New information on Cretaceous troodontids (Dinosauria, Theropoda) from the People’s Republic of China

Philip J. Currie and Dong Zhiming

Abstract: Troodontid specimens were recovered from three localities in China by the Sino-Canadian expeditions between 1987 and 1990. These include a Lower Cretaceous form (Sinornithoides youngi), which is the most complete troodontid skeleton ever found, isolated bones from the Iren Dabasu Formation (?Turonian), and partial skeletons of Saurornithoides mongoliensis from Djadokhta-equivalent beds (?Campanian). These, and other specimens recently described from North America, allow a better assessment of the phylogenetic position of troodontids than has been possible before. Although troodontids have autapomorphies that eliminate them from consideration as bird ancestors, they are nevertheless one of the closest avian outgroups within the Theropoda.

[Traduit par la Rédaction]

Introduction

Troodontids were amongst the first dinosaurs discovered and described, Troodon formosus having been established on the basis of a tooth by Leidy in 1856. The first good cranial and skeletal material of a troodontid was also one of the first Asian dinosaurs described, Saurornithoides mongoliensis having been collected by the Central Asiatic Expedition of 1922 (Osborn 1924). In spite of these early discoveries, troodontids remained poorly known until the relatively recent discoveries of better preserved specimens in North America and Asia (Russell and Dong 1993; Varricchio 1997; Norell et al. 2000). These once enigmatic animals are becoming so well known that even aspects of their growth (Varricchio et al. 1997; Ryan et al. 2000) are now evident.

There has been considerable speculation concerning the relationship of troodontids to other theropods and birds. Recent analyses favor close relationships to either ornithomimosaurs (Osmólska et al. 1972; Currie 1985; Pérez-Moreno et al. 1994; Holtz 1994, 1996; Padian and Hutchinson 1997) or dromaeosaurids (Ostrom 1969; Osmólska and Barsbold 1990; Makovicky and Sues 1998; Sereno 1999). In addition, they are one of the stronger candidates as the closest sister group to birds (Currie 1985; Forster et al. 1998).

In addition to reporting on the first records of troodontids from the Iren Dabasu Formation, characters that are useful for determining the interrelationships of troodontid genera and the phylogenetic relationships of the family itself are described. Characters that have not been described previously but which are useful for determining the systematic position of the Asian genera will also be dealt with. For more general descriptions of Saurornithoides and Sinornithoides, the reader is referred to papers by Barsbold (1974), Barsbold and Osmólska (1990), Osborn (1924), and Russell and Dong (1993).

Institutional abbreviations

AMNH, American Museum of Natural History, New York; CMN, Canadian Museum of Nature, Ottawa, Ontario; GIN, Mongolian Geological Institute, Ulaan Baatar; IVPP, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing; MOR, Museum of the Rockies, Bozeman, Montana; PIN, Paleontological Institute of the Russian Academy of Sciences, Moscow; TMP, Royal Tyrrell Museum of
Systematic Palaeontology

Reptilia Linnaeus 1758
Archosauriformes Archosauromorpha Huene 1946
Dinosauria Owen 1842
Saurischia Seeley 1888
Theropoda Marsh 1881
Troodontidae Gilmore 1924

Material
AMNH 21751. Distal ends of a left and a right third metatarsals of an unknown species of troodontid. Collected in the 1920s by the third Central Asiatic Expedition from exposures of the Iren Dabasu Formation (?Santonian) near Erenhot, China.

IVPP V10599, sacral and caudal vertebrae, pelvis of Sinornithoides mongoliensis. Collected in 1988 from Djadokhta-equivalent exposures (?Campanian) at Bayan Mandabu, China.

Description

Sinornithoides youngi

The most complete troodontid skeleton presently known is a remarkable skeleton collected from Lower Cretaceous exposures near the village of Muhuxiao in the Ordos Basin (Russell and Dong 1993). Associated fossils are listed by Dong (1992).

