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On the continuity of background and mass extinction

Steve C. Wang

Abstract.—Do mass extinctions grade continuously into the background extinctions occurring
throughout the history of life, or are they a fundamentally distinct phenomenon that cannot be
explained by processes responsible for background extinction? Various criteria have been proposed
for addressing this question, including approaches based on physical mechanisms, ecological se-
lectivity, and statistical characterizations of extinction intensities.

Here I propose a framework defining three types of continuity of mass and background extinc-
tions—continuity of cause, continuity of effect, and continuity of magnitude. I test the third type
of continuity with a statistical method based on kernel density estimation. Previous statistical ap-
proaches typically have examined quantitative characteristics of mass extinctions (such as metrics
of extinction intensity) and compared them with the distribution of such characteristics associated
with background extinctions. If mass extinctions are outliers, or are separated by a gap from back-
ground extinctions, the distinctness of mass extinctions is supported.

In this paper I apply Silverman’s Critical Bandwidth Test to test for the continuity of mass ex-
tinctions by applying kernel density estimation and bootstrap modality testing. The method im-
proves on existing work based on searching for gaps in histograms, in that it does not depend on
arbitrary choices of parameters (such as bin widths for histograms), and provides a direct estimate
of the significance of continuities or gaps in observed extinction intensities. I am thus able to test
rigorously whether differences between mass extinctions and background extinctions are statisti-
cally significant.

I apply the methodology to Sepkoski’s database of Phanerozoic marine genera. I conclude that
mass and background extinctions appear to be continuous at this third level—continuity of mag-
nitude—even though evidence suggests that they are discontinuous at the first and second levels.
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Introduction

Ever since the proposal that the end-Creta-
ceous mass extinction resulted from a bolide
impact (Alvarez et al. 1980), the nature of
mass extinctions has been the subject of much
debate. A key question is whether mass ex-
tinctions grade continuously into the back-
ground extinctions occurring throughout the
history of life, or whether they constitute a
fundamentally different phenomenon. In the
former view, mass extinctions represent the
right tail of a continuum, separated from
background extinctions by an arbitrary cutoff,
much as a blizzard and a flurry represent
varying degrees in a continuum of snowfall.
In the latter view, mass extinctions represent a
distinct phenomenon that cannot be explained
by merely scaling up background extinctions,
just as a hailstorm is not merely a larger ver-
sion of a snow flurry.

Both sides of the debate have their support-
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ers. Quinn (1983), Raup (1986, 1991a,b, 1994),
Bambach and Gilinsky (1986), and McKinney
(1987) argued for the continuity of mass ex-
tinctions with background extinctions. On the
other hand, Raup and Sepkoski (1982), Gould
(1985), and Bambach and Knoll (2001) argued
that mass extinctions are a distinct phenome-
non, and Stigler (1987) also found evidence for
this position. One reason for the debate stems
from the fact that different authors have dif-
ferent meanings for what it means for mass
extinctions to be “‘continuous’” with or “dis-
tinct” from background extinctions, and their
meanings are often stated only implicitly.
Here I propose a framework defining three
types of continuity—continuity of cause, con-
tinuity of effect, and continuity of magnitude.
These three types of continuity are indepen-
dent of each other, in that mass extinctions
may be discontinuous at one level but contin-
uous at the others. For the third type of con-
tinuity, I propose the application of a statisti-
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cal method to test whether mass extinctions
are continuous with background extinctions.

Types of Continuity

Continuity of cause occurs when the same
processes that are responsible for background
extinctions, operating at an increased level or
intensity, also cause mass extinctions (Miller
1998). For example, if background extinctions
are caused by terrestrial factors (e.g., changes
in sea level and climate), and these same fac-
tors at a more extreme intensity also cause
mass extinctions, then mass and background
extinctions would be continuous in cause.
Continuity of cause would also be established
if mass extinctions result primarily from com-
petition among clades, as Briggs (1998) ar-
gues. If, on the other hand, mass extinctions
are caused by factors different from those
causing background extinctions (e.g., bolide
impact), this would constitute a discontinuity
of cause. In the latter case, mass extinction
would differ qualitatively from background
extinction and in a fundamental way. The
well-accepted evidence for an impact at the
end of the Cretaceous (Alvarez et al. 1980)
supports discontinuity of cause, as does the
newer and more controversial evidence for
impact at the ends of the Permian and Triassic
Periods (Becker et al. 2001; Olsen et al. 2002).
Raup and Boyajian’s finding (1988) that major
extinction events result from environmental
disturbances may also be interpreted as sup-
porting discontinuity at this level. Continuity
of cause may be further subdivided into ulti-
mate cause (e.g., bolide impact—the trigger
mechanism) and immediate cause (e.g., re-
sulting nutrient crisis—the kill mechanism).

