the
logistic regression algorithm to successfully
distinguish class and substage effects (Fig. 2).
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Because our data have not been standard-
ized to account for sampling intensity, it is
possible that our results are biased by variable
and incomplete sampling, which could differ-
entially affect classes with varying suscepti-
bilities or substages with varying intrinsic se-
verities. To account for such biases would be
difficult and is beyond the scope of this paper.

Results

Table 3 gives the estimated T, coefficients for
each substage, converted to probabilities, to-
gether with the observed (actual) extinction
rates. The former values represent the extinc-
tion rate in each substage after adjusting for
taxonomic susceptibility of the extant fauna.
In other words, they estimate what the extinc-
tion rate would be if the distribution of classes
were the same in each substage.

Figure 3A plots these adjusted extinction
rates in each substage, together with the ob-
served extinction rates. The adjusted rates
(dashed gray line) are generally close to the
observed extinction rates (solid black line).
However, the observed rates exceed the ad-
justed rates for most of the Paleozoic, espe-
cially the Cambrian and Ordovician, implying
that Paleozoic extinction levels were exacer-
bated by the higher susceptibility of classes
then dominant (e.g., trilobites). Conversely,
observed rates in the Cenozoic are lower than
the adjusted rates, implying that extinction
levels in that era were mitigated by the lower
susceptibility of classes then dominant (e.g.,
gastropods and bivalves).

We can also assess the relationship between
extinction rates before and after adjusting for
taxonomic susceptibility by plotting adjusted
versus observed extinction rates, with both
axes on a log scale (Fig. 4). The relationship
between adjusted and observed rates is simi-
lar for Paleozoic (open circles), Mesozoic
(black circles), and Cenozoic (gray circles)
substages, as indicated by points from the
three eras lying approximately on parallel
lines. The Cenozoic points are shifted higher
by the adjustment for taxonomic susceptibili-
ty, indicating (as we saw previously) that Ce-
nozoic extinction rates were tempered by the
presence of extinction-resistant classes, caus-
ing our model to adjust observed rates up-
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ward. Conversely, the Paleozoic points are
shifted lower, indicating that Paleozoic extinc-
tion rates were exacerbated by the presence of
extinction-prone classes, causing our model to
adjust observed rates downward.

For each of the three eras, the slope of the
regression line (on the log-log scale) was sta-
tistically indistinguishable from 1. Note that a
log-log model of the form log(Y) = a +
b log(X) implies that Y’ = ¢*X" on an untrans-
formed (non-log) scale, here with b = 1. It fol-
lows that on an untransformed scale, the ad-
justed rates are approximately equal to the ob-
served rates multiplied by a constant, with
values of the constant lowest for Paleozoic
substages and highest for Cenozoic substages.
Furthermore, the amount of spread around
the regression line appears to be decreasing
over time (Fig. 4). Thus not only is suscepti-
bility decreasing over time (in agreement with
Gilinsky’s [1994] finding of decreasing vola-
tility), but substage-to-substage variation in
susceptibility appears to be decreasing as
well.

Mass Extinctions.—Of particular interest are
adjusted and observed extinction rates for the
“Big Five”” mass extinction events (Raup and
Sepkoski 1982), with the end-Permian extinc-
tion considered to span two separate intervals,
the Guadalupian and Djhulfian (Stanley and
Yang 1994). Our adjustment for taxonomic
susceptibility adjusts observed extinction
rates downward for the two earliest mass ex-
tinctions and upward for the two latest mass
extinctions (Table 3, Fig. 3). The adjustment
least affects the two intervals for the end-
Permian extinctions, which are intermediate
in age. Judging by the observed rates in this
data set, the Ordovician extinction was the
second largest mass extinction, with 58% ge-
neric extinction, substantially more severe
than the Cretaceous extinction with 47% ex-
tinction. The adjustment for taxonomic sus-
ceptibility, however, shows that the Ordovi-
cian, Guadalupian, Triassic, and Cretaceous
events would have had nearly identical ex-
tinction severities (approximately 53%) if the
distribution of classes had been identical.

Class Susceptibilities.—Table 4 gives the val-
ues of the susceptibility coefficients k; for each
class, converted to probabilities (m;) using
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TaBLE 3. Observed and adjusted extinction rates and taxonomic susceptibilities for each age or subage (henceforth
referred to as “substages’” as per common usage). Observed rates (Obs) are the raw overall percent extinction in
each substage. Adjusted rates (Adj) (referred to as ,in the text) are predicted by the logistic regression model given
by equation (1), applied to data from the entire Phanerozoic. Susceptibility (Susc) is the taxonomic susceptibility
of the classes extant in that substage. For instance, the observed (actual) extinction rate in the Wenlockian (Early
Silurian) was 0.362, or 36.2%. After adjusting for taxonomic susceptibility, the logistic regression model predicts
that a genus in an average class has a 0.296 probability (29.6%) of going extinct in the Wenlockian. This adjusted
rate accounts for the taxonomic susceptibility of the fauna extant in that substage, and thus corrects for potential
Simpson’s paradox-type effects. The susceptibility of Wenlockian classes was 0.247 (24.7%). This quantity gives the
expected extinction rate of the Wenlockian fauna if the intrinsic extinction severity in that substage were equal to
that of an average Phanerozoic substage. In the Wenlockian, the logistic regression model adjusts the observed rate
downward because fauna in that interval were relatively susceptible to extinction, thus exacerbating observed ex-
tinction rates. Data are from Sepkoski’s genus compendium (2002), as compiled by Bambach (1999) and Bambach
et al. (2004). Period abbreviations: Ng, Neogene; Pg, Paleogene; K, Cretaceous; ], Jurassic; Tr, Triassic; P, Permian;
Pn, Pennsylvanian; M, Mississippian; D, Devonian; S, Silurian; O, Ordovician; C, Cambrian. Mass extinction stages
are boldfaced.