The skull of IVPP V9612 is difficult to see in its present position because it is upside down and is covered by the left hand and part of the tail. The specimen was prepared from underneath, but computerized tomography (CT) scans (Chapman and Andersen 2000) reveal that most of the skull roof had been eroded away before the specimen was collected.

IVPP V9612 is not a mature specimen (long bones have the pitted surfaces characteristic of immature individuals, cervical ribs are not fused to the corresponding ribs; the scapula and coracoid have not fused; the ilium, pubis, and ischiium are separate; the ends of the paired pubes are not fused), although it was apparently approaching maturity because the neural arches are indistinguishably fused to the centra in the middle and distal regions of the tail, and the astragalus and calcaneum are indistinguishably fused. Sinornithoides could not have been as large as either Saurornithoides or Troodon.

The skull of Sinornithoides is relatively shorter and deeper, and the orbits are relatively larger, than those of Saurornithoides (Osborn 1924; Barsbold 1974) and Troodon (Russell and Sequin 1982). Unfortunately, these are size- and age-related characters that show strong allometry with growth and are not satisfactory for use in diagnosing genera.

In contrast with dromaeosaurs (Currie 1995) and the majority of theropods, the maxilla separates the subnarial processes of the premaxilla and nasal. The maxilla also forms part of the margin of the external naris in Byronosaurus (Norell et al. 2000), Saurornithoides (Barsbold 1974), and Troodon (Russell 1969; Currie 1985). This is a derived character that developed independently in abelisaurids (Chatterjee 1978; Bonaparte et al. 1990; Sampson et al. 1998) and possibly therizinosaurids, like Eriphonius (ref). It is also present in Archaeopteryx (Tarsitano and Hecht 1980; Wellnhofer 1974, 1988) and other early birds (Chiappe et al. 1999).

The antorbital fossa is almost entirely occupied by two large facial fenestrae, as in Saurornithoides (Osborn 1924; Barsbold 1974) and Archaeopteryx (Wellnhofer 1974). The antorbital fenestra and the maxillary fenestra are separated by a thin pillar of bone recessed from the lateral margin of the maxilla, whereas those of Byronosaurus and Saurornithoides are anteroposteriorly wider. Furthermore, the interfenestral bar is not inset from the lateral surface of the maxilla in Byronosaurus (Norell et al. 2000). The maxillary fenestra is relatively larger than those of dromaeosaurids (Osborn 1924; Ostrom 1969; Sues 1977; Burnham et al. 2000) and is positioned in a more ventral position close to the ventral margin of the antorbital fossa. In contrast, the dromaeosaurid maxillary fenestra is smaller and is positioned in the upper part of the maxillary fossa. The anteroventral margin of the antorbital fossa is pierced by a small, slit-like promaxillary fenestra. As in Byronosaurus (Norell et al. 2000), and Troodon, CT scans show that the maxilla of Sinornithoides formed part of the extensive secondary palate.

The T-shaped, left lacrimal is complete except for much of the anterodorsal process (Fig. 1A), but has been damaged dorsally by erosion. As in Byronosaurus, Saurornithoides, and Troodon, there is a distinct, ventrally concave, thin shelf overhanging the anterolateral corner of the orbit. As in other troodontids, the dorsal surface of the lacrimal was strongly tilted so that the anterodorsal process was significantly lower than the process above the orbit. The preorbital bar is more slender than that of Troodon (Currie 1985) and is more strongly curved anteroventrally. Like its Late Cretaceous relatives, however, the preorbital bar is anteroposteriorly long dorsally, but twists ventrally to become mediolaterally wider than long. Several autapomorphies of the lacrimal distinguish Sinornithoides and other troodontids from dromaeosaurids and other theropods. A lacrimal duct does not pierce the preorbital bar as it does in dromaeosaurids and other theropods. What is interpreted as a possible lacrimal duct (Currie 1985) is higher on the lacrimal, crosses the lateral surface at the top of the preorbital bar, and enters a foramen in the anterodorsal process. The surface of the preorbital bar is smooth, lacking the rugose region for skin attachment found in dromaeosaurids and most other theropods. There is no evidence of a ventral slip of the prefrontal along the
The incomplete right frontal (Figs. 1B–1E) preserves most of the interfrontal suture, but not the orbital rim, nor the sutures for the lacrimal, postorbital, laterosphenoid, nasal, or parietal. Nevertheless, it has the characteristic elongate shape of a troodontid (Currie 1987b). Unlike dromaeosaurids, the olfactory lobe of Sinornithoides was clearly elongate.