Continuity of effect is established when back-
ground and mass extinctions exhibit common
patterns of selectivity on taxonomic, function-
al, morphological, geographical, or other cri-
teria. In other words, continuity of effect re-
fers to whether the biological and ecological
effects of background extinction and mass ex-
tinction are similar in nature, if not in mag-
nitude. For example, McKinney (1987) found
that extinction rates in background and mass
extinctions are strongly correlated for ten ma-
jor marine taxa, Erwin (1989, 1990) found no
difference in selectivity of gastropods at the
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end-Permian mass extinction compared with
background extinction patterns, and Boyajian
(1991) found no differences in selectivity in
mass extinctions with regard to taxon age af-
ter controlling for extinction size. On the other
hand, several studies have found evidence for
differential patterns of survival at mass ex-
tinctions compared with background extinc-
tion. These include studies by Anstey (1986)
on Ordovician bryozoans, Jablonski (1986) on
Cretaceous mollusks, Jablonski and Raup
(1995) on Cretaceous bivalves, Johansen (1989)
on Cretaceous brachiopods, and Westrop
(1989) on Cambrian trilobites; see also Stanley
1987 for a general discussion. Such findings
support a discontinuity of effect. Gould (1985)
also supported discontinuity of effect, argu-
ing that mass extinctions constitute a third
“tier”” distinct from and irreducible to within-
species competition (the first tier) and species-
level selection (the second tier).

Continuity of magnitude exists when the dis-
tribution of intensities of mass extinctions (as
measured by the number of extinctions per
unit time or some other metric) grade smooth-
ly and continuously into the intensities of
background extinctions. Quinn (1983), Bam-
bach and Gilinsky (1986), McKinney (1987),
and Raup (1986, 1991a,b, 1994) found that
mass extinctions are continuous at this level,
and Thackeray (1990) arrived at a similar con-
clusion for nine extinction events with the ex-
ception of the end-Cretaceous event. On the
other hand, Raup and Sepkoski (1982) and
Bambach and Knoll (2001) argued for discon-
tinuity, with Stigler (1987) also finding evi-
dence for the latter position.

A common method of determining conti-
nuity of magnitude is by examining histo-
grams of extinction intensities of Phanerozoic
stages. If mass extinctions are continuous in
magnitude, then such a histogram should ap-
pear unimodal, with no apparent gaps sepa-
rating mass extinctions in the right tail of the
distribution from background extinctions
(Raup 1986: Fig. 1, also cited in Jablonski 1989;
Raup 1991b: Fig. 4-4; Raup 1994: Fig. 2, also
cited in Jablonski 2001). On the other hand, if
such a histogram appears bimodal, with mass
extinctions forming a cluster of outliers in the
right tail, we would infer that mass extinctions



CONTINUITY OF MASS EXTINCTION

© A
g 5 bin width = .046
[0 -
£
: -1
o)
E o II-I I-__
] T T T 1
0.0 0.2 0.4 0.6 0.8
per—genus extinction rate
2 8 B
s o bin width = .075
2 «
£
o)
¢ _1m Iian.
I T T T 1
0.0 0.2 0.4 0.6 0.8
per—genus extinction rate
FIGURE 1. Histograms of per-genus proportional ex-

tinction rate for 107 Phanerozoic stages and substages
from Sepkoski’s compendium of marine genera, show-
ing that the appearance of a histogram depends on the
parameter values used in its construction. A, Using a bin
width of 0.046 results in a gap between the largest ex-
tinctions (extinction rate = 0.54) and other extinctions
(extinction rate = 0.49), with a peak around 0.55. B,
When the same data are plotted with a bin width of
0.075, these features are not apparent.

are a distinct phenomenon, discontinuous
from background extinction (Raup and Sep-
koski 1982; Bambach and Knoll 2001). In such
analyses, an important question is how to rig-
orously determine if mass extinctions indeed
constitute a second mode in a histogram of ex-
tinction intensities. This can be especially dif-
ficult because the appearance of a histo-
gram—particularly the presence of modes,
gaps, and outliers—depends on the arbitrary
choice of parameters used to construct it, no-
tably the bin width. Therefore, tests based on
histograms can be unreliable, an issue I ad-
dress in the next section.

Modes and Gaps in Histograms

In this section I discuss how a histogram’s
appearance depends on the choice of param-
eters. A histogram does not display exact nu-
merical values, but rather places the data into
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FIGURE 2. A hypothetical example of an extinction in-
tensity curve f(x). Such a curve is a probability density
function (pdf) that models the underlying process gov-
erning extinction and describes how likely various in-
tensities of extinctions are.

“bins.” Raup (1994: Fig. 2) chose bins of {0-
5%, 5-10%, . .., 95-100%}. The choice of bin
width and bin location is arbitrary: the bins
{0-10%, 10-20%, ..., 90-100%} would be as
valid a selection, as would be {(-5)-5%, 5-15%,
..., 95-105%]}. Usually these choices are made
automatically by software and have a relative-
ly minor effect on the appearance of the re-
sulting histogram. Some features of a histo-
gram, however, are particularly sensitive to
the choice of bin width and location parame-
ters, notably the presence and location of
modes, gaps, and outliers.

