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Abstract—Fundamental terms in ichnology are: ichnocoenosis—a trace fossil assemblage produced by a biological

community that can be characterized by morphological criteria; and ichnofacies—recurrent ichnocoenoses that repre-

sent a significant portion of Phanerozoic time. There are five archetypal vertebrate ichnofacies for nonmarine envi-

ronments (Chelichnus, Grallator, Brontopodus, Batrachichnus, Characichichnos), of which four are present in the

Cretaceous: (1) Grallator ichnofacies (Jindongornipes and Megalosauripus ichnocoenoses); (2) Batrachichnus

ichnofacies (Pteraichnus ichnocoenose); (3) Brontopodus ichnofacies (Ceratopsipes, Carichnium, Brontopodus,

Parabrontopodus, Dinehichnus, and Tetrapodosaurus ichnocoenoses); and (4) Characichichnos ichnofacies

(Chelonichnium ichnocoenosis).

INTRODUCTION

There is a very large database of Cretaceous tetrapod tracks, which
are known from five continents (North America, South America, Europe,
Asia, Australasia: Fig. 1). Tracks range in age from the earliest to the latest
Cretaceous and include some very large and well studied tracksites such as
Lark quarry in Australia and Dinosaur Ridge in the United States (Thulborn
and Wade, 1979, 1984; Lockley et al., 1992; Lockley and Hunt, 1995a).
Lucas (2006) has recently provided a synthesis of the biochronology and
biostratigraphy of these ichnofaunas. The purpose of this paper is to pro-
vide an overview of Cretaceous tracks from an ichnofacies perspective.
Thus, we discriminate broad ichnofacies and ichnocoenoses in the context
of the archetypal ichnofacies concept (Hunt and Lucas, 2006b).

TETRAPOD ICHNOCOENOSES AND ICHNOFACIES

Anichnocoenose can be defined as a trace fossil assemblage pro-
duced by a biological community that can be characterized by morphologi-
cal criteria (independent of depositional environment or biological affini-
ties) (e.g., Bromley, 1996; Mcllroy, 2004; Hunt and Lucas, 2006b).

Seilacher (1964, p. 303) introduced the term ichnofacies for “gen-
eral trace associations, or types of ichnocoenoses, representing certain fa-
cies with a long geologic range.” These high-level ichnofacies are referred
to as archetypal (Frey and Pemberton, 1987), and there is consensus that
ichnofacies should refer to recurrent ichnocoenoses that represent a sig-
nificant portion of Phanerozoic time (Hunt and Lucas, 2006a). Seilacher
named six archetypal invertebrate ichnofacies after typical ichnofossils
(Seilacher, 1964, 1967), and this work stimulated numerous studies of
invertebrate ichnofacies (Hunt and Lucas, 2006b). Lockley et al. (1994c)
provided a cogent synthesis and discussion of tetrapod ichnofacies. Subse-
quently, Hunt and Lucas (2006b) defined five archetypal tetrapod
ichnofacies for nonmarine environments: Chelichnus, Grallator,
Brontopodus, Batrachichnus and Characichichnos ichnofacies (Table 1).
Hunt and Lucas (2006b) argued that all tetrapod ichnofacies defined prior
to 2005 should be considered ichnocoenoses, as they represent the traces
of specific communities that lack the stratigraphic and geographic range
that would warrant their consideration as archetypal ichnofacies. Hunt and
Lucas (20064, c) have applied this scheme of tetrapod ichnofacies to Per-
mian and Late Jurassic ichnofaunas.

CRETACEOUS TETRAPOD TRACK RECORD
Introduction

Cretaceous tetrapod tracks, mostly of dinosaurs, have a nearly glo-
bal distribution, being known from all of the continents except Antarctica
(Lucas, 2006; Fig. 1). In addition, Cretaceous tracks are represented by a
number of very large individual tracksites, several stratigraphic units that
yield large sample sizes and several megatracksites.