Like other troodontids, the dentary has a distinct groove (Fig. 2E), in which there is a concentration of foramina (Norell et al. 2000). In lateral view, the dentary tapers anteriorly as in other troodontids; but in ventral view, it is straight with none of the anteromedial curvature at the symphysis that is present in Troodon (Currie 1987a).

The teeth of Sinornithoides (Fig. 2) are similar to those of other troodontids (Currie et al. 1990). They are relatively small and numerous, with 18 maxillary teeth. The dentary teeth are smaller than the maxillary teeth, the longest being 2.2 mm (fore–aft base length (FABL) is 1.3) compared with 3.2 mm (with a FABL of 2.4) for the tallest maxillary tooth.

Teeth are differentiated into four regions (premaxilla, maxilla, anterior dentary, mid and posterior dentary). There is a conspicuous constriction between the crown and root of each tooth. Four premolar teeth are present (Fig. 2A), as in the vast majority of toothed theropods, and these have denticles on both carina (Russell and Dong 1993). The third premaxillary tooth is 2.7 mm long. The maxillary and dentary teeth only have denticles on the posterior carinae, as in many specimens of Saurornithoides but not Troodon (Currie 1987a). A significant difference from Troodon and Saurornithoides is the relatively small size of the denticles (Fig. 2C, 2D). Using denticular basal diameter (as seen in lateral or medial view) is preferable to estimating the number of denticles per 5 mm when comparing taxa with small teeth, with relatively few denticles, or with denticles that are highly variable in basal diameter. The maximum basal diameter of one serration is 0.3 mm in the maxillary teeth (Russell and Dong 1993) of Sinornithoides. Although the small size is in part attributable to the small size of the teeth (Farlow et al. 1991), juvenile Troodon teeth in the same size range have fewer denticles with larger basal diameters (Fig. 3). The higher range of variability (lower correlation coefficient in Fig. 3) in denticle size in troodontid teeth is a consequence of the greater degree of heterodonty in this family (Currie 1987a) than in other theropods. The teeth of Byronosaurus (Norell et al. 2000) lack denticles. In spite of the highly variable nature of troodontid denticle size, the maxillary denticles in Sinornithoides are relatively smaller than even the smallest dentary denticles of Troodon (Fig. 3). They are, however, still relatively larger than those of most other theropods (Fig. 3).

Cervical, dorsal, and sacral vertebrae are not well exposed in IVPP V9612. Two anterior (possibly the fourth and fifth) cervical vertebrae were found eroded from the skeleton. The more posterior of the two (Figs. 4A, 4B) is reasonably well preserved on the left side, retaining the zygapophyses, the parapophysis, and the base of the diapophysis. The posterior zygapophyses of both anterior cervicals have short, knob-like epipophyses that are relatively smaller than those of dromaeosaurids (Ostrom 1969), but more pronounced than those of Gallimimus (Osmólska et al. 1972). As in dromaeosaurids and ornithomimids, the parapophyses are lower than the ventral margin of the centrum on the midline. Although the diapophysis of the possible fifth cervical is incomplete, its distal end closely approaches the parapophysis. A depression in the side of the centrum is penetrated by two foramina. The smaller, more anterior one is situated on the anterior rim of the depression (Fig. 4A).
and may have been used by a blood vessel or nerve. It is separated from the larger, more posterior pneumatopore by about 0.5 mm. The lamina connecting the diapophysis to the margin of the postzygapophysis is well developed and overhangs the centrum as in Gallimimus (Osmólska et al. 1972). It is pierced lateroventrally by a pneumatic foramen that was connected to the air-filled interior of the neural arch. This pneumatopore is presumably equivalent to the infrapostzygapophysial fossa of other theropods (Makovicky 1997). Other pneumatic features of the neural arch are obscured by matrix.

