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Maximum running speed is an important locomotor parameter for many animals—predators as well as
prey—and is thus of interest to palaeobiologists wishing to reconstruct the behavioural ecology of extinct
species. A variety of approaches have been tried in the past including anatomical comparisons, bone scaling
and strength, safety factors and ground reaction force analyses. However, these approaches are all indirect
and an alternative approach is to create a musculoskeletal model of the animal and see how fast it can run.
The major advantage of this approach is that all assumptions about the animal’s morphology and
physiology are directly addressed, whereas the exact same assumptions are hidden in the indirect
approaches. In this paper, we present simple musculoskeletal models of three extant and five extinct
bipedal species. The models predict top speed in the extant species with reasonably good agreement with
accepted values, so we conclude that the values presented for the five extinct species are reasonable
predictions given themodelling assumptions made. Improvedmusculoskeletal models and better estimates
of soft tissue parameters will produce more accurate values. Limited sensitivity analysis is performed on key
muscle parameters but there is considerable scope for extending this in the future.

Keywords: locomotion; computer simulation; bipedalism; running

1. INTRODUCTION
Chasing down prey is a vital factor in the lives of extant
predators, as is the avoidance of being captured for prey
animals. It is therefore of little surprise that speed
estimation is of such interest to palaeobiologists who
study dinosaurs. The range of predicted speeds is as
variable as the methods chosen with some authors
favouring high speeds (Paul 1988, 1998) while others
prefer moderate (Farlow et al. 1995) or low speeds
(Alexander 1989; Hutchinson & Garcia 2002). Current
analysis techniques are based on anatomical comparisons,
bone scaling and strength, risk factors and ground reaction
forces, and a recent review (Hutchinson & Gatesy 2006)
summarizes the current state of the art and concludes,
among other things, that a ‘rigorous dynamic simulation
of a moving dinosaur, one encompassing all motions and
forces, cannot yet plausibly be done’. However, such an
approach is clearly the best option because it both
explicitly requires a complete set of modelling assump-
tions and is conceptually simple. It requires a musculos-
keletal model to be constructed necessitating assumptions
about skeletal geometry, body mass and mass distribution,
together with muscle and tendon properties. These
properties all have a considerable effect on locomotor
performance and all that happens in any quantitative
technique that does not make explicit assumptions about
their values is that they will be implicitly scaled from
whatever reference species are employed. This is likely to

be suboptimal given that some of these values can often be
inferred from fossil evidence directly, and unknown values
need to be clearly identified so that their importance to the
final result can be assessed.

It is now possible to produce highly detailed muscu-
loskeletal models and these can be used for fossil
locomotor reconstruction (Nagano et al. 2005) and such
could be constructed for dinosaur species. However, such
complex models require a great deal of work to construct
and good predictive results can be obtained from rather
simpler models (Yamazaki et al. 1996; Ogihara &
Yamazaki 2001; Sellers et al. 2003, 2004, 2005). These
latter models have the great advantage of requiring no
knowledge of locomotor kinematics and allow the
generation of a range of gaits de novo, which maximize
or minimize some global optimization parameter such as
speed or energy consumption. These models use an evolu-
tionary robotics approach where so-called evolutionary
algorithms are used to find muscle activation patterns
(Nolfi & Floreano 2000). However, such models are still
computationally demanding. It is perfectly possible to
solve the mechanical constraints of the system (internal
forces generated by muscles and the spring recoil of
tendons, segment movement constraints imposed by
joints, external forces generated by gravity and ground
reaction through contacts with the environment) in more
or less real time on a modern computer using freely
available software. However, finding the activation pattern
of the muscles that produces high-quality gait is extremely
challenging. Even a simple model such as ours with 12
muscles and 5 activation levels per step (half a gait cycle)
leads to 61 dimensions in the search space, which is
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consequently far too large to search exhaustively. For-
tunately, using a parallel implementation of a suitable non-
exhaustive, evolutionary search procedure such as a
genetic algorithm means that even this is a tractable
problem that can be solved in days or weeks on a modern
supercomputer.