Per. Substage Obs.  Adj. Susc. Per. Substage Obs.  Adj. Susc.
Ng Pliocene 0.088 0.104 0.159 Pn Moscovian-1 0.200 0.181 0.206
Ng Miocene-1 0.071  0.084  0.158 Pn Moscovian-e 0.087  0.070  0.211
Ng Miocene-m 0.085 0.102  0.155 Pn Bashkirian-1 0.094 0.077 0.209
Ng Miocene-e 0.063  0.077  0.155 Pn Bashkirian-e 0.101  0.080 0.213
Pg Oligocene-1 0.040  0.047  0.156 M Serpukhovian-1 0.070  0.060  0.197
Pg Oligocene-e 0.072  0.086  0.157 M Serpukhovian-e 0.297 0.265 0.221
Pg Eocene-1 0.156  0.189  0.155 M Visean-1 0.322 0.283  0.226
Pg Eocene-m-1 0.054 0.066 0.154 M Visean-e 0.239 0.214 0.213
Pg Eocene-m-e 0.102  0.118 0.160 M Tournaisian-1 0.176  0.147  0.219
Pg Eocene-e 0.075 0.088 0.158 M Tournaisian-e 0.208 0.181 0.214
Pg Thanetian 0.099 0.121  0.153 D Famennian-1 0.317 0.286  0.221
Pg Danian 0.115 0.143 0.151 D Famennian-e 0.283 0.214 0.257
K Maastrichtian 0.471 0.528 0.169 D Frasnian-1 0.364 0.332 0.222
K Campanian-1 0.114 0.121 0.173 D Frasnian-e 0.271 0.210  0.245
K Campanian-e 0.094 0.099 0.172 D Givetian-1 0.284 0.240 0.229
K Santonian 0.087  0.090 0.175 D Givetian-e 0.247  0.206  0.226
K Turonian-Coniacian 0.129 0.125 0.186 D Eifelian 0.373 0301 0.251
K Cenomanian 0.248 0.254 0.188 D Emsian 0.359 0.276  0.259
K Albian-1 0.123  0.119 0.184 D Siegenian 0.190 0.141  0.243
K Albian-m 0.046 0.044 0.179 D Gedinnian 0.248 0.195 0.239
K Albian-e 0.068 0.064 0.180 S Pridolian 0.234 0.191 0.228
K Aptian 0.186  0.190 0.184 S Ludlovian 0.393  0.338 0.240
K Barremian 0.101  0.098  0.184 S Wenlockian 0.362 0.296  0.247
K Hauterivian 0.087 0.085 0.183 S Llandoverian-1 0.159 0.126  0.227
K Valanginian 0.111  0.109 0.184 S Llandoverian-m 0.139  0.109 0.225
K Berriasian 0.087  0.085 0.182 S Llandoverian-e 0.115 0.095 0.216
J Tithonian-1 0.214 0.210 0.192 o Ashgillian-1 0.575 0.533 0.241
] Tithonian-e 0.137  0.131 0.190 (@] Ashgillian-e 0.118 0.086  0.238
J Kimmeridgian 0.187 0.175 0.198 (e] Caradocian-1 0.164 0.124 0.236
J Oxfordian 0.195 0.182 0.201 (@] Caradocian-m 0.230 0.181 0.235
J Callovian 0.203 0.175 0.214 (@] Caradocian-e 0.220 0.168  0.242
J Bathonian 0.179  0.164  0.202 O Llandeilian 0.198 0.137  0.256
J Bajocian-1 0.128  0.118  0.195 (@] Llanvirnian-1 0.129  0.081 0.263
J Bajocian-e 0.112  0.097 0.199 (e} Llanvirnian-e 0.268 0.179  0.274
J Aalenian 0.069  0.062  0.192 (@] Arenigian-1 0.335 0.225 0.286
J Toarcian 0.217 0.192 0.211 (e] Arenigian-e 0.361 0.246  0.285
J Pliensbachian 0.255 0.239 0.204 (@] Tremadocian-1 0.432 0.335 0.270
J Sinemurian 0.156  0.135  0.206 (@] Tremadocian-e 0.494 0.379 0.282
] Hettangian 0.087  0.082  0.180 C Trempealeauan 0.603  0.458 0.314
Tr Norian-1 0.490 0.537 0.186 C Franconian 0.631 0.487  0.303
Tr Norian-e 0.279  0.260 0.213 C Dresbachian 0.682 0.562  0.297
Tr Carnian 0.391 0.374  0.220 C Late Middle-1 0.502  0.379  0.285
Tr Ladinian 0.279  0.258 0.213 C Late Middle-e 0.504 0.393 0.275
Tr Anisian 0.301 0.243  0.247 C Middle Middle 0.590 0.500 0.266
Tr Induan 0.455 0.374 0.274 C Early Middle 0.367 0.272 0.267
P Djhulfian 0.696 0.709 0.211 C Toyonian 0.434 0.341 0.265
P Guadalupian 0.549 0.531 0.225 C Botomian-1 0.436  0.340 0.267
P Leonardian-1 0.227  0.190 0.224 C Botomian-e 0.544 0.462  0.260
P Leonardian-e 0.200 0.167  0.222 C Atdabanian-1 0.498 0.444 0.236
P Sakmarian-1 0.133 0.106 0.221 C Atdabanian-e 0.476 0.454 0.212
P Sakmarian-e 0.066 0.051 0.216 C Tommotian-1 0.432 0.555 0.129
P Asselian 0.102  0.081  0.217 C Tommotian-e 0.197 0.236  0.137
Pn Stephanian-1 0.153  0.127  0.216 C Nemakit-Daldynian 0.353 0.384  0.162
Pn Stephanian-e 0.104 0.082 0.216
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FIGURE 3. A, Time series plot of observed (solid black line) and adjusted (dashed gray line) extinction rates at the
genus level, from Table 3. Adjusted rates account for variations in taxonomic susceptibility in different substages
and are calculated by using the logistic regression model given by equation (1). Observed rates in the Paleozoic are
generally adjusted downward, indicating that substages in this era had extinction-prone fauna, and observed Pa-
leozoic extinction rates were exacerbated by high taxonomic susceptibility. In contrast, observed rates in the Ce-
nozoic are generally adjusted upward, indicating that substages in this era had extinction-resistant fauna, and ob-
served Cenozoic extinction rates were mitigated by low taxonomic susceptibility. B, Taxonomic susceptibility of the
fauna in each substage, calculated by using the coefficients in Table 4 weighted by the diversity of each class. Mass
extinctions are marked by vertical gray lines. A long-term decline in susceptibility is evident, which explains 29%
of the Phanerozoic decline in observed extinction rates (see text for details). Note the spike in taxonomic suscep-

tibility after the end-Permian mass extinction.