For instance, by using a large enough bin
width—Ilarger than the distance between any
two neighboring points—a histogram will ap-
pear continuous (having no gaps between ad-
jacent bars), even if outliers do exist. On the
other hand, by using a small enough bin
width, one can always create the appearance
of a second mode, separated by a gap from the
body of the data. As an example, consider Fig-
ure 1, which shows histograms of per-genus
extinction rate for 107 Phanerozoic intervals
(stages and substages) from Sepkoski’s un-
published compendium of marine genera.
Figure 1A uses a bin width of 0.046, whereas
Figure 1B uses a bin width of 0.075. Although
the data are identical in the two histograms,
the distributions appear different, particular-
ly in the right tail of the data. In Figure 1A,
there is a second mode separated by a gap,
with peaks at approximately 0.48 and 0.55 ex-
tinctions/genus, whereas in Figure 1B the
data appear continuous with no additional
peaks and no gap. Thus, in searching for evi-
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dence of a second mode, we should use cau-
tion in drawing conclusions from histograms
and other methods that are affected by the
choice of arbitrary parameters.

Density Estimation

The histogram is just one way to display a
distribution of extinction intensities. A histo-
gram provides a discrete display—that is, a
step function with jumps from each individ-
ual bar to the next. The true distribution of ex-
tinction intensities, however, is likely to be a
smoothly varying curve, rather than a step
function. In this section I describe how to con-
struct a smooth estimate of the distribution of
extinction intensities by using the statistical
technique of density estimation.

Density estimation is a well-studied statis-
tical technique (e.g., Silverman 1986). Here 1
give a brief conceptual introduction to the
subject.

Suppose that the underlying process gov-
erning extinction intensities can be modeled
by an intensity curve—a probability density
function (pdf) describing how likely various
intensities of extinctions are. Denote this in-
tensity curve by f(x), with x representing the
intensity of an extinction. Such an extinction
intensity curve might look something like the
hypothetical curve in Figure 2. The goal is to
estimate the underlying extinction intensity
density curve f(x), given a data set of observed
extinction intensities.

I now describe how to create such a density
estimate by contrasting it with the creation of
a histogram. In constructing a histogram, two
parameters must be specified: the width of
each bin of the histogram and the location at
which each bin is centered. (For simplicity, I
assume bins are of equal widths.) Typically
these parameters are set automatically by a
software program and transparent to the user,
but they must be explicitly chosen whether the
user is aware of the choice or not. These pa-
rameters determine a fixed set of bins. The
bars of a histogram graphically represent the
number of observed data points that fall into
each of these bins.

The process of constructing a simple den-
sity estimate is, in a sense, the opposite of that
used to build a histogram. Instead of placing
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FIGURE 3. Density estimates for a random sample of
five points. Five intervals were randomly chosen from
the full data set of per-genus proportional extinction
rates—middle Miocene (per-genus extinction rate =
0.09), Valanginian (0.12), Kimmeridgian (0.18), lower
Atdabanian (0.24), upper Middle Cambrian (Upper)
(0.42)—and are marked by black dots on the figures. A,
Simple density estimate f,(x) calculated with these five
points. B, Kernel density estimate f(x) using a Normal
kernel function. See text for details.

the data points into a fixed and predetermined
set of bins, we place the bins according to the
locations of the data points. Centered on each
data point we place a bar, and then we sum
the heights of these bars for all the data points
(in a sense “‘stacking” the bars). The “bar
chart” determined by this sum can be viewed
as a simple density estimate, which I will de-
note as fl(x). An example of this simple den-
sity estimate is shown for a data set of five
points in Figure 3A.

Formally, we can write this simple density
estimate as follows. Let the n data points be
denoted by x,, x,, . . ., x,. Define the function
w, such that w,(y) = 1if ly| = 1/2, and w,(y)
= 0 otherwise. That is, w, represents a bar
with height one, to be placed over each data
point. For any point x on the real line, an es-
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timate of the density function f(x) at that point
is given by summing over all bars according
to the formula

. 1 & X — X;
ﬂ@—E;m<h>- M

Here, the parameter /1 is the bandwidth pa-
rameter, which plays a role equivalent to the
bin width parameter in a histogram. The
choice of & in a density estimate is arbitrary, as
is the choice of bin width in a histogram, but
I will show below that my conclusions about
the continuity of mass extinctions do not de-
pend on the choice of h. The factor 1/nh is a
normalizing constant that ensures that f'l(x) in-
tegrates to one, as must be true of any pdf.
Thus f'l(x) is a density estimate, an estimate of
the probability density at the point x.

As I have defined it here, fl(x) is not a par-
ticularly realistic estimate of the underlying
extinction intensity curve. The true intensity
curve f(x) is most likely a smooth curve, not a
step function as in Figure 3A: we expect the
likelihood of various intensities of extinctions
to grade smoothly, not jump abruptly from
one intensity to the next. The ““blockiness’ of
fl(x) is a result of the choice of w;, which is a
step function. To avoid this blockiness, we can
instead use a smooth function w integrating to
one. Conceptually, this corresponds to placing
a smooth curve on each data point and then
summing up the curves to arrive at a density
estimate.