Differences Between Late Jurassic and Cretaceous Track Records

Cretaceous tetrapod footprints can be distinguished from Jurassic
footprints primarily by the abundance and near ubiquity of large ornithopod
tracks in the Cretaceous strata and their virtual absence in the Jurassic
(Lucas, 2006). In addition, in the Early Cretaceous there are facies differ-
ences between sauropod-dominated and ornithopod-dominated footprint
assemblages (Lockley et al., 1994a). Turtle and pterosaur tracks and the
sauropod ichnogenus Parabrontopodus are much more common in the
Jurassic than the Cretaceous. In contrast, birds tracks are unknown in the
Jurassic and are locally abundant in the Cretaceous (Lockley and Rainforth,
2002).

Thyreophoran tracks also become locally abundant in the Creta-
ceous, notably ankylosaur tracks in the Early Cretaceous (McCrea et al.,
2002). Neoceratopsian tracks are locally common in the Maastrichtian
(Lockley and Hunt, 1995b).

Late Jurassic ichnofaunas are globally cosmopolitan (Lucas, 2006;
Hunt and Lucas, 2006¢). The Early Cretaceous track record reflects the
increased provinciality of dinosaur faunas.

Track Types

The majority of Cretaceous tetrapod tracks represent dinosaurs.
Mammal tracks of Cretaceous age are rare, restricted to North America,
and some records are of doubtful affinity (Sarjeant and Thulborn, 1986;
Sarjeant, 2000; McCrea and Sarjeant, 2002; Stanford and Lockley, 2002;
Lockley and Foster, 2003; Lucas, 2006). Bird footprints have their lowest
occurrence in the Lower Cretaceous, and almost all Cretaceous bird tracks
are from lakeshore or seashore facies (Lockley et al., 1992b; Lockley and
Rainforth, 2002). Most new ichnofaunas of Cretaceous bird tracks have
received new ichnogeneric names, and there is a need for ichnotaxonomic
revision. The Cretaceous pterosaur track record is similar to that of birds
(Lockley and Rainforth, 2002). With a few exceptions (e. g., Purbeckopus),
most specimens can be referred to Pteraichnus. Turtle tracks are less com-
mon than in the Jurassic, but they occur locally (e. g., Spain: Lockley and
Meyer, 2000).

Some of the earliest large theropod tracks are Berriasian in age, and
they can be assigned to the Jurassic taxon Therangospodus (Lockley and
Meyer, 2000). Younger Early Cretaceous theropod tracks include
Buckeburgichnus in Europe and Magnoavipes in North America (Hunt
and Lucas, 1998; Lockley and Meyer, 2000). There is less synthetic work
on the ichnotaxonomy of the diverse Late Cretaceous theropod tracks (e.g.,
Lockley and Hunt, 1995b), but they include some unusual forms such as
Saurexallopus and the presumed track of Tyrannosaurus, Tyrannosauripus
(Lockley and Hunt, 1994).

Sauropod tracks are abundant in the Late Jurassic (Hunt and Lucas,
2006c¢). In Lower Cretaceous deposits, sauropod tracks are abundant in
low latitude, carbonate platform, sabkha and lacustrine deposits (Lockley
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et al., 1994c). Sauropod tracks are much less common in Lower-Middle
Jurassic and in Upper Cretaceous deposits than in Upper Jurassic-Lower
Cretaceous deposits (Farlow, 1992; Lockley et al., 1994c). Narrow gauge
sauropod trackways are far more abundant in the Jurassic than the Creta-
ceous. In the Cretaceous, large sauropod footprints and large ornithopod
footprints rarely co-occur, and Lockley et al. (2002a) noted the generally
low-paleolatitude distribution of sauropod tracksites versus the higher
paleolatitudes of many ornithopod tracksites. A conservative ichnotaxonomy
of Jurassic-Cretaceous sauropod tracks assigns almost all of them to two
ichnogenera, Brontopodus (wide-gauge trackway) and Parabrontopodus
(narrow-gauge trackway), with large and small manus, respectively. Virtu-
ally all Middle-Late Jurassic and Cretaceous sauropod tracks can be as-
signed to these two ichnogenera because sauropod foot morphology is gen-
eralized and conservative (e.g., Farlow et al., 1989; Farlow, 1992; Lockley
etal., 1994a).