equation (1). These values represent the ex-
tinction rate of each class in an average Phan-
erozoic substage. We emphasize that these val-
ues are not simply the observed average ex-
tinction rates for each class, because these sus-
ceptibility coefficients adjust for variation in
diversity within each class over time. For in-
stance, suppose two classes have exactly the
same intrinsic extinction susceptibility, but
one class attains its highest diversity during
the early Paleozoic, whereas the other attains
its highest diversity during the Cenozoic. The
first class will have a higher observed extinc-
tion rate than the second because it is extant
predominantly during a time of higher intrin-
sic extinction severity, whereas the second is
extant predominantly during a time of lower
intrinsic extinction severity. Thus the first
class will artificially appear more extinction-
prone and the second more extinction-resis-
tant, even though in fact they have the same
intrinsic susceptibility. The values in Table 4

adjust for this bias. (Note that these rates can
still be affected by taxonomic practice; for ex-
ample, oversplit taxa may appear to have ar-
tificially high extinction rates. However, this is
unavoidable in any analysis of this type.)
Using these adjusted class extinction rates,
we calculated the susceptibility of the fauna as
a whole in each Phanerozoic substage. For
each substage, we multiplied the adjusted ex-
tinction rate for each class by the number of
genera in that class. The sum of these products
is an estimate of the total number of genera
that would have gone extinct in that substage
if it had had an average extinction severity. Di-
viding this sum by the diversity in the sub-
stage yields an adjusted extinction rate. We
thus infer the taxonomic susceptibility of the
fauna in each substage (Fig. 3B). In other
words, these values estimate what the extinc-
tion rate for each substage would have been if
all substages had experienced a constant ex-
tinction trigger, and therefore all variation in
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FIGURE 4. Plot of adjusted versus observed extinction
rates (Table 1, Fig. 3). On a log-log scale, regression lines
for each era (not shown for clarity) have slopes statisti-
cally indistinguishable from 1.0 but different intercepts.
The regression line for Cenozoic substages has the high-
est intercept, indicating that extinction rates for these
stages are adjusted upward when controlling for taxo-
nomic susceptibility. The regression line for Paleozoic
substages has the lowest intercept, indicating that ex-
tinction rates for these stages are adjusted downward
when controlling for taxonomic susceptibility. See also
Figure 3 caption.

observed extinction rates resulted from differ-
ences in taxonomic composition.

There is a natural correspondence between
the top and bottom panels of Figure 3. The ad-
justed extinction rate falls below the observed
rate in Figure 3A when taxonomic suscepti-
bility is relatively high in Figure 3B. During
such times, extinction rates were exacerbated
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by a predominance of susceptible classes,
rather than being driven solely by an intrin-
sically severe trigger. Therefore, the logistic re-
gression adjusts the observed rate downward
to account for this elevated faunal susceptibil-
ity. Conversely, the adjusted extinction rate
exceeds the observed rate in Figure 3A when
susceptibility is relatively low in Figure 3B. At
such times, the severity of the intrinsic extinc-
tion trigger is mitigated by the resistance to
extinction of the extant fauna. Therefore, the
logistic regression adjusts the observed rates
upward to account for this low susceptibility.
Finally, in substages in which the adjusted
and observed rates are equal or nearly so, as
is the case during the Cretaceous, extant clas-
ses have a combined susceptibility close to the
Phanerozoic average.

Statistical Significance.—A natural question
is whether our model adjusting for taxonomic
susceptibility is a significant improvement
over a model without such an adjustment.
This is equivalent to asking whether classes
differ significantly in susceptibility. To assess
statistical significance, we compared the fol-
lowing two logistic regression models:

(a) anull model that omits the coefficients for
class susceptibility, given by the equation
m, = 1/{1 + exp[—(B + 7)1} [cf. eq. 1]. Ac-
cording to this null model, the probability
that a genus in class i goes extinct in sub-
stage t depends only on the identity of
substage t and not on the identity of class
i. In other words, the overall extinction

TABLE 4. Class susceptibilities from the logistic regression model given by equation (1), applied to data from the
entire Phanerozoic and expressed on a probability scale (,). For instance, a genus in class Holothuroidea has a 0.05
probability of going extinct in an average Phanerozoic substage, whereas a genus in class Placodermi has a 0.60
probability of going extinct in an average Phanerozoic substage. These values account for the intrinsic severity of
the substages in which each class was extant, and thus correct for potential Simpson’s paradox-type effects. Data
are from Sepkoski’s genus compendium (2002), as compiled by Bambach (1999) and Bambach et al. (2004).

Class ; Class ; Class ; Class ;
Holothuroidea 0.05 Calcarea 0.13 Ostracoda 0.18 Merostomata 0.30
Radiolaria 0.06 Gastropoda 0.13 Chondrichthyes 0.19 Crinoidea 0.31
Polychaeta 0.06 Polyplacophora 0.14 Conodonts 0.22 Articulata 0.33
Cirripedia 0.09 Inarticulata 0.14 Echinoidea 0.22 Rhombifera 0.34
Stenolaemata 0.11 Bivalvia 0.14 Hexactinellida 0.23 Trilobita 0.34
Gymnolaemata 0.12 Foraminifera 0.15 Anthozoa 0.23 Diploporita 0.35
Rostroconchia 0.12 Asteroidea 0.16 Edrioasteroidea 0.24 Reptilia 0.48
Hydrozoa 0.12 Demospongia 0.17 Graptolithina 0.24 Cephalopoda 0.53
Ophiuroidea 0.12 Malacostraca 0.17 Osteichthyes 0.28 Placodermi 0.60

Scyphozoa 0.13
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rate in a substage depends only on the in-
trinsic extinction severity of that substage,
not on the susceptibility of the fauna ex-
tant in that substage; and

(b) our full model (including the coefficients
for class susceptibility) as given by equa-
tion (1).