It is important that any model attempting to predict the
behaviour of extinct species be tested on extant animals.
Thus, a model attempting to predict the top speeds of a
range of fossil bipedal dinosaurs should also be tested using
equivalent data from living bipeds. However, there is
remarkably little high-quality top-speed data for any living
species other than those actively involved in racing, such as
humans, horses and greyhounds (Alexander 1989) and
even elephants (Hutchinson et al. 2006). The values used
for comparison in this paper (Alexander et al.1979;Patak&
Baldwin 1998) are based on anecdotal observations and
need tobe treatedwith some caution since there is nowayof
knowing whether these animals were actually running as
fast as they could. The anatomy, posture and gait of bipedal
dinosaurs is unique, with no equivalent modern analogue
available for the comparison of locomotor abilities. The
successful testing and validation of the computational
approach using extant species indicates that it is possible to
generate a robust model applicable to extinct species.

2. MATERIAL AND METHODS
Our previousmodels (Sellers et al. 2003, 2004, 2005) used the

DYNAMECHS simulation library (McMillan et al. 1995).

However, this system has very limited support for contacts

between the simulation and the environment so, for this

model, we switched to using the open dynamics engine (ODE;

http://www.ode.org) to provide the physics simulation. This is

again a CCC library so we were able to modify our existing

GAITSYM code to use the new simulator. The models

themselves were specified in a custom XML format that

defined the necessary segments, joints, muscles, tendons and

contacts. To perform the optimization, we modified our

existing distributed genetic algorithm system to support the

new format.While it is difficult to compare the results using the

two systems, it is certainly our impression that ODE is both

faster and more numerically stable than DYNAMECHS in this

application. Communication between the optimization code

and the simulation code was performed using sockets via the

PTypes abstraction library (http://www.melikyan.com/ptypes)

to allow easy portability over the variety of computer systems

available to us, and to allow the code to take advantage of

multiple, remote computer clusters, using over 300 processor

cores when available. Graphical display and user interaction

used the GLUI OpenGL widget library (http://glui.

sourceforge.net/) to again allow easy portability. The muscle

model was derived from Minetti & Alexander (1997) to

generate both eccentric and concentric velocity-dependent

force characteristics extended with the addition of Hill-style

linear serial and parallel elastic elements (Hill 1938). The

combined musculotendinous unit is solved analytically and

exported as a standard C function usingMATHEMATICA (http://

www.wolfram.com) that greatly aids numerical stability. A

cylindrical wrapping operator was used where necessary to

maintain the muscle and tendon path around joints.

A set of three extant and five extinct bipeds weremodelled.

These are two-dimensional models with a rigid trunk, and left

and right thigh, shank and composite foot segments. These

segments are linked using three hinge joints per limb. The

segment properties are based on published data (Hutchinson

2004a,b) with the single composite foot segment combining

the metatarsus and foot with all floor contact occurring at the

distal endof themetatarsus.The specieswere chosen to cover a

reasonable size range and are listed in table 1. The published

dataset does not include moments of inertia so these were

calculated by modelling the segments as geometric shapes

chosen to match the published lengths, masses and centres of

mass. Conic segments were used for the limb segments and

back-to-back circular cones were used for the trunk. Muscle

fibre lengths, physiological cross-section areas (PCSAs) and

moment arms were available for limb extensors (Hutchinson

2004a,b), and these were used to create appropriate muscle

paths on themodel. Cylindrical wrapping operators were used

for the knee andankle extensors. Limbflexorswere assumed to

have the same properties, but only 59% of the mass was based

on human proportions (Pierrynowski 1995) but not dissimilar

from the values found in other species (Alexander et al. 1979;

Maloiy et al. 1979; Bennett 1996).

The extensor muscle mass was limited to 5% of the body

mass per joint (Hutchinson 2004b) and all muscles were

considered to act over a single joint, with each joint having a

single flexor and extensor. Muscle volume was calculated

using the standard value of 1056 kg mK3 for muscle density

(Winter 1990) and PCSA was calculated by dividing this

volume by the fibre length. Force per unit area was chosen to

be 300 000 N mK2 (Hutchinson 2004b), but there are other

values in the literature: Umberger et al. (2003) use

250 000 N mK2, and Alexander (2003) reports an in vitro

maximum value of 360 000 N mK2 for frog and

330 000 N mK2 for cat for parallel-fibred leg muscles.