Large Early Cretaceous ornithopod tracks are assigned three princi-
pal ichnogeneric names, Iguanodontipus (the putative track of Iguanodon),
Amblydactylus and the quadrupedal Caririchnium. There is not a widely-
used ichnotaxonomy for Late Cretaceous tracks of ornithopods (princi-
pally hadrosaurs), although Amblydactylus has been used for some (e.g.,
Hunt and Lucas, 2003). Lockley et al. (2003) provided the name
Hadrosauropodus as a possible name for hadrosaur tracks. There are sev-
eral problems with the ichnotaxonomy of Cretaceous ornithopod tracks
including: (1) naming of poorly preserved specimens that lack diagnostic
features (e.g., Sarjeant et al., 1998); (2) inadequate differential diagnoses
(Lockley et al., 2003); and (3) a rationale that Late Cretaceous tracks must
pertain to a different ichnogenus than Early Cretaceous ones, because they
pertain to hadrosaurs, not iguanodontians (e. g., Lockley et al., 2003). There
is need for a thorough review of the ichnotaxonomy of large Cretaceous
ornithopod tracks. Some small ornithopods from the Early Cretaceous of
Spain are assigned to the Jurassic ichnogenus Dinehichnus (Lockley and
Meyer, 2000).

Ankylosaur tracks are rare in the Jurassic (McCrea et al., 2002;
Lockley and Meyer, 2000; Gierlinski et al., 2005). In the Cretaceous they
have their lowest occurrence in the Early Cretaceous, but their record,
though widespread (North America, South America, Europe and Asia) is
not extensive. They appear to have an Albian acme (McCrea et al., 2002;
Lucas, 2006). Ankylosaur tracks are generally rare, but a single documented
tracksite in Alberta preserves thousands of ankylosaur tracks (ichnogenus
Tetrapodosaurus), and there are other similar, undocumented sites (McCrea,
2000).

Ceratopsian tracks are not common until late in the Cretaceous and
then they are only locally abundant in the Laramie Formation of Colorado
(Lockley and Hunt, 1995b).

Track Sites
Early Cretaceous

Lower Cretaceous sauropod tracks are known in Chile, Croatia,
Germany, Australia, Brazil, Korea, Utah, Spain, Portugal, Korea, Tajikistan,
Texas and Argentina (Calvo, 1991; Farlow, 1992; Pittman, 1992; Morotalla,
1992; Moratalla et al., 1994; Lockley et al., 1994c). In contrast, Late Cre-
taceous sauropod track records come from Croatia, Spain, Bolivia and China
(Lockley etal., 1994b, 2002a, b).

Early Cretaceous tracksites are abundant in the southwestern United
States, especially in Texas, New Mexico and Colorado (Pittman, 1989,
1992; Lockley and Hunt, 1995a). Sites of early to middle Albian age, con-
centrated in Texas and adjoining Arkansas and Oklahoma, are sauropod
dominated—these are the classic Trinity Group tracks made famous by the
work of Roland T. Bird (1941, 1944) and much studied since (e.g., Pittman,
1989, 1992). There are some Early Cretaceous (pre-late Albian) ornithopod
tracks in Utah (Lockley and Hunt, 1994a). However, slightly younger
(mostly late Albian) ornithopod-dominated tracksites are widely distributed
from central Colorado into western Oklahoma, Nebraska and northeastern
New Mexico and comprise the so-called “dinosaur freeway” (Lockley et

al., 1992). The evident late Albian turnover in the western American track
fauna, from sauropod dominated to ornithopod dominated, was used by
Lucas and Hunt (1989) to mark the Cretaceous extirpation of sauropods in
North America, which lasted until the late Campanian immigration (from
South America?) of sauropods back into the continent (Lucas and Sullivan,
2000).