Such a smooth function w satisfying fw(y)dy
= 1is called a kernel function, and the resulting
density estimate is called a kernel density esti-
mate. Such a kernel density estimate f(x) is
written as follows:

R 1 & X — X
fm—E;w(h). @)

A common choice for the kernel function w
is the Normal or Gaussian density function,
w(y) = 1/(2m)Y2exp(—y?/2). Much research
has been done in the statistics literature on the
choice of kernel functions. The resulting den-
sity estimate is usually not overly sensitive to
the particular kernel function chosen as long
as certain conditions are met; often the Nor-
mal density is used because it has convenient
mathematical properties. In the rest of the pa-
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per, all kernel density estimates will use the
Normal kernel function. Figure 3B plots using
the same data as in Figure 3A but with a Nor-
mal kernel function.

Further extensions to the kernel density es-
timate are possible. Using a fixed bandwidth
h, for instance, sometimes results in too much
smoothing near the center of the pdf but not
enough smoothing in the tails. One approach
to this problem is to adaptively vary the band-
width, for example by letting the bandwidth
equal the width spanned by the k nearest data
points. I do not believe such a methodology is
likely to affect my conclusions in this setting,
so in this paper I will use kernel density esti-
mates with fixed bandwidth.

Testing for Bimodality

If mass extinctions are a phenomenon qual-
itatively distinct from background extinctions,
we would expect the underlying extinction in-
tensity curve to have two modes or peaks sep-
arated by a gap. If mass extinctions grade
smoothly into background extinctions, we
would expect the intensity curve to have a
long right tail but only one mode and no gaps.
Of course, we do not know the form of the ac-
tual underlying intensity curve. However, we
can estimate it by using a kernel density esti-
mate, and then see whether the resulting ker-
nel density estimate has one mode or two.

The appearance of a density estimate—in-
cluding how many modes it has—depends on
the bandwidth parameter /, analogous to the
bin width of a histogram. With a large enough
h the density estimate can always be made to
appear unimodal; with a small enough & the
density estimate can always be made to ap-
pear bimodal (or even multimodal, having
more than two peaks). Therefore, the number
of modes is inversely related to the size of the
bandwidth /. (This property is not true for all
kernel functions, but it is true when the Nor-
mal pdf is used as the kernel function [Silver-
man 1981].)

Given a particular data set, suppose we con-
struct a series of density estimates starting
with a small value of /1 and increasing to a
large value of h. These density estimates will
initially be bimodal or multimodal, but will
become unimodal once / increases past a cer-
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FIGURE 4. Histograms of per-genus proportional ex-
tinction rate and kernel density estimates. As the band-
width h used in constructing the density estimate f(x)
decreases, the number of modes of f(x) increases. The
critical bandwidth h; is the smallest value of h for
which the density estimate f(x) appears unimodal, and
in this case would lie between 0.10 and 0.04. A, With h
= 0.10, f(x) is unimodal. B, With i = 0.04, f(x) is bimodal
(second mode appears near 0.58). C, With i = 0.02, f(x)
is multimodal.

tain critical value (Fig. 4). Define h,, as the
value of h at which the density estimates
change from bimodal to unimodal. That is, for
h > h, the density estimate will be unimo-
dal, and for i < h,, the density estimate will
be bimodal (or multimodal). Here £, is called
the critical bandwidth. This idea was intro-
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duced by Silverman and is the basis for his
Critical Bandwidth Test for bimodality (Sil-
verman 1981, 1986; see also Efron and Tib-
shirani 1993), which I now describe.

If the underlying extinction intensity curve
is truly bimodal, we can still construct a den-
sity estimate that appears unimodal, but we
will need a very large bandwidth & because a
high degree of smoothing will be necessary to
make the density estimate appear unimodal.
In other words, &, will be large if the inten-
sity curve is truly bimodal. On the other hand,
if the extinction intensity curve is truly uni-
modal, a density estimate will appear uni-
modal even with small values of /1, because lit-
tle smoothing will be necessary to make the
density estimate appear unimodal. In other
words, h,;, will be small if the intensity curve
is truly unimodal.

We can therefore infer the true modality of
the extinction intensity curve from the size of
hi. That is, h;, can serve as the test statistic
in a hypothesis test of the modality of f(x). The
null hypothesis is that the true extinction in-
tensity curve f(x) is unimodal; the alternative
hypothesis is that f(x) is multimodal. Large
values of h;, provide evidence against the null
hypothesis.

For a given data set, the value of &, can be
calculated by using a binary search method on
a computer. A natural question is, how large
must /1., be to reject the null hypothesis, pro-
viding statistically significant evidence of a
multimodal extinction intensity curve? Equiv-
alently, we might ask for the p-value corre-
sponding to an observed value of /. Critical
values for statistical significance and p-values
can be approximated by a bootstrap-based
simulation; see the Appendix for details.