The posterior (almost certainly the ninth and tenth) cervicals are exposed in ventral view. The cervical ribs were not fused to them. The parapophyses are low on the margin of the centrum (Fig. 4C), and the transverse processes are almost directly above them in a more anterior position than they are in most theropods. As in ornithomimids, the transverse process extends posteriorly as a thin, horizontal shelf of bone. There is at least one pleurocoel on the side of the centrum posterodorsal to the parapophysis. Medial to the parapophysis is a distinct carotid process (Fig. 4C) as in ornithomimids (Osmólska et al. 1972), avimimids (Kurzanov 1987), and birds. The carotid processes of the posterior cervicals are separated by a deep concavity in the ventral surface of the centrum. The concave region is narrower on the last cervical than it is on the penultimate cervical. The posterior region of the centrum is ventrally convex if viewed in section.

The first dorsal vertebra has a strong and deep hypapophysis (Fig. 4D). It is not as large in the second dorsal, but it is still prominent. Hypapophyses are almost universally present in theropods, but only seldom are as powerfully developed as in Sinornithoides. Although Deinonychus has only moderately sized hypapophyses on the anterior dorsals (Ostrom 1969), they are very large on Troodon (Makovicky 1995) and the velociraptorine dromaeosaurid Saurornitholestes (MOR 660). Hypapophyses are also powerfully developed in Avimimus (Kurzanov 1987), but are very weak in ornithomimids (Osmólska et al. 1972). There are two pneumatopores on the exposed right
The upper opening is the infraprezygapophyseal fossa, which invades the transverse process as in *Troodon* (Makovicky 1995). The pneumatic fossa of the centrum in *Sinornithoides* is in the expected position behind the parapophysis as in *Troodon* (Varricchio 1997).

Most of the sacral vertebrae are obscured by the presence of other bones. The last sacral has a sacral rib that extends to and contacts the ilium. The first caudal vertebra, identified by its posteriorly recurved transverse process that does not contact the ilium, and by its contact with the first haemal arch, is closely associated with the last sacral, but does not appear to have been fused to it. The sacrum of *Saurornithoides junior* includes the first caudal vertebra (Barsbold 1974) for a total of six segments. The holotype of *Saurornithoides mongoliensis* (AMNH 6516) also incorporates six vertebrae, the last of which is presumably a caudosacral. This is followed by a free caudal, to which is attached the first haemal spine of AMNH 6516. The last coossified sacral of IVPP 10599 is obviously a caudosacral, because the first haemal spine attaches directly to it. It is conceivable that this specimen had seven sacrals, because it is one of the largest specimens known.

As reported by Russell and Dong (1993), almost all of the tail is preserved. There are 27 vertebrae in the holotype. The small sizes of the distal vertebrae indicate that the tail was not much longer than what has been preserved. The reduction in vertebral length is gradual in the last five complete vertebrae, from 21–18 mm. Usually the last two or three caudal vertebrae show drastic, stepped size reduction in coelurosaurs, which suggests that there were at least two or three more caudal vertebrae in the living animal. It is likely that *Sinornithoides* had between 30 and 32 caudal segments, comparable with the numbers in ornithomimids (32–35) and oviraptorosaurs (22–32, Barsbold et al. 2000). Dromaeosaurids (36–40, Ostrom 1969), tyrannosaurids (38–39), and most other coelurosaurs had marginally longer tails.

Although well-developed transverse processes are on only the first nine caudal vertebrae, they persist as faint ridges (Fig. 5A) until at least the thirteenth caudal. The lengths of
caudal centra increase posteriorly to a maximum in the thirteenth segment, after which they decrease progressively in length.