For each model, we calculated the residual
deviance, a standard likelihood-based mea-
sure of fit that is analogous to the sum of
squared residuals in linear regression (Hos-
mer and Lemeshow 2000). For a given data set,
smaller residual deviance indicates better fit.
The residual deviance was 19,757 on 2884 de-
grees of freedom for the null model, and
11,329 on 2847 degrees of freedom for the full
model, so the full model does explain the data
better, but is this difference statistically sig-
nificant?

To answer this question, we test the null hy-
pothesis that class susceptibility is not a sig-
nificant predictor of extinction rate (i.e., that
the class susceptibility coefficients are all
zero) by using a likelihood ratio test (Casella
and Berger 2002; see Wang and Everson 2007
for a brief introduction). The test statistic is the
difference between the residual deviances of
the null model and the full model, which here
equals 19,757 — 11,329 = 8428. Under the null
hypothesis, this test statistic has a chi-square
distribution, with degrees of freedom equal to
the difference between the degrees of freedom
of the null model and the full model (here,
2884 — 2847 = 37). The p-value is the proba-
bility that a chi-square random variable with
37 degrees of freedom would exceed a value
of 8428, a probability that is virtually zero.
Thus we reject the null hypothesis and con-
clude that class susceptibility is a statistically
significant predictor of extinction rate. In oth-
er words, our full model (b) adjusting for tax-
onomic susceptibility is significantly different
from (and better than) the null model (a) lack-
ing such an adjustment.

In Figure 3A, the adjusted and observed ex-
tinction rates appear fairly similar over much
of the Phanerozoic. It is natural to ask whether
these rates are significantly different. We can
use the comparison between the full and null
models to answer this question. The adjusted
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rates are the predicted values from the full
model (b). The observed rates are the predict-
ed values from the null model (a), because the
null model does not account for class suscep-
tibility and its predicted values therefore sim-
ply reproduce the observed rates in each sub-
stage. Therefore, the fact that the full model is
significantly different from the null model im-
plies that the adjusted rates (taken as a whole,
not just in any particular substage) are signif-
icantly different from the observed rates.

Alternatively, we can compare the null and
full models using Akaike’s Information Cri-
terion (AIC) (Akaike 1974; see Hunt 2006 for
a paleontological application). AIC is a likeli-
hood-based method for choosing among can-
didate models, taking into account the parsi-
moniousness (number of parameters) of each
model. The best model among the candidate
models is the one with the smallest AIC. Here
the null model has an AIC of 26,020 and the
full model an AIC of 17,666, so we see again
that the latter model (incorporating class sus-
ceptibility) is preferred.

Decline in Phanerozoic Extinction Rates

Many authors have noted a decline in ex-
tinction rates over the Phanerozoic. Reasons
proposed to explain this decline include an in-
crease in fitness (Raup and Sepkoski 1982), an
increase in the number of species per genus
(Flessa and Jablonski 1985), an aging fauna
(Boyajian 1986), sampling bias (Pease 1992),
sorting of higher taxa (Stanley 1979, 2007; Sep-
koski 1984, 1991; Van Valen 1985, 1987; Gil-
insky 1994), and changes in community struc-
ture (Roopnarine et al. 2007). (Bambach et al.
[2004] suggested that extinction history con-
sisted of several phases of high and low rates
rather than a steady decline.) Our analysis
shows that taxonomic susceptibility (at the
class level) has declined (Fig. 3B), so part of
the Phanerozoic decline in extinction rates can
be attributed to this factor. However, our ad-
justed extinction rates after adjusting for tax-
onomic susceptibility (Fig. 3A) also decline;
thus part of the Phanerozoic decline can be
also attributed to factors not accounted for by
our model. For example, a decline in total ex-
tinction rates that resulted from declines in
rates within higher taxa rather than shifts in
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dominance among higher taxa would not show
up in this model as a decline in susceptibility
(e.g., Stanley 2007: p. 45). A linear regression
fit to the observed extinction rates gives a
slope of —0.000602 (i.e., a decline of —0.06 per-
centage points per million years). Over the en-
tire Phanerozoic, this rate of change translates
to a drop of 0.327 (32.7 percentage points). A
linear regression fit to the adjusted extinction
rates gives a slope of —0.000427 (i.e., a decline
of —0.04 percentage points per million years).
Over the entire Phanerozoic, this rate of
change translates to a drop of 0.232 (23.2 per-
centage points). Thus we estimate that chang-
es in taxonomic susceptibility at the class level
are responsible for 29% of the Phanerozoic de-
cline in extinction rates (=(32.7 — 23.2)/32.7),
with other factors responsible for the remain-
ing 71%.

Background versus Mass Extinction:
Different Selective Regimes?

Many authors have studied whether mass
extinctions are the right tail of a continuous
distribution of extinction events, or whether
they are a qualitatively different phenomenon
from background extinction (Raup and Sep-
koski 1982; Jablonski 1986; Benton 1995; Miller
1998; Wang 2003; Bambach et al. 2004; Jablon-
ski 2005; Foote 2007). To investigate this ques-
tion, we calculated the susceptibility coeffi-
cients k; for each class by fitting the logistic re-
gression model to two different data sets: first,
data from only the Big Five mass extinction
substages, and second, data from only back-
ground extinction substages. If background
and mass extinctions have similar selectivity,
we would expect these two sets of suscepti-
bility coefficients to be highly correlated. On
the other hand, if background and mass ex-
tinctions differ in selectivity, we would expect
these two sets of susceptibility coefficients to
show little correlation. In fact, classes that
have high susceptibility in background sub-
stages also tend to have high susceptibility
during mass extinctions (Fig. 5; » = 0.89).