In western Canada, Lower Cretaceous tracksites in British Colum-
bia and Alberta yield tracks of large ornithopods, theropods, birds,
ankylosaurs and mammals (e.g., Currie, 1983, 1989; McCrea, 2000;
McCrea and Sarjeant, 2002). Ankylosaur tracks are generally rare, but a
single documented tracksite in Alberta preserves thousands of tracks of
Tetrapodosaurus (McCrea, 2000).

The European Early Cretaceous record is ornithopod dominated,
but it also includes tracks of theropods, sauropods, pterosaurs and
ankylosaurs. An extensive Early Cretaceous track record is known from
the Purbeck and Wealden strata of England and correlatives in the Cameros
basin of Spain (e.g., Wright et al., 1998; Lockley and Meyer, 2000; Moratalla
et al., 2003). Similar Early Cretaceous tracks are also known from Ger-
many (Hendricks, 1981), Switzerland (Meyer and Thuring, 2003) and
Portugal (Lockley et al., 1994c¢). Early Cretaceous (Barremian and Albian)
tracks from Croatia are of large theropods, ornithopods and sauropods (Dalla
Vecchia and Tarlao, 2000; Dalla Vecchia et al., 2002). Theropod and
ornithopod tracks are also known from the Lower Cretaceous of Svalbard
(Lapparent, 1962; Edwards et al., 1978; Lockley and Meyer, 2000).

Lower Cretaceous tracksites from eastern Asia (China, Korea, Ja-
pan and Thailand) are dominated by large ornithopods and theropods (Zhen
etal., 1987; Matsukawa and Obata, 1994; Lim et al., 1994; Lockley and
Matsukawa, 1998; Lee and Huh, 2002). The most extensive Asian Early
Cretaceous record is from Korea, especially in the Jindong Formation, and
also includes sauropod and bird tracks (e.g., Hwang et al., 2002a, b).

In South America, Lower Cretaceous footprints are known from
Argentina, Chile and Brazil. In Argentina, these are tracks of theropods
and crocodylomorphs (ichnogenus “Batrachopus ) from San Luis Prov-
ince (Lull, 1942). In Chile, ornithopod tracks have been attributed to an
iguanodont (Casamiquela and Fasola, 1968). In Brazil, sauropod tracks
are known from Sdo Domingos in the northernmost part of the country,
but most of the Brazilian Lower Cretaceous tracks are in the state of Paraiba
and are records of sauropods, theropods and large ornithopods
(Caririchnium) (Leonardi, 1979, 1984). In southern Brazil, large theropod
and ornithopod tracks are also present (Leonardi, 1994). In the Australian
Lower Cretaceous, large and small theropod tracks are known in the west-
ern part of the country (Colbert and Merrilees, 1967; Flannery and Rich,
1981). In Cameroon, west Africa, theropod tracks are present in Lower
Cretaceous strata (Jacobs et al., 1989).

Late Cretaceous

Tracks of Late Cretaceous age are essentially global in distribution
(Fig. 1) and differ from Early Cretaceous tracks in a lesser number of sau-
ropod tracks and in the presence of ceratopsian, tyrannosaurid and
hadrosaurid tracks.

Relatively few tracks are known from the Upper Cretaceous of Eu-
rope. They are sauropod tracks from the Cenomanian of Carenque in Por-
tugal, sauropod and theropod tracks from the Cenomanian of Istria in Croatia
and sauropod tracks from the Maastrichtian at Fumanya in Spain (Lockley
and Meyer, 2000).