Few of the ribs are visible. The penultimate cervical ribs were evidently relatively short (Fig. 4C), but had the characteristic theropod capitulum, tuberculum, short anterolateral process, and elongate rib shaft. There is no anterolateral process on the last cervical (Fig. 5C), which is short and triangular. The first dorsal rib (Fig. 4D) shows a radical change in shape from the last cervical and was obviously a much longer rib with an elongate, slender capitulum.

Haemal arches in *Sinornithoides* are characteristic of troodontids. The first haemal spine of IVPP V9612 is attached between the first and second caudal centra. In reptiles, the haemal arches often start earlier in the tails of males than they do in females (Romer 1956; Larson 1997). The type specimen (AMNH 6516) of *Saurornithoides mongoliensis* was possibly a female, because its first haemal arch is between the second and third caudals, whereas IVPP V10599 may have been male, because the most anterior haemal contacts the first and second centra. Because the number of sacrals is the same in *Sinornithoides* as it is in *Saurornithoides*, it can be assumed from the position of the first haemal arch that the holotype of the former (IVPP V9612) may also have been a male. The shaft of the first haemal spine is inclined posteroventrally, but the distal end hooks strongly posteriorly. Measured along its longitudinal axis, it is 16 mm long. The second haemal spine (Fig. 5D) is 22 mm long and is not so strongly recurved distally. More posterior haemal spines become progressively shorter, until the sixth and seventh are quadrilateral in outline and longer than deep (Fig. 5E). The proximal ends of the first seven haemal arches wedge between the associated centra and wrap anteriorly and posteriorly around their ventral margins. The anterior process is longer than the posterior one. The eighth haemal arch is covered by matrix, so its nature cannot be determined at this time. The ninth and subsequent haemal arches are horizontal plates of bone (Figs. 5A, 5B, 5F–5H) that extend anteriorly and posteriorly from the intervertebral wedge. There is a longitudinal, medial, shallow trough on the ventral surface as in *Deinonychus* (Ostrom 1969) and other theropods. In lateral aspect, they taper anteriorly and posteriorly, and there is no vertical extension on the midline.

The gastralia are nicely preserved in the holotype of *Sinornithoides* (Fig. 6). There were at least fourteen sets, each consisting of left and right lateral elements, and left and right medial elements. No pairs of gastralia are fused, but the proximal ends of the medial ones overlap in a pattern characteristic of theropods and early birds (Claessens 1996). The lateral gastralia are longer than their medial counterparts.

Both clavicles are preserved in position, each attached to the acromion process of the scapula (Fig. 7). It is unclear however, whether they extended ventrally far enough to contact each other. The left clavicle is 13.7 mm long, and the right is 14.3. The difference in length, and the fact that the ventral margins of both look like broken surfaces, suggests that neither is complete, and that the middle section of the furcula was displaced and lost. It is also possible that this region had not ossified because of the immaturity of the specimen. Given the widespread distribution of furculae in theropods (Makovicky and Currie 1998), including possibly *Troodon* (Thulborn 1984, but see Claessens 1996), the clavicles of *Sinornithoides* may have extended ventromedially to contact and form a furcula in at least mature animals. The clavicle tapers dorsally to a sharp point that attached to the everted margin of the dorsal edge of the acromion process. The broken end is 1.8 mm wide and only 0.9 mm thick. In cross section, the clavicle is concave posteroomedially, and convex externally.
Neither of the clavicles contacts the coracoids ventrally in this specimen.