Assessing Model Fit

In this section, we assess whether our logis-
tic regression model adequately fits the data.
To be of practical value, all statistical models
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FiGUrRe 5. Comparison of class susceptibility coeffi-
cients (k;) estimated only from mass extinction substag-
es and only from background extinction substages. Gray
line is the line y = x. There is a strong correlation (r =
0.89) between class susceptibilities in mass extinctions
and background extinctions, implying that there is con-
tinuity of effect between these phenomena and arguing
against distinct selective regimes at the class level.

must make simplifying assumptions about the
structure of the data being modeled. As dis-
cussed earlier, our model assumes that the ef-
fect of each class and each substage on extinc-
tion rates is additive, with no interaction be-
tween the two. In other words, the model as-
sumes that the effect of any particular
substage is the same for all classes, and the ef-
fect of any particular class is the same in all
substages. In addition, our model accounts for
the susceptibility of each class only through a
coefficient (k,) that reflects its susceptibility in
an average Phanerozoic substage. If the sus-
ceptibility of a class systematically varies over
time, using only the average Phanerozoic sus-
ceptibility may not adequately explain ob-
served extinction patterns.

To determine whether our logistic regres-
sion model adequately captures the class and
substage dynamics seen in the data set, we
first compared the observed extinction rate to
the total extinction rate (aggregated over all
classes) predicted by the model (i.e., m; in eq.
1). There was a very close correspondence be-
tween these two quantities over the 107 Phan-
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FIGURE 6. Comparison of observed (black) and predicted (gray) extinction rates for each of the ten classes having
the highest cumulative diversity over the Phanerozoic. Although some discrepancies are evident, there is generally
a fairly close match between observed and predicted rates. See text for discussion. Predicted extinction rates ()
in each substage were calculated by using equation (1). Gray shaded regions indicate 95% prediction intervals,
which account for variability due to two sources: (1) variability in the predicted extinction rates, given by the stan-

dard error of the predicted Ty

and (2) binomial sampling variability in the observed extinction rates, given by the

standard error of the observed rates. The margin of error for the prediction interval is twice the square root of the

sum of squares of these two standard errors.

erozoic stages and substages; the correlation
coefficient was 0.9998 for the raw data and
0.9997 for first differences. Although this cor-
respondence is encouraging, it is necessary to
compare observed and predicted extinction
rates for individual classes (Fig. 6), because
the match for aggregated extinction rates
could mask discrepancies at finer taxonomic
levels. For each of the ten classes having the
highest cumulative diversity over the Phan-
erozoic, we calculated the predicted extinction
rates in each substage using equation (1). In
each plot, the black line gives the observed ex-
tinction rate, and the gray line the predicted
rate (i.e., the extinction rate m; estimated by
the logistic regression model). In order to vi-
sually assess whether the observed and pre-
dicted rates match, we display 95% prediction
intervals (gray shaded regions). These error

bars account for uncertainty due to two sourc-
es: (1) the predicted extinction rate may differ
from the true extinction rate if the logistic re-
gression does not accurately model extinction
dynamics, and (2) the observed extinction rate
may differ from the true extinction rate be-
cause of random sampling variability, partic-
ularly when sample sizes are small. If the
model accurately reflects true extinction rates,
then most observed rates should lie within the
95% prediction intervals.

In general, the predicted and observed rates
match fairly well. Some discrepancies are vis-
ible when diversity is low. For example, pre-
dicted rates are too high for Foraminifera in
the early Paleozoic. A similar pattern can be
seen for Radiolaria in the Devonian and Sten-
olaemata in the Jurassic. However, in these
cases the prediction intervals are very wide
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because diversity is low (e.g., foraminiferan
diversity does not exceed six genera until the
lower Caradocian). As observed rates still
mostly fall within the prediction intervals,
these discrepancies are likely to indicate ran-
dom fluctuations due to small sample size,
rather than systematic problems in the model.

Other discrepancies do not appear to be due
to small-sample-size variability. Cephalopods
have lower rates of extinction than predicted
in the Paleozoic and higher in the Jurassic and
Cretaceous. This difference may relate to the
dominance in the Jurassic and Cretaceous of
ammonites, which had high rates of turnover
and may be oversplit taxonomically because of
their biostratigraphic utility. As another ex-
ample, foraminifera have higher rates of ex-
tinction than expected in the Carboniferous,
Permian, and Cenozoic, when they are like-
wise used for biostratigraphy. In these cases,
the misfit between the model and the ob-
served data may result from combining
groups (e.g., ammonites and ammonoids)
with different diversity dynamics; separating
these groups might improve the fit of the
model. In general, however, the predicted
rates are a good match for the observed rates,
especially for gastropods and bivalves, the
two most diverse classes.

Of particular interest are the predicted ex-
tinction rates for mass extinction events and
recovery intervals, as those substages are the
ones in which we might expect the assump-
tion of additivity to be most likely violated be-
cause of unusual extinction triggers and po-
tentially uniquely selective extinctions. Some
discrepancies can be seen in Figure 6: fora-
minifera have lower extinction rates in the Or-
dovician extinction and in the post-Permian
recovery, compared to the model predictions;
ostracodes have lower extinction rates in the
Triassic and the Cretaceous extinctions; ceph-
alopods have lower extinction rates in the
post-Ordovician and post-Cretaceous recov-
eries and higher in the post-Triassic recovery;
and stenolaemate bryozoans have higher ex-
tinction rates in the Triassic extinction. In gen-
eral, however, the predicted and observed
rates match well in mass extinction and recov-
ery intervals.

In summary, although there are occasional
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discrepancies among taxa and intervals, the
logistic regression model seems to do a good
job of modeling extinction dynamics despite
its simplifying assumption that the effects of
each class and each substage are additive.