Western North America has an extensive track record of Late Creta-
ceous age, mostly in Campanian-Maastrichtian rocks. These include
hadrosaur tracks from western Canada (Langston, 1960; Currie, 1989),
extensive assemblages of hadrosaurian, theropod and some mammal foot-
prints in the Wahweap, Kaiparowits and Straight Cliffs formations and the
coal-bearing Mesaverde Group of Utah and Colorado (Lockley et al., 1983;
Parker and Rowley, 1989), ceratopsian tracks in the Laramie Formation of
Colorado (Lockley and Hunt, 1995b) and the apparent footprint of Tyran-
nosaurus rex from the Maastrichtian interval of the Raton Formation in
New Mexico (Lockley and Hunt, 1994b). Indeed, the tracks of hadrosaurs
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FIGURE 1. Distribution of principal Cretaceous tracksites. Locations are 1, southwestern United States; 2, western Canada; 3, western Europe; 4, Korea; 5, Japan; 6,
China; 7, Tadjikistan; 8, Argentina; 9, Chile; 10, Bolivia; 11, western Australia; 12, Queensland, Australia; 13, Cameroon. Base map after Wing and Sues (1992).

and ceratopsians in the Raton Formation are within 37 cm of the Creta-
ceous-Paleogene boundary, as determined by palynology and the iridium
layer, and thus provide a valuable biostratigraphic datum to establish the
stratigraphically highest occurrence of dinosaurs in the Cretaceous (Lockley,
1991a). In South America, Late Cretaceous footprint records are mostly
from Argentina, where theropod, ornithopod and bird tracks are known,
mostly from Maastrichtian strata (Casamiquela, 1964; Alonso, 1980, 1989;
Leonardi, 1994). In Bolivia, Late Cretaceous theropod and ankylosaur tracks
are present (Leonardi, 1981a, 1984). In Australia, numerous small theropod
and ornithopod tracks are known from the Cenomanian of Winton,
Queensland (Thulborn and Wade, 1979, 1984). Late Cretaceous tracks
from Asia, mainly from China and Korea, are mostly of theropods and
sauropods (Zhen et al., 1989; Lockley et al., 2002a).

CRETACEOUS TETRAPOD ICHNOFACIES AND
ICHNOCOENOSES

History of Study

Lockley et al. (1994c) named a Brontopodus “ichnofacies”
(ichnocoenosis of current usage) to include ichnoassemblages of Jurassic
and Cretaceous age dominated by sauropod tracks. This “ichnofacies” ex-
plicitly included Morrison ichnofaunas. Hunt and Lucas (2006b) defined
an archetypal Brontopodus ichnofacies to include all ichnocoenoses that
are dominated by the tracks of terrestrial herbivores.

Lockley et al. (1994c¢) also named a Caririchnium ichnocoenosis
(“ichnofacies” of their usage) for Early Cretaceous ornithopod-track
ichnofaunas from North America and a Jindongornipes ichnocoenosis
(“ichnofacies” of their usage) for Early Cretaceous bird-track ichnofaunas
of Korea. Subsequently, Hunt and Lucas (2006b) named the Ceratopsipes
ichnocoenosis for the Late Cretaceous ceratopsid “ichnofacies” of Lockley
etal. (1994).

Cretaceous Ichnofacies and Ichnocoenoses
Brontopodus Ichnofacies

Hunt and Lucas (2006b) proposed the Brontopodus ichnofacies for
medium diversity ichnofaunas in which the majority of tracks are of terres-
trial herbivores with a small quantity (generally > 10%) of terrestrial carni-
vore tracks. This ichnofacies includes coastal plain-marine shoreline envi-
ronments and some lacustrine shorelines, and it ranges from Late Permian
to Recent in age. Hunt and Lucas (2006b) recognized several constituent
ichnocoenoses of the Brontopodus ichnofacies.

The Brontopodus ichnocoenosis was first defined as an ichnofacies
(Lockley et al., 1994c; Hunt and Lucas, 2006b). This ichnocoenosis was
originally defined to include ichnofaunas dominated by sauropod tracks
(Lockley etal., 1994c). Hunt and Lucas (2006b) restricted the ichnocoenosis
to ichnofaunas dominated by wide-gauge Brontopodus. This ichnocoenosis
extends into the Late Jurassic and temporally overlaps the Parabrontopus
ichnocoenosis, which encompasses ichnofaunas dominated by the narrow-
gauge Parabrontopodus (Hunt and Lucas, 2006b). In the Cretaceous, the
vast majority of ichnofaunas are referable to the Brontopodus ichnocoenosis
(e, g., Early Cretaceous of North America; Early-Late Cretaceous of Eu-
rope: Early-Late Cretaceous of South America: Late Cretaceous of East
Asia). The Parabrontopodus ichnocoenosis does occur in the Cretaceous,
particularly in lower part, but it is not common (e. g., Valdemurillo locality
in Spain: Lockley and Meyer, 2000).