Zheng et al. (1998) recommend a value of 400 000 N mK2

for human quadriceps and Pierrynowski (1995) suggests

350 000 N mK2. There is a similarly large range for

maximum contraction speed. Winter (1990) suggests values

from 6 to 10 times the muscle’s resting length per second for

humans. This value is clearly highly dependent on both the

Table 1. Data for the species used in the study and key simulator outputs.

mass (kg) speed (m sK1) cycle time (s) stride length (m) leg length (m) l/h u2/gh

Dromaius 27.2 13.3 0.441 5.865 0.864 6.79 20.89
Struthio 65.3 15.4 0.370 5.688 1.086 5.24 22.23
Homo 71 7.9 0.475 3.732 0.994 3.75 6.33
Compsognathus 3 17.8 0.106 1.894 0.179 10.58 180.43
Velociraptor 20 10.8 0.284 3.058 0.489 6.25 24.18
Dilophosaurus 430 10.5 0.579 6.092 1.350 4.51 8.36
Allosaurus 1400 9.4 0.615 5.795 1.750 3.31 5.17
Tyrannosaurus 6000 8.0 1.199 9.559 3.089 3.09 2.10
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fibre-type composition of the muscle and the temperature.

Westneat (2003) reports a range of values for fishes from 3 to

10 sK1 for different fibre types and Umberger et al. (2003)

recommend values of 12 sK1 for fast twitch and 4.8 sK1 for

slow twitch. A value of 8 sK1 was chosen to represent a mixed-

fibred muscle. Joint limits were set to extreme values for all

species since these limits are not generally available and the

range of motion permitted by the muscle and tendon lengths

specified should be sufficient to limit joint excursion. Serial

and parallel elastic constants were set so that the serial

element strain was 6% at the maximum isometric contraction

and parallel element strain was 60% for the same force as

used in a previous model (Sellers et al. 2005), and the lengths

of the tendons were scaled based on average human

proportions for the hip, knee and ankle (Pierrynowski

1995). Muscle attachment points were arranged so that the

muscle plus tendon was at its resting length in the published

mid-stance positions (Hutchinson 2004a,b), so that the

moment arm was approximately correct. This procedure

was performed automatically using a custom MATLAB

program (http://www.mathworks.com/). The full specifi-

cation for each of the models is included as human-readable

XML files as electronic supplementary material.

Gait is generated using a distributed genetic algorithm

optimization system using a genome that represents the gait

cycle duration and the muscle activation levels at 10 time

periods through the gait cycle. The genome contains 61

parameters representing the cycle time and the 5 activation

levels for 12 muscles for half a gait cycle. The left–right

activation levels are simply swapped for the other half of the

gait cycle. This is implemented as a client–server architecture

with the simulators running onmultiple client machines and a

central server that gathers the results from the multiple

simulations. The starting conditions used published mid-

stance positions with a trunk forward velocity giving a Froude

number of approximately 1.5 (which equates to a medium

running speed) using the formula velocityZ1.5!(9.81!
(thigh lengthCshank lengthCmetatarsus length)) following

Alexander (2003) but using leg length as a proxy for hip

height. Forward velocities for the support leg segments

decreased to zero depending on the height of the segment

from the ground, and the velocities of the swing-leg segments

increased to double the trunk forward velocity again

depending on height. The fitness criterion used for the

genetic algorithm optimization was the maximum forward

distance achieved in a fixed time (3 s for most species but 5 s

for the Allosaurus and Tyrannosaurus to allow a reasonable

number of complete gait cycles). Thus, runs where the animal

fell over scored very badly and the runs with the highest

average speed would score the highest. The population was

1000 and up to 1000 generations were allowed in each run

unless a steady maximum average forward velocity was

achieved earlier. This procedure was repeated at least five

times until a good quality run was obtained. Runs were

judged to be good quality when the animal did not fall over

within the time limit and managed at least 15 m forward
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Figure 1. Overlay images of the simulated gaits. All scales are in metres and 10 images are generated per gait cycle. (a)Dromaius;
(b) Struthio; (c) Homo; (d ) Compsognathus; (e) Velociraptor; ( f ) Dilophosaurus; (g) Allosaurus; (h) Tyrannosaurus.
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movement. The best run was then used as the basis for a gait