The proximal end of the right scapula is exposed and demonstrates that the scapular blade had a long slender, strap-like profile (Fig. 7). The suture with the coracoid is unfused, although the contact appears to be tight. There is a long, rather gradual slope from the anterior margin of the shaft into the acromion process, which is small relative to the sharply divergent acromion of tyrannosaurids. It does however compare well with those of dromaeosaurids, oviraptorids, and early birds, like Archaeopteryx. The glenoid is long (6.8 mm) but low (5.0 mm). Unlike those of dromaeosaurids (Burnham et al. 2000; Norell et al. 2000) and birds (Novas and Puerta 1997), it is not oriented as much laterally as posteriorly, but faces mostly backwards. The supraglenoid ridge is not pronounced. A ridge extends anterodorsally from the coracoid suture at the back of the glenoid to the anterodorsal margin of the acromion process. Ventral to this ridge, the lateral surface of the scapula is shallowly concave. The dorsal edge of the clavicle articulates with the high point on the anterodorsal corner of the acromion process. From this point to the posterior limit of the ridge above the glenoid, the scapula is 16 mm long. Above this, the shaft of the scapula tapers until it is only 11 mm in length. The full height of the scapula is unknown.

There is some variation between the two coracoids, although both are longer than they are tall. The right coracoid is 27.2 mm long and 25.7 mm high, whereas the same dimensions on the left coracoid (Fig. 7) are 29.3 mm and 24.9 mm. The coracoid facet of the glenoid is convex and oriented more proximally than laterally. Like other coelurosaurs, the coracoid extends far behind the coracoid facet of the glenoid. However, there is no distinct sternal process like that of Velociraptor (Norell and Makovicky 1999). The coracoid foramen is positioned beneath the middle
of the scapulocoracoid suture and has a diameter of 1.6 mm. The coracoid tubercle ("biceps" tubercle) is pronounced, extending 6.5 mm from the coracoid foramen. Although the sternum is not ossified, the posteromedial margins of the paired coracoids form a V-shaped gap that suggests the cartilaginous sternum was about 16 mm across.

The arm is almost half as long as the leg, but is relatively short compared with the arms of dromaeosaurids and birds.

The slender, relatively straight humerus (Fig. 8A) is 60% the length of the femur. The ventrally oriented deltoid crest is positioned mostly in the proximal quarter of the bone with the conical apex about 2 cm from the proximal end. The internal tuberosity is poorly developed in this specimen, but this is probably a consequence of ontogeny.

The ulna (Fig. 8B) is almost 80% the length of the humerus. The shaft, which is bowed as in most maniraptorans, has a diameter 45% greater than that of the radius. The olecranon process is low, in part because of the immaturity of the specimen, and is subtriangular in section. The shaft of the radius is straight (Fig. 8C), and the distal end expands anteroposteriorly but is flattened mediolaterally.

There are only two carpals preserved in each of the left or right wrists (Fig 9A). The radiale is a flat, disklike bone that intervenes between the radius and the semilunate carpal in the right hand. The semilunate, composed of one or more distal carpals, capped the first and second metacarpals as in most maniraptoran theropods. The transverse proximal groove seems to have articulated directly with the ulna and the radiale.

The first metacarpal (Fig. 9A) has a short, thick (5 mm), twisted shaft that is in close contact with Metacarpal II for almost half of its length. Its length is 35% that of the second, which in turn is half a millimetre longer than Metatarsal III. The second metacarpal, which is 40% the length of the humerus, is the longest of the three. The minimum shaft diameter of Metacarpal III is 1.5 mm, which is about 25% thinner than the shaft of the second metacarpal. As preserved the shaft of the third metacarpal from the right side appears to be straight (Holtz 2000). However, it has clearly been crushed and damaged, but the rapid prototype (a plastic model produced from CT scan images) reveals that the left Metacarpal III is curved as in other maniraptorans. Amongst the non-ungual phalanges, I-1 is the longest and most robust. In each finger, the penultimate phalanx is longer than the anti-penultimate phalanges (Table 1). The unguals of the first two digits are almost equally strong, whereas that of the third is visibly smaller. The keratinous sheaths of the unguals were thick along the extensor margin, and these regions are preserved near the tips of at least two of the unguals (Fig. 9B). The medial surface of right ungual I-2 also seems to be covered by a thin layer of residual keratin.