Mass Extinctions and Their Recoveries

Do mass extinctions occur during times of
relatively high taxonomic susceptibility, or do
they occur despite low susceptibility? In Fig-
ure 3B, we see that mass extinctions do not
typically occur when the extant fauna are par-
ticularly susceptible. On the contrary, the De-
vonian, Triassic, and Cretaceous extinctions
were preceded by a decrease in susceptibility.
The Ordovician extinction was preceded by a
slight increase in susceptibility, but suscepti-
bility was still low compared to the previous
75 Myr. Similarly, the penultimate substage of
the Permian (the Guadalupian) was preceded
by a slight increase in susceptibility, but sus-
ceptibility had remained essentially steady
since the end of the Devonian 100 Myr earlier.
From the Guadalupian to the final Permian
stage (the Djhulfian) there was a decrease in
susceptibility, presumably associated with the
Guadalupian extinctions.

Using computer simulations of Karoo Basin
food webs, Roopnarine et al. (2007) suggested
that Late Permian terrestrial communities
were not particularly susceptible but Early
Triassic recovery communities were unstable,
implying that the Permian extinction dis-
turbed the stability of trophic networks. We
find a similar effect here, although our conclu-
sions are global in scope rather than at the
community level. These findings are consis-
tent with other work concluding that post-ex-
tinction fauna were depauperate or impover-
ished (Schubert and Bottjer 1995; Rodland
and Bottjer 2001; Twitchett et al. 2001; Pruss
and Bottjer 2004a; Chen et al. 2005; Payne
2005; Erwin 2006; Payne et al. 2006). Our anal-
ysis shows that susceptibility in the final
Permian stage (the Djhulfian) was at its lowest
level of the preceding 50 Myr (Fig. 3B). Im-
mediately after the end-Permian extinction,
however, susceptibility increased sharply in
the first stage of the Triassic (the Induan). This
spike is largely due to an increase in diversity
of cephalopods (Fig. 7A), the second most sus-
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ceptible class (Table 4), and is in fact the most
dramatic shift in susceptibility of the Phan-
erozoic after the Early Cambrian. In fact,
cephalopods increased from 5.6% of genera in
the database in the latest Permian substage to
27% of genera in the earliest Triassic substage.
This was not just an increase in relative terms
compared to other genera decimated by the
extinction, but an absolute increase in the
number of genera: cephalopods increased
from 48 to 163 genera while total diversity
dropped from 866 to 603 genera.

Is such a pattern a general feature of mass
extinctions and their recovery intervals? A
similar pattern can be seen in the Late Cam-
brian. Although not considered among the Big
Five mass extinctions, the Middle and Late
Cambrian were times of elevated extinction
rates (Bambach 2006). Shortly after Cambrian
extinction rates peak in the Dresbachian, a
spike in susceptibility occurs in the Trempe-
aleauan (490-493 Ma) (Fig. 3B). Although not
as dramatic a change as the Early Triassic in-
crease in susceptibility, this spike represents
the highest level of susceptibility of the entire
Phanerozoic. This is again primarily due to
cephalopods, which undergo their initial di-
versification from 1 to 42 genera. The Devo-
nian (Frasnian/Famennian) extinction follows
this pattern as well, although it is less pro-
nounced. Susceptibility in the late Frasnian is
locally low but rises in the early Famennian,
again coinciding with a diversification of
cephalopods from 53 to 177 genera. The Tri-
assic extinction follows a generally similar
pattern. Susceptibility declines throughout
most of the Triassic, and continues to do so in
the Hettangian after the extinction; the rise in
susceptibility is delayed until the succeeding
Sinemurian stage. This rise is due primarily to
an increase in cephalopod genera from 30 to
84.

Not all mass extinctions follow this pattern
of increasing susceptibility in recovery inter-
vals. Susceptibility drops in the early Llan-
doverian immediately after the Ordovician ex-
tinction, coinciding with a relative decrease in
many high-susceptibility classes (Cephalopo-
da, Trilobita) and a relative increase in some
low-susceptibility classes (Foraminifera, Gas-
tropoda, Polychaeta, Radiolaria, Stenolaema-
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ta). A similar decrease in susceptibility is seen
in the Danian immediately after the Creta-
ceous extinction, coinciding with a relative de-
crease in some high-susceptibility taxa (Ceph-
alopoda, Reptilia) and an increase in some
low-susceptibility taxa (Gastropoda, Radi-
olaria), although the low-susceptibility Bival-
via declined as well.

In summary, there does not seem to be a
general pattern of mass extinctions occurring
during times of high susceptibility. Nor does
there seem to be a consistent pattern of sus-
ceptibility change at mass extinction events
and their recovery intervals. Observed pat-
terns appear to depend on the particular taxa
that survive and radiate following an extinc-
tion, which vary from event to event. Thus
mass extinctions appear to lack a common ef-
fect, suggesting that they do not share a com-
mon cause.

Evenness and Susceptibility

On ecological time scales, biodiversity can
enhance the stability of ecosystems (Tilman
and Downing 1994; McGrady-Steed et al.
1997; Naeem and Li 1997; McCann 2000), and
Kiessling (2005) found that high diversity in
reefs enhanced stability on million-year time
scales as well. Given these findings, we tested
for a similar effect of taxonomic composition
on global extinction rates: perhaps global fau-
nas containing a wide range of higher taxa are
typically resistant to extinction, whereas fau-
nas containing few higher taxa are susceptible
to extinction. (Although stability is presum-
ably enhanced by diversity at local rather than
global levels, there may nonetheless be an ef-
fect if local and global diversity are related
[e.g., Sepkoski et al. 1981].) We measured the
diversity of higher taxa within each substage
by the evenness of generic diversity within
classes, quantified using PIE (Olszewski
2004), transformed to 1/(1 — PIE) to improve
symmetry. Substages containing many com-
mon higher taxa have high evenness; those
dominated by relatively few taxa have low
evenness.