morphing procedure (Sellers et al. 2004), where the best

results for a previous run were used to generate the starting

conditions for subsequent runs. This procedure was repeated

at least 20 times to obtain the highest speed estimate for each

species. An individual simulation ran in approximately real

time but at least 1 000 000 repeats were needed to generate

the optimized running gait for each species.

3. RESULTS
All the models generated high-quality running gaits that
were stable over the whole simulation period as shown in
figure 1. This figure shows a series of snapshots of the
generated gaits at 1/10 cycle time intervals. The lines
connect the joint centres, except for the foot line that is
drawn between the ankle joint and the contact point on
the metatarsal head and the trunk line that is drawn from
the hip joint to the position of the centre of mass of the
trunk segment.

The top speeds achieved for each species are shown in
table 1 and there is reasonably good correspondence for
the extant species between the speeds generated by the
model and those cited in the literature:Dromaius 14 m sK1

(Patak & Baldwin 1998); Struthio 17 m sK1 (Alexander
et al. 1979); and Homo 10 m sK1 (Alexander 1989). To
investigate whether mass alone is a good predictor of top
speed, we plotted the top speed against body mass in
figure 2, which shows a monotonic reduction in speed for
the extinct bipeds but not for the extant species. The
extinct species have a consistent 15% of body mass as
muscle mass for each limb, whereas the value forDromaius
is 15.5%, for Struthio is 12.2% and for Homo is 10.6%, so
this alone does not explain the speed differences seen in
the extant species.

Similarly, there is a well-known empirical relationship
between speed, leg length and stride length based on
Froude numbers that is often used for trackway analysis:
l/hz2.3(u2/gh)0.3, where l is the stride length; h is a
characteristic length (in this case, leg length); u is the
forward velocity and g is the acceleration due to gravity
(Alexander 1976). This information is shown in table 1
where the characteristic length used is leg length (the sum
of thigh, shank and metatarsus lengths). Figure 3 shows a

plot of l/h against u2/gh for the models to compare the
simulations against the empirical relationship demonstrat-
ing extremely good agreement.

A key area of uncertainty in our model is the choice of
muscle parameters, so a simple sensitivity analysis was
performed. The maximum force available per muscle is
directionally proportional to the mass of muscle (FmaxZ
dM/rl, where d is the force per unit area; M is the muscle
mass; r is the muscle density and l is the muscle fibre
length). Of these the greatest uncertainty is likely to be the
value of muscle mass (Hutchinson &Garcia 2002); hence,
this was varied over a range of 2.5–7.5% per joint, which
should encompass the probable variation. Similarly,Vmax is
known to vary widely and it may scale negatively with body
mass (Medler 2002), although there is little information
about contraction velocities in large animals. Values
between 4 and 12 sK1 were tested to both encompass
the probable range and give the same degree of variation
(G50%) as used for muscle mass. The results of the
sensitivity analysis on the Tyrannosaurus rex model are
shown in figure 4. Both parameters have an approximately
linear effect over this range, and the effect of musclemass is
approximately double the effect of contraction velocity.
However, the model was unable to sustain locomotion
when the muscle mass was reduced to 2.5% per joint.