The dorsal margins of both ilia have been destroyed by erosion. The pubic pedicel is longer and deeper than the ischial pedicel and is oriented ventrally. The acetabulum was
about 19mm long anteroposteriorly, and has a broad supraacetabular rim. The preacetabular blade (anterior to the pubic pedicel) of the right ilium is 26 mm long, whereas the postacetabular blade of the left ilium is longer (30 mm). The ilium is therefore dolichoiliac. The anterior margin of the pubis tapers gradually into an anteroventral process. There is no evidence of the fossa for the M. cuppedicus. The pubis, as noted by Russell and Dong (1993), is almost double the length of the ischium. Proximally, the shaft is oval in cross-section, but a centimetre-wide flange develops more distally on the medial surface to form the pubic apron. The latter meets its equivalent from the other side in a long, unfused pubic symphysis. The pubic aprons define a shallow longitudinal trough that opens posteroventrally. As in Deinonychus (Ostrom 1976) and Velociraptor (Norell and Makovicky 1999), the paired pubes narrow distally to less than half the width at mid-shaft length. There is no evidence of a pubic boot (Russell and Dong 1993), although it may not have been ossified because of the small size and young age of this individual. The ischia expand posterorventrally into relatively flat obturator processes that apparently contacted each other but are not fused along their ventral margins.

The shaft of the femur is arched anteriorly as in other troodontids and as in dromaeosaurids and early avialians (Norell and Makovicky 1999). The lesser trochanter was proximal in position and formed part of the trochanteric crest as in other troodontids (Currie and Peng 1993). Oviraptorids are similar although the lesser trochanter is separated from the greater trochanter by a shallow incision. The trochanteric crest is not seen in dromaeosaurids or apparently Archaeopteryx (Norell and Makovicky 1997), but is present in Confuciusornis and more advanced birds (Chiappe et al. 1999). However, it should be pointed out that only a shallow notch generally separates the lesser and greater trochanters in dromaeosaurids. There is a distinct tubercle on the posterolateral margin of the femur that has been identified as the “posterior trochanter” (Currie and Peng 1993), even though it is more lateral in position than the posterior trochanters of Deinonychus (Ostrom 1976) or Velociraptor (Norell and Makovicky 1999). The posterior trochanter is at the same level and is continuous with a more lateral, distal ridge (the “lateral ridge” of Norell and Makovicky 1999), and it is bounded proximally by a depression in both troodontids and dromaeosaurids. This suggests that the posterior trochanter of dromaeosaurids is homologous with the more lateral tubercle in troodontids. There is no indication of a fourth trochanter, which is variably developed in dromaeosaurids (Norell and Makovicky 1999) and oviraptorids (personal observations, 1999–2000).

More than 40% longer than the femur, the tibia is a large straight-shafted bone with a single but well-developed cnemial crest. There is a long, well-developed crista fibularis in the proximal quarter of the tibia.

The shaft of the fibula is slender (1.7 mm, which is less than 17% the shaft width of the tibia) and is appressed closely to the surface of the tibia. The anterolateral process for the M. iliofibularis projects laterally with virtually no anterior orientation. Distally, the fibula twists onto the anterolateral face of the tibia to contact the tarsus, where it expands to 1.9 mm. Contrary to the initial report (Russell and Dong 1993), it is not fused to the tibia distally.

As described by Russell and Dong (1993), the astragalus and calcaneum appear to be coossified into a single, indistinguishable unit. The only other possible interpretation is that...
the calcaneum has been lost, although this seems less likely considering the fact that the fibula extends to contact the ankle, and there appears to be a line of fusion between the astragalus and calcaneum of *Troodon* (Russell 1969). The medial condyle is mediolaterally narrower but deeper (proximodistally and anteroposteriorly) than the lateral condyle. The two condyles, which are separated by a deep groove, are positioned almost entirely anterior to the distal end of the tibia. There is a tall ascending process on the astragalus, although its exact height is unknown, because it is largely covered by the metatarsus, which is folded against the tibia. There is a deep pit in the base of the ascending process separating it from the distal condyles. Two distal tarsals tightly cap the metatarsus, but remain as distinct bones (Fig. 10A).

As preserved, the five metatarsals of each foot are seen in posterior view (