Results

I applied the Critical Bandwidth Test to
data from ]. J. Sepkoski’s unpublished com-
pendium of Phanerozoic marine genera (kind-
ly provided by R. Bambach). All genera are in-
cluded, with subgenera also included for mol-
lusks. The number of extinctions and origi-
nations and total diversity are given for each
of 107 intervals, at the stage and substage lev-
el, from the Nemakit-Daldynian (Lower Cam-
brian) to the Pliocene (Tertiary). All analyses
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TABLE 1.
extinctions.
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Extinction metrics. Note that estimated standing diversity = total diversity — 1/2 originations — 1/2

Extinction intensity metric

Definition

A. Number of extinctions/interval

B. Number of extinctions/Myr

C. Per-genus proportional extinctions/interval
D. Per-genus proportional extinctions/Myr

E. Van Valen metric/interval

F. Van Valen metric/Myr

Extinctions

extinctions/interval duration

extinctions/total diversity

(extinctions/total diversity)/interval duration

extinctions/estimated standing diversity

(extinctions/estimated standing diversity)/interval
duration

were run with the software R (Version 1.6.0)
and Data Desk (Version 6.1) on an Apple Mac-
intosh G4.

I used six common metrics for measuring
extinction, which are defined in Table 1. All of
these metrics measure extinction intensity, al-
though they differ in whether or not they at-
tempt to normalize for time, total diversity,
standing diversity, or some combination
thereof. Foote (1994) discussed these extinc-
tion intensity metrics, using simulations to ex-
plore their properties under various scenarios.
He does not recommend any single metric, but
rather finds that each has strengths and weak-
nesses, and each may give biased estimates of
the true per-genus likelihood of extinction un-
der certain conditions (for instance, when
stratigraphic stage boundaries are defined by
extinctions, as is the case for the standard geo-
logic timescale). He does recommend against
the use of proportional extinction per million
years (metric D), which is biased under many
realistic scenarios. See also the discussion in
Raup 1986 and Raup and Boyajian 1988.

Histograms of the data using each of the six
metrics are shown in Figure 5. Each plot also
shows the kernel density estimate f'(x) with
bandwidth i = h;,. With five of the six met-
rics, I was unable to reject the null hypothesis
of unimodality. Only for metric A (number of
extinctions per interval) was the discontinuity
significant (p = 0.01). However, this metric is
simply a raw count of the number of genera
going extinct in the interval, without account-
ing for total diversity. The significance of the
result found using this metric is due to one
outlier, the Maastrichtian, in which nearly
1500 genera went extinct. Because total diver-
sity was higher in the late Mesozoic by a factor
of two or three compared with most times ear-

lier in the Phanerozoic, it is not surprising that
a large number of genera would be affected by
a catastrophic event such as a bolide impact at
this time. In fact, the number of genera lost in
the Maastrichtian exceeded the total diversity
of all but 21 of the previous 94 intervals in the
database. Thus, using the raw number of ex-
tinctions per interval is misleading, and the
significance of this result should carry little
weight. The second-lowest p-value was for the
number of extinctions per million years (met-
ric B), with p = 0.17. This metric is merely a
time-normalized version of metric A and
therefore suffers from the same problems. The
p-values for metrics C-F were 0.54, 0.48, 0.99,
and 0.48, respectively; none were close to at-
taining statistical significance.

It has been noted (Raup and Sepkoski 1982;
Thackeray 1990; Gilinsky 1994; Newman and
Eble 1999) that extinction intensity has de-
clined over the Phanerozoic. This would make
any methodology overly conservative: a more
recent extinction might be separated by a gap
from recent background extinction intensities,
but not from older background intensities. To
control for this effect, I reran the above anal-
yses with time-adjusted (detrended) intensi-
ties for all six metrics, using residuals from a
linear regression of intensity on time. The re-
sults did not differ substantially. The p-values
for metrics A-F were 0.04, 0.31, 0.48, 0.70,
0.81, and 0.24, respectively (Figure 6).

(I also tried to control for the decline in ex-
tinction intensities by rerunning the above
analyses using residuals from a nonlinear
lowess fit of intensity on time. However, these
residuals included some negative outliers in
the left tail of the distribution—that is, inter-
vals with unusually low extinction rates. In
some cases, these outliers formed a second
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FIGURE 5. Histograms of extinction intensity metrics, with kernel density estimates of the underlying extinction
intensity curve. Kernel density estimates are constructed with bandwidth equal to /. A, Number of extinctions
per interval. The p-value for testing the null hypothesis that the underlying extinction intensity curve is unimodal,
indicating continuity of magnitude, was p = 0.01. B, Number of extinctions per million years (p = 0.17). C, Per-
genus proportional extinctions per interval (p = 0.54). D, Per-genus proportional extinctions per million years (p =
0.48). E, Van Valen metric per interval (p = 0.99). E, Van Valen metric per million years (p = 0.48). The three highest
intervals for each metric are as follows: A, Maastrichtian, upper Ashgillian, Guadalupian. B, Upper Ashgillian,
Maastrichtian, lower Botomian. C, Djulfian, Dresbachian, upper Tommotian. D, Upper Tommotian, lower Botomian,
upper Botomian. E, Dresbachian, upper Tommotian, Franconian. F, Upper Tommotian, lower Botomian, upper At-

dabanian.

mode that was sufficient to cause the Critical
Bandwidth Test to reject the null hypothesis of
unimodality. In such cases, the Critical Band-
width Test is not appropriate for testing the
continuity of mass extinctions, because the bi-
modality indicated the presence of intervals
with greatly reduced rather than elevated ex-
tinction intensities.)