4. DISCUSSION
Multibody dynamic simulations using evolutionary
robotic optimization approaches appear to provide reliable
estimates for the maximum running speeds of extant
animals. Multiple simulations with small changes in both
starting conditions and muscle activation patterns pro-
duced highly consistent estimates. Maximum running
speed is a highly variable character and difficult to estimate
in any animal. The observed speed is always a lower bound
estimate of maximum speed since the animal might not be
running as fast as it can. In addition, many quoted values
for running speed are based on observations made in less
than ideal conditions, which may lead to considerable
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errors (Garland 1983; Alexander 1989). Even for humans,
the situation is not straightforward: while 200 m sprint
averages are in excess of 10 m sK1, the peak speed reached
can be in excess of 12 m sK1 (Brown et al. 2004), and these
are values for elite athletes who have considerably greater
leg muscle mass than the average values used in our
simulations. Tests on more general female athletes from
other sports give typical speeds of approximately 6 m sK1

with short bursts of less than 8 m sK1 (Brown et al. 2004).
Our estimates are broadly in line with other biomechanical
estimation techniques, which predict 18 m sK1 for ostrich
and 13 m sK1 for emu (Blanco & Jones 2005). It is self-
evident (and has been demonstrated in various models;
Hutchinson & Garcia 2002; Sellers & Paul 2005) that
changes in muscle mass will affect maximum speed and
this is a major source of uncertainty in these predictions.
However, we would propose that limits can be set using
functional bracketing to set minimum andmaximum values.
The 15% value used here is similar to that found in large
extant bipeds and as our sensitivity analysis shows, an
appreciably smaller value does not even allow the animal
to walk. An upper limit would be harder to estimate but
one approach that is possible (even if computationally
expensive) is to calculate the bone loading during high-
speed locomotion and compare the safety factors with
those known for extant animals (Alexander 1997). For
these models, the general decrease in top speed as body
size increases is certainly in line with predictions made
elsewhere (Hutchinson 2004b) and the predicted top
speeds, with the possible exception of 17.8 m sK1 for
Compsognathus, are not exceptional. However, we would
expect that the actual top speeds are likely to be somewhat
higher than those given here since it is probable that
improvements could be made by altering the distribution
of the leg muscle and optimizing the fibre and tendon
lengths. In addition, all the models are relatively simplistic
and lack multiple-joint muscles and accessory elastic
storage structures, which when combined should increase
the maximum speed. Our initial sensitivity analysis shows

that changing our assumptions about the muscles has a
considerable effect on our estimates. A 50% increase in
muscle mass leads to a 60% increase in top speed and a
50% decrease stops the model working at all. Similarly, a
50% increase in maximum contraction velocity leads to
a 30% increase in top speed with a 50% decrease leading
to a 20% decrease. However, there is considerable scope
for further sensitivity analyses such as variation in muscle
attachment points (Sellers & Crompton 2004) and the
effects of perturbation (Wilson et al. in press).

The kinematics generated by the models show a wide
range of variation. It is very hard to judge the probable
accuracy of these values without subject-specific kinematic
matching, and in any case with such simple models it may
be optimistic to expect high-quality kinematics. In
particular, we would expect better estimates of muscle
and tendon lengths (and to a lesser extent joint limits) to
have a considerable effect on kinematics. However, as
shown in figure 3, the mechanical accuracy of the
simulations is high. The models represent a wide range
of Froude numbers and follow the predicted stride length
relationship very closely indeed. Overall, simulations such
as ours illustrate how an animal could have moved given its
physiological and morphological constraints, and perhaps
also indicate probable movement patterns, but we are still
some way off saying that this is how it must have moved.

There are a number of possible future developments in
animal gait simulation. Our models already allow us to
calculate the energetic costs of gaits in some detail. This
includes estimates of metabolic and mechanical power,
including active contraction and passive elasticity contri-
butions on a muscle by muscle basis. However, these
predictions need better validation and this can be achieved
using a combination of species-specific modelling and
in vivo physiological measurement. As computers get
faster and cheaper, it would be useful to increase the
biofidelity of the models by adding more muscles,
including the forelimb in the simulation, and having
considerably greater detail in the feet and the interactions
with the substrate. In addition, reconstruction improve-
ments such as new estimates of inertial parameters
(Hutchinson et al. 2007) and better comparative ana-
tomical and physiological data will certainly help. In
particular, very little comparative data are available on the
elastic properties of muscles. Similarly, the addition of a
feedback-based control system will increase the range of
locomotor activities that can be encompassed and allow
this technology to look at non-continuous activities, such
as starting, stopping, cornering and complex movements
such as sitting and standing up.
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