We compared evenness at the class level
with adjusted extinction rates (comparing
evenness with observed extinction rates gave
similar results). This analysis differs from
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except across the marked mass extinctions. Classes are ordered and grouped according to their stage or substage
of maximum proportional diversity. B, Adjusted extinction rate versus evenness, here measured as 1/(1 — PIE).
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the Paleozoic (r = —0.78) and Mesozoic (r = —0.55) are considered separately, but not in the Cenozoic (r = 0.41).
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those above because here extinction rate is
compared with a measure of the diversity of
taxa present in an interval, regardless of the
identity of those taxa, whereas the previous
analyses adjusted extinction rates on the basis
of the identities of taxa present.

As hypothesized, adjusted extinction rates
are inversely correlated with evenness (Fig.
7B; r = —0.49 for all substages). The correla-
tion increases when the cluster of mass ex-
tinction intervals in the upper right is exclud-
ed (r = —0.64 for background intervals only).
If we consider each era separately, we find an
inverse correlation in both the Paleozoic (r =
—0.78) and Mesozoic (r = —0.55), with a de-
cline in extinction and increase in evenness
from the Triassic to the later Mesozoic paral-
leling the trends from the Cambrian—earliest
Ordovician to the later Paleozoic. However,
the correlation within the Cenozoic substages
is lower and positive (r = 0.41): the Danian
(earliest Paleocene) is most similar to Meso-
zoic values, and evenness then actually de-
creases through time as gastropods radiate
and make up a larger proportion of the fauna
(Fig. 7A). In the upper right, the cluster of
mass extinction outliers includes the Guada-
lupian (Stanley and Yang 1994) and the tra-
ditional “‘Big Five” (Raup and Sepkoski 1982)
except for the upper Frasnian, which Bambach
et al. (2004) labeled a ““mass depletion” of di-
versity but not an interval having especially
elevated extinction relative to adjacent Devo-
nian intervals.

The inverse correlation between evenness
and extinction and the parallel temporal
trends in these variables in the Paleozoic and
Mesozoic suggest that a causal relationship is
worth investigating, but further analysis does
not support such a link. When we take first
differences of both adjusted extinction rate
and evenness, the correlation disappears (Fig.
7C; r = —0.001). Apparently, evenness is not a
direct cause of high global extinction; rather,
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both are responses to other variables. Note
that substages with low evenness (below 6.0)
are confined to the Cambrian and Early Or-
dovician. It is thus difficult to determine
whether the high adjusted extinction rates of
these substages are a result of low evenness,
or of other conditions specific to the Cambrian
and Early Ordovician. We emphasize that the
high adjusted extinction rates in these inter-
vals are not caused by a relative abundance of
susceptible taxa (e.g., trilobites); the effects of
susceptibility have already been accounted for
in these adjusted rates. That is, these high ad-
justed rates are due to within-class trends
rather than sorting among classes. This can be
seen in Figure 4C of Bambach et al. (2004),
which shows that extinction rates for both tri-
lobites and non-trilobite taxa decline during
or immediately after the Early Ordovician.
The similarity between the Cambrian-ear-
liest Ordovician and the Triassic in Figure 7B
is noteworthy. For both sets of substages, the
points lie in the upper left of the region oc-
cupied by the corresponding era. That is,
Cambrian-earliest Ordovician substages are
the Paleozoic intervals with the highest ad-
justed extinction rate and lowest evenness,
and the same holds for Triassic substages
among Mesozoic intervals. Several causes
have been suggested for high rates of taxo-
nomic turnover in the Cambrian and Early Or-
dovician: functional limitations of early ani-
mals that made them more vulnerable to ex-
tinction (Bambach et al. 2002), low diversity or
low ecospace occupation in the early Paleo-
zoic oceans (Bambach 1983, 1985; Bambach et
al. 2002, 2004), or physical stresses, such as
may be indicated by carbon isotopes (Brasier
and Sukhov 1998; Saltzman et al. 2000). Some
of these factors could apply as well to the Ear-
ly Triassic, when the end-Permian extinction
had devastated marine communities. Diver-
sity was as low as it had been since the Or-
dovician Radiation, both within habitats and

«—

The Cambrian—earliest Ordovician can be seen to be similar to the Triassic when each is compared to its own era.
Substages decline in extinction rate and increase in evenness from the Cambrian and earliest Ordovician to later
Paleozoic times (blue), and Mesozoic values trend similarly from the Triassic to the later Mesozoic (green). Evenness
then decreases through the Cenozoic as gastropods radiate (yellow). C, No correlation is apparent when first dif-

ferences are taken, making a causal relationship unlikely.
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globally (Bambach 1977; Sepkoski 1987). Eco-
space occupation was dramatically reduced
by the end-Permian extinction—for example,
in tiering above and below the sediment-water
interface (Ausich and Bottjer 1982; Pruss and
Bottjer 2004a; Twitchett et al. 2004). Large car-
bon isotope excursions characterize the series
(Payne et al. 2004), and the environment may
have been unstable or hazardous in a number
of ways (e.g., Isozaki 1997; Retallack 1999;
Wignall and Twitchett 2002). Metazoan com-
munities were so disrupted that microbialites
became prominent (Schubert and Bottjer 1992;
Lehrmann et al. 2003; Pruss and Bottjer
2004b), as they had been in the Cambrian, and
other microbially influenced sedimentary
structures became more common (Pruss et al.
2004). As the world’s oceans recovered from
the Permian extinction, all of these factors re-
turned to ““normal,”” and taxonomic evenness
increased and extinction rate declined.

Discussion

In this paper, we draw a distinction be-
tween intensity of effect—the percentage of
taxa killed in a time interval (or the ecological
effects of an extinction [Droser et al. 2000;
McGhee et al. 2004])—and intensity of
cause—the intrinsic physical intensity of the
causal killing mechanism. So far, we have said
little about the nature of the killing mecha-
nisms; in fact, this catch-all term probably en-
compasses a wide range of processes. In some
“background extinction” intervals, the so-
called killing mechanism may consist of no
more than low-intensity local processes un-
correlated among regions, whereas mass ex-
tinctions can result from a range of globally
consequential phenomena (e.g., Alvarez et al.
1980; Sheehan 2001; Joachimski and Buggisch
2002; Bond et al. 2004; Erwin 2006). On the
other hand, Peters (2005, 2006) offered sup-
port for sea level as at least a partial control on
diversity fluctuations throughout much of
metazoan history. Given such potential vari-
ation in the causes of extinction through time,
is it appropriate to speak of “‘intensity of
cause”’ in a simple, uniform manner?