There is a clear Caririchnium ichnocoenosis in the Early Creta-
ceous of South and North America that may extend into the Late Creta-
ceous ornithopod-track ichnofaunas from North America (Lucas and Hunt,
2006). The Jurassic Dinehichnus ichnocoenosis (Hunt and Lucas, 2006¢)
occurs locally in the basal Cretaceous of Spain (Lockley and Meyer, 2000).
Further work on large ornithopod ichnotaxonomy may result in the dis-
crimination of an Iguanodontipus ichnocoenosis in the Early Cretaceous
of Europe (Sarjeant et al., 1998) and a Hadrosauropodus ichnocoenosis,
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TABLE 1. Archetypal tetrapod ichnofacies (Hunt and Lucas, 2006) and representative Cretaceous ichnocoenoses.

Archetypal Predominant trace fossil

Tetrapod types

Ichnofacies

Chelichnus Low diversity ichnofaunas (less than 4 ichnogenera) of tetrapod

tracks that have equant shape with subequal manual and pedal
impressions and short digit impressions

Majority of tracks are of quadrupedal carnivores; medium-high
diversity (4-8 ichnogenera)

Batrachichnus

Brontopodus Majority of tracks are terrestrial herbivores with small quantity
(generally > 10%) of terrestrial carnivore tracks; medium-high
diversity (4-8 ichnogenera)

Grallator

(usually dominant) of tridactyl avian and non-avian theropods

Characichnos Parallel scratch marks and fish swimming trails (Undichna)

Medium-high diversity ichnofaunas (5-8 ichnogenera) with tracks Jindongornipes (Lockley et al., 1994)

Constituent Cretaceous Inferred environment

ichnocoenoses

None Eolian crossbeds

Pteraichnus (Lockley and Meyer, Tidal flat-fluvial plain

2000)

Coastal plain, clastic or carbonate
marine shoreline

Ceratopsipes (Hunt and Lucas,
2006b) Carichnium (Lockley et al.,
1994c¢)Brontopodus (Lockley et al.,
1994c¢)Parabrontopodus (Hunt and
Lucas, 2006¢)Dinehichnus (Hunt and
Lucas, 2006¢)7etrapodosaurus
(herein)

Lacustrine margin
Megalosauripus (Hunt and Lucas,
2006¢)

Chelonichnium (Lockley and Meyer, ~ Shallow lacustrine/aquatic
2000)

which may have a global distribution (e. g., Lockley et al., 2003).
Cretaceous ichnofaunas are only locally dominated by the tracks of
quadrupedal ornithischians. Some Late Cretaceous ichnofaunas can be
assigned to the Ceratopsipes ichnocoenosis (Hunt and Lucas, 2006b). Some
Early Cretaceous ichnofaunas are dominated by the tracks of ankylosaurs
(McCrea, 2000; McCrea et al., 2002; Lockley et al., 2006; Lucas, 2006).
We name the Tetrapodosaurus ichnocoenosis for these ichnofaunas after
the most common ichnogenus in the Canadian ichnofaunas. This
ichnocenosis may have an Albian acme (McCrea et al., 2002; Lucas, 2006).