The weight of the evidence suggests that ob-
served gaps and outliers in these histograms
are not statistically significant. Note, however,

that although a significant result would cer-
tainly suggest a discontinuity of cause, a non-
significant result may not necessarily suggest
a continuity of cause. For instance, it may be
possible that mass and background extinc-
tions are due to different causes, but the var-
iation resulting from each cause may be so
large that two distinct modes are not formed.
To the extent that any conclusions can be
drawn, these findings do support the position
that mass extinctions are the right tail of a
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FIGURE 6. Histograms of time-adjusted extinction in-

tensity metrics, with kernel density estimates of the un-
derlying extinction intensity curve. Kernel density esti-
mates are constructed with bandwidth equal to /. To
account for the Phanerozoic decline in extinction inten-
sities, the data used here are residuals from a linear re-
gression of intensity on time. Vertical axis indicates
probability density; label has been omitted to save
space. A, Number of extinctions per interval. The p-val-
ue for testing the null hypothesis that the underlying ex-
tinction intensity curve is unimodal, indicating conti-
nuity of magnitude, was p = 0.04. B, Number of extinc-
tions per million years (p = 0.31). C, Per-genus propor-
tional extinctions per interval (p = 0.48). D, Per-genus
proportional extinctions per million years (p = 0.70). E,
Van Valen metric per interval (p = 0.81). F, Van Valen
metric per million years (p = 0.24). The three highest in-
tervals for each metric are as follows: A, Maastrichtian,
upper Ashgillian, Guadalupian. B, Upper Ashgillian,
Maastrichtian, upper Eocene. C, Djulfian, Maastrichtian,
Guadalupian. D, Upper Tommotian, lower Botomian,
upper Botomian. E, Dresbachian, Djulfian, upper Tom-
motian. F, Upper Tommotian, lower Botomian, upper
Atdabanian.

spectrum of continuous extinction intensities,
and are not qualitatively different in magni-
tude from background extinctions. I thus find
evidence to support a continuity of magnitude
between mass extinctions and background ex-
tinctions at the timescale resolution of the Sep-
koski database.
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The Power of the Test

Failure to reject the null hypothesis does not
necessarily imply acceptance of the null hy-
pothesis. Instead, failure to reject the null hy-
pothesis may also result from a lack of statis-
tical power—the ability of a test to reject the
null hypothesis when the alternative hypoth-
esis is in fact true. To evaluate the power of the
Critical Bandwidth Test, I carried out a series
of simulations.

To calculate the power of a hypothesis test,
a particular alternative hypothesis must be
specified. That is, we must specify the shape
of the true extinction intensity curve f(x), in-
cluding the locations and relative sizes of its
modes. Of course, f(x) is unknown, but we can
construct several plausible hypothesized can-
didates for f(x) and calculate the power of the
test under each one. Figure 7 shows three such
hypothesized extinction intensity curves for
per-genus proportional extinctions per inter-
val. (I have constructed scenarios for this met-
ric only; results for other metrics would be
equivalent because the simulation depends
only on the shape of the curve and not the na-
ture of the metric used.) The hypothesized ex-
tinction intensity curves in Figure 7A—C show
progressively less differentiation between the
modes representing background and mass ex-
tinction.

The hypothesized extinction intensity curve
in Figure 7A was constructed assuming that
14 of the 107 intervals represent mass extinc-
tions, and the other 93 background extinc-
tions. Although this may sound like a large
number of mass extinctions, note that the in-
terval with the 14*-highest per-genus extinc-
tion rate was the Maastrichtian, and the 15%-
highest the upper Norian (the uppermost in-
terval of the Triassic in this timescale), both
usually considered among the ““Big Five”
mass extinctions. I simulated 100 data sets un-
der this scenario, each data set consisting of
107 per-genus extinction rates (representing
the 107 Phanerozoic intervals) sampled from
the extinction intensity curve shown in Figure
7A.1then applied the Critical Bandwidth Test
to these 100 simulated data sets. With a sig-
nificance level of a = 0.05, the null hypothesis
of unimodality was correctly rejected 99% of



464

> © 7
(0]
© N -
Pary
s o
©
o)
o T 7
(o}
o —
I T T T T T T 1
0.0 0.1 02 03 04 05 06 0.7
extinction intensity
> © 7
()]
© N -
2
5 o
©
Q
o T 7
o
O —
I T T T T T T 1
0.0 01 02 03 04 05 06 0.7
extinction intensity
> ©
(0]
© o -
2
5 o
©
g - -
s R
I T T T T T T 1
0.0 01 02 03 04 05 06 0.7
extinction intensity
=
g < D
()
© o -
Py
= II II
©
o)
s l i1
s J 1 mE_B__
] T T T T T T 1

0.0 01 02 03 04 05 06 0.7

per—genus extinction rate

FIGURE 7. Hypothesized extinction intensity curves
used in the power analysis for the Critical Bandwidth
Test. The metric used is per-genus proportional extinc-
tions per interval; results depend only on the shape of
the curve and will hold for any metric. A, Hypothesized
curve constructed assuming that mass extinctions are

STEVE C. WANG

the time. When a less strict significance level
of a = 0.10 was used, the null hypothesis of
unimodality was correctly rejected 100% of
the time. Therefore, if the true extinction in-
tensity curve f(x) is similar to the curve in Fig-
ure 7A, the test will have very high power.

The hypothesized extinction intensity curve
in Figure 7B was constructed assuming that
seven of the 107 intervals represent mass ex-
tinctions. (The actual intervals with the seven
highest per-genus extinction rates are the
Djulfian, Dresbachian, upper Tommotian,
Franconian, Trempealeauan, lower upper
Middle Cambrian, and upper Ashgillian.) I
chose seven mass extinction intervals so that
the resulting hypothesized curve in Figure 7B
would have a second mode resembling the
second mode in the histogram of actual per-
genus extinction rates (shown in Figure 7D for
comparison). In 100 data sets simulated under
this scenario, the null hypothesis of unimo-
dality was correctly rejected 67% of the time
when a significance level of o = 0.05 was used,
and 83% of the time when a = 0.10. Here
again, if the true extinction intensity curve f(x)
is similar to the curve in Figure 7B, the test
will have fairly high power.

The hypothesized extinction intensity curve
in Figure 7C was constructed assuming that
five of the 107 intervals represent mass extinc-
tions. (The actual intervals with the five high-
est per-genus extinction rates were listed in

P

represented by the 14 highest of the 107 intervals, and
background extinctions by the other 93 intervals. In 100
data sets simulated from this hypothesized curve, the
null hypothesis of unimodality was correctly rejected
99% of the time when using a significance level of a =
0.05, and 100% of the time when a = 0.10. B, Hypoth-
esized curve constructed assuming that mass extinc-
tions are represented by the seven highest intervals, and
background extinctions by the other 100 intervals. In 100
data sets simulated from this hypothesized curve, the
null hypothesis of unimodality was correctly rejected
67% of the time when a = 0.05 and 83% of the time when
a = 0.10. C, Hypothesized curve constructed assuming
that mass extinctions are represented by the five highest
intervals, and background extinctions by the other 102
intervals. In 100 data sets simulated from this hypoth-
esized curve, the null hypothesis of unimodality was
correctly rejected 30% of the time when a = 0.05 and
46% of the time when o = 0.10. D, Histogram of actual
per-genus extinction rates, for comparison with the hy-
pothesized extinction intensity curves in A-C.
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the previous paragraph.) In 100 data sets sim-
ulated under this scenario, the null hypothesis
of unimodality was correctly rejected 30% of
the time when a significance level of a = 0.05
was used, and 46% of the time when o = 0.10.
In this case, then, the power of the test is lower.

Clearly, the power of the test is very sensi-
tive to the shape of the true extinction inten-
sity curve f(x). If f(x) resembles the hypothe-
sized curve in Figure 7C, the test will have low
power and may not reject the null hypothesis
(with a sample size of 107 intervals) even
though f(x) is truly bimodal. If f(x) has slightly
stronger bimodality, resembling the hypothe-
sized curve in Figure 7B, the test will have
much higher power and is likely to correctly
reject the null hypothesis. If f(x) has bimodal-
ity as pronounced as that of the hypothesized
curve in Figure 7A, the test is virtually certain
to correctly reject the null hypothesis. Which
choice of f(x) is most realistic? Obviously, we
cannot know what the real f(x) looks like. I be-
lieve that the curve in Figure 7B, with seven
intervals representing mass extinctions, is a
reasonable guess. In that case, because the sta-
tistical power of the test is then high, we can
be confident that the results observed here re-
flect a true unimodality of the extinction in-
tensity curve.

Discussion and Conclusions

I applied Silverman’s Critical Bandwidth
Test to various extinction metrics. This meth-
odology provides a direct statistical test of sig-
nificance of apparent modes and gaps in a dis-
tribution of extinction intensities, thus allow-
ing us to rigorously test the continuity of mass
extinctions and background extinctions. The
test does not depend on arbitrary choices of
parameters, as is true of other methodologies
(e.g., searching for gaps in histograms).

As an aside, Silverman’s Critical Bandwidth
Test may be useful in other contexts in paleo-
biology. The test can be applied to any situa-
tion in which one wants to determine if an ob-
served distribution is a mixture of more than
one subgroup. For instance, the test can be
used to determine whether two distinct spe-
cies are present in a collection of specimens
(e.g., Webster 2001).

The results of my analysis (and any similar
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analysis) depend strongly on the temporal
resolution of the data. The data used here are
resolved to the stage or substage level (ap-
proximately 2-10-Myr bins for most inter-
vals); therefore, the results suggest that ex-
tinctions are continuous in magnitude at sub-
stage-level resolution. Mass extinctions may
occur on much shorter timescales, in which
case Sepkoski’s data combine times of mass
extinction and times of background extinction
within a single interval. It is possible that
Phanerozoic extinctions are discontinuous in
magnitude at a finer level of resolution, a pos-
sibility not at odds with my results here. If a
future data set is compiled with finer tempo-
ral resolution, this analysis could be repeated
with that data set as well.

In addition to the Critical Bandwidth Test,
other methods can be used to test whether
background and mass extinction are continu-
ous in magnitude. Stigler (1987) uses a likeli-
hood-based method. Similar approaches, us-
ing a likelihood criterion to evaluate mixture
models, have been used by Hunt and Chap-
man (2001) to detect instar clusters in arthro-
pod size distributions, and by Monchot and
Léchelle (2002) to detect sexual dimorphism
in Pleistocene bovines. Such approaches could
be applied here as well, and in fact Hunt and
Chapman (2001) suggested distinguishing
background and mass extinctions as another
application of their methodology. A potential
disadvantage of likelihood-based methods is
that they require the specification of an ex-
plicit statistical model for the distribution of
the characteristic under study. For instance,
both Hunt and Chapman (2001) and Monchot
and Léchelle (2002) assumed that sizes within
each subgroup (each instar or each sex) are
normally distributed. An assumption of nor-
mality would be untenable in our case, how-
ever, because the distribution of background
extinction intensities is strongly skewed (an-
other parametric family such as the Gamma
distribution may be more plausible). In con-
trast, the Critical Bandwidth Test has the ad-
vantage of being nonparametric, so that one
not need make any assumptions about the dis-
tributional form of the data. On the other
hand, likelihood-based methods may have
higher power because of their parametric as-
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sumptions. Further comparison of these ap-
proaches in paleontological contexts is a topic
that merits further study.

With the consensus favoring the hypothesis
of bolide impact as a cause of the end-Creta-
ceous mass extinction, and more tenuous re-
cent evidence that other mass extinctions may
have been caused by bolide impact (Becker et
al. 2001; Olsen et al. 2002), it seems clear that
at least some mass extinctions are discontin-
uous in cause from background extinctions.
Evidence also exists for a discontinuity of ef-
fect, with studies (Anstey 1986; Jablonski
1986; Jablonski and Raup 1995; Johansen 1989;
Westrop 1989) finding differing patterns of se-
lectivity between mass extinctions and back-
ground extinctions. Nonetheless, despite
these discontinuities in cause and effect, my
findings here support a continuity of magni-
tude. It is intriguing that such a discontinuity
of cause can produce a continuity of magni-
tude—that the effect of a bolide impact,
though more extreme, nonetheless produces
results that are not qualitatively different from
results produced by terrestrial factors.
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Appendix

In this section I briefly describe how to calculate p-values and
critical values for the statistical significance of the random var-
iable h; in Silverman’s Critical Bandwidth test. For details, see
references by Silverman (1981, 1986) and Efron and Tibshirani
(1993).

The goal is to determine how large h_,, must be to provide sta-
tistically significant evidence of a multimodal extinction inten-
sity curve. Alternatively, we may want to determine a p-value
representing the significance of our observed value of k. By
definition, the p-value is the probability of exceeding the ob-
served value of h, if the null hypothesis were true. (Recall that
the null hypothesis is that the extinction intensity curve f(x) is
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unimodal.) To calculate the p-value, we need to determine the
sampling distribution of the random variable &, under the null
hypothesis. In this case, however, because h_,, is not a simple
function of f(x), this problem is mathematically intractable and
the sampling distribution cannot be found analytically.

I instead approximate the sampling distribution of 7, under
the null hypothesis by using a bootstrap-based simulation. Here
another difficulty arises. Our null hypothesis (that f(x) is uni-
modal) is a broad one, because the number of unimodal distri-
butions is infinite. Further, it may not plausible to assume that
f(x) belongs to a particular parametric family (e.g., Normal).
Thus we cannot simply simulate data sets sampled from f(x) un-
der the null hypothesis, because f(x) is not uniquely specified.

Instead of simulating data sets sampled from f(x), I will sim-
ulate data sets sampled from the density estimatef(x) that best
represents f(x) under the null hypothesis. What does such anf(x)
look like? Clearly f(x) must be unimodal, and it should be as
“close’” as possible to the actual data. To satisfy these condi-
tions, I use the f'(x) that is constructed from the observed data
using bandwidth h = h,. That is, I simulate data sets sampled
from an estimate of f(x) that is unimodal but closest to being
bimodal, and based on the observed data. Then, for each sim-
ulated data set, I calculate and save the value of I, from that
data set. With enough simulated data sets, I am able to estimate
the sampling distribution of h_,, under the null hypothesis.

I can then determine the p-value associated with any observed
value of & by checking how often the simulated values of &
exceed that observed value. Similarly, to calculate the critical
value of 1, needed to achieve statistical significance at, say, the
a = 0.051level, I can find the value of i, that is exceeded by only
the largest 5% of the simulated values. I thus arrive at a criterion
for determining if a particular value of h,,, is “/large’”: if such a
value would occur by chance less than 5% of the time when sam-
pling from the unimodal f(x), then the null hypothesis of uni-
modality is rejected.