Several lines of evidence suggest that our
model is useful as a first-order analysis. Clas-
ses have similar susceptibility to extinction in

STEVE C. WANG AND ANDREW M. BUSH

times of background and mass extinction (Fig.
5), suggesting that variation in killing mech-
anism does not invalidate our approach. The
match between the actual extinction history of
individual classes and the model predictions
(Fig. 6) also suggests that variation among in-
tervals in the causes of extinction do not over-
whelm the model. However, the logistic re-
gression model assumes that the extinctions in
each substage are not selective among classes
in unique ways, which may not be true, es-
pecially for some of the mass extinctions (e.g.,
Sheehan and Fastovsky 1992; Knoll et al. 1996,
2007; Smith and Jeffery 1998). For example,
Knoll et al. (1996, 2007) argued that the Perm-
ian/Triassic extinction was more severe for
organisms vulnerable to hypercapnia (CO,
poisoning). Extinctions that are uniquely se-
lective for a subset of taxa may show up as in-
stances of imperfect fit between our model
predictions and observed data, but, as dis-
cussed, the model as a whole seems to fit well
despite these effects.

In contrast with analyses such as those of
Alroy et al. (2001), many of our analyses re-
inforce conventional views rather than over-
turning them. That being the case, the value of
this paper may lie in (1) introducing a method
by which extinction rates can be adjusted to
account for taxonomic susceptibility, rather
than interpreting such rates literally; (2) using
the method to estimate the intensity of cause
of Phanerozoic mass extinctions, as distinct
from their intensity of effect; and (3) using the
method to quantify effects that were previ-
ously known only qualitatively. As an exam-
ple of the last point, we note that several au-
thors have previously attributed the Phaner-
ozoic decline in background extinction to the
sorting of higher taxonomic groups (at various
levels), with highly volatile groups being re-
placed by less volatile ones over time (Stanley
1979, 2007; Sepkoski 1984, 1991; Van Valen
1985, 1987; Gilinsky 1994). However, our
study directly quantifies the extent to which
this replacement of higher groups explains the
decline in background extinction. Our analy-
sis shows that changes in susceptibility at the
class level are not sufficient to explain the de-
cline in background extinction: only 29% of
the decline can be attributed to such changes
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in susceptibility. The rest must be due to
changes in susceptibility at other taxonomic
levels, or other factors such as changes in eco-
system structure, overall improvement in fit-
ness, or expansion of geographic ranges (e.g.,
Jablonski 2005; Payne and Finnegan 2007). In
fact, biological correlates of taxonomic affinity
presumably underlie the differences in extinc-
tion susceptibility among classes noted in Ta-
ble 4; however, taxonomic affinity is an effi-
cient way of capturing significant variation in
susceptibility.

We anticipate that our methodology may be
extended to other situations, such as the dis-
section of class-level taxa (e.g., cephalopods)
into finer components to elucidate their Phan-
erozoic-scale diversity dynamics, or the ap-
plication of susceptibility to groupings not
based on taxonomy (e.g., trophic level, life
habit). Indeed, the statistical and biological is-
sues that we have raised here apply to any
study of rates of extinction (and origination as
well) in which subgroups vary in rate and
shift through time in proportion, including
new studies using sampling-standardized
data. If a higher proportion of taxa die in one
interval than another, and we would like to
know why, it may be incorrect to assume pri-
ma facie that the killing mechanism was in-
trinsically more severe. To avoid misleading
conclusions stemming from statistical arti-
facts such as Simpson’s paradox, we must ac-
count for the characteristics of the fauna ex-
tant in that interval.

Conclusions

1. The measured rate of extinction in an in-
terval of time is affected by both the inten-
sity of extinction triggers and the suscep-
tibility of the fauna. Taxonomic classes are
variably susceptible to extinction and con-
stituted changing proportions of the global
fauna through time, so the susceptibility of
the global fauna to extinction varied
through time.

2. Logistic regression can remove the effects
of taxonomic susceptibility on observed ex-
tinction rates, yielding estimates of what
extinction rates would have been if a fauna
of constant composition existed through
the Phanerozoic. Adjusted and observed
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extinction rates are not entirely dissimilar,
but several interesting patterns emerge
from the analysis.

3. Taxonomic susceptibility declined through
the Phanerozoic as susceptible classes were
replaced in dominance by less susceptible
classes. Thus, observed rates of extinction
in the Paleozoic somewhat overstate the in-
tensity of the causal “’killing mechanisms”’
relative to later times.

4. Trigger mechanisms from early mass ex-
tinctions would have had lower rates of ex-
tinction on more recent, less susceptible
faunas. Adjusting for susceptibility, the
end-Permian extinction had the most in-
tense cause, the Ordovician, Guadalupian,
Triassic, and Cretaceous were all similar,
and the Late Devonian had the least intense
cause.

5. The susceptibility of taxonomic classes was
largely similar in mass extinctions and
“background”” time intervals.

6. Mass extinctions did not occur in times of
unusual susceptibility, although suscepti-
bility sometimes increased in their after-
math (notably, in the Early Triassic).

7. The evenness of the taxonomic composition
of the global fauna was inversely correlated
with extinction rate in both the Paleozoic
and the Mesozoic. In both cases, extinction
was high and evenness was low early in the
era (i.e., in the Cambrian and Triassic). Sta-
tistical evidence for a causal link between
evenness and extinction rate is lacking, but
ecological, environmental, and evolution-
ary similarities between these two periods
may explain the similarity.
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