Grallator Ichnofacies

Hunt and Lucas (2006b) proposed the Grallator ichnofacies for
medium to high diversity ichnofaunas (five to eight ichnogenera) domi-
nated by tracks of tridactyl avian and non-avian theropods (usually domi-
nant) or of other habitual bipeds. Tracks of bipedal and quadrupedal orni-
thischians, sauropods and herbivorous mammals are also locally common
in this ichnofacies. This ichnofacies extends from the Late Triassic to the
Recent and often characterizes lacustrine margin environments. There is a
need for an ichnotaxonomic review of Cretaceous theropod tracks, so we
cannot distinguish many ichnocenoses. The Jurassic Megalosauripus
ichnocoenosis (represented by Therangospodus) of Hunt and Lucas
(2006¢) occurs in the Berriasian of Europe (Lockley and Meyer, 2000). It
may be possible to distinguish Early Cretaceous ichnocoenoses based upon
distinctive ichnogenera such as Buckeburgichnus in Europe and
Magnoavipes in North America (Lockley and Meyer, 2000). Similarly, Late
Cretaceous ichnofaunas include distinctive ichnotaxa whose distribution is
poorly understood (e. g., Saurexallopus).

Currently there is one defined ichnocoenosis for Cretaceous bird
tracks — the Jindongornipes ichnoconosis (Lockley et al., 1994; Hunt and
Lucas, 2006b). Most new ichnofaunas of Cretaceous bird tracks have re-
ceived new ichnogeneric names. We conservatively assign all these
ichnofaunas to the Jindongornipes ichnocoenosis, but we expect that a
more precise ichnotaxonomy will allow the discrimination of several
ichnocoenoses. This ichnocoenosis has two Cretaceous acmes—in the
Aptian-Cenomanian and the Campanian-Maastrichtian (Lockley and
Rainforth, 2002, fig. 17.2).

Batrachichnus ichnofacies

Hunt and Lucas (2006b) proposed the Batrachichnus ichnofacies
for ichnofaunas in which the majority of tracks are of quadrupedal carni-
vores with a moderate-high diversity (four to eight ichnogenera). This
ichnofacies represents tidal flat-fluvial plain environments from the Devo-
nian to the Cretaceous.

Hunt and Lucas (2006c) placed the Pteraichnus ichnocoenosis of
Hunt and Lucas (2006b) (= Pteraichnus ichnofacies of Lockley and Meyer,
2000) within the Batrachichnus ichnofacies because it is dominated by
the tracks of quadrupedal carnivores. This ichnocoenosis occurs in the Early
Cretaceous of Europe and is most notable in the Iberian peninsula (Lockley
and Meyer, 2000; Lockley and Rainforth, 2002). Other Cretaceous ex-
amples of this ichnocoenosis occur in the Early Cretaceous of England and
Maryland and the Late Cretaceous of Korea, Canada and the United States
(Lockley and Rainforth, 2002).

Characichichnos ichnofacies

Hunt and Lucas (2006b) proposed the Characichichnos ichnofacies
for medium diversity ichnofaunas in which the majority of tracks are swim-
ming traces (parallel scratch marks) and fish swimming trails (Undichna).
This ichnofacies represents shallow lacustrine (and tidal) environments.
Lockley and Meyer (2000) recognized a Chelonichnium ichnocoenosis
(ichnofacies in their definition) characterized by ichnoassemblages domi-
nated by turtle swimming tracks of the ichnogenus Chelonichnium. This
ichnocoenosis occurs locally such as in the Encisco Group of Spain
(Moratalla, 1992; Lockley and Meyer, 2000). Ichnofaunas dominated by
swimming tracks occur in the “Dakota Group” of western North America,
and these can be assigned to the Characichichnos ichnofacies (McAllister,
1989; Lockley and Hunt, 1995a).

Chelichnus ichnofacies

Hunt and Lucas (2006b) proposed the Chelichnus ichnofacies for
ichnofaunas that have a low diversity (less than five ichnogenera) of tetra-
pod tracks in which manus and pes tracks are equant in shape of subequal
size and have short digit impressions. This ichnofacies is recurrent in dune
faces of eolian environments (Fig. 1), and it extends from the Early Per-
mian to the Early Jurassic. The Chelichnus ichnofacies is not present in
the Cretaceous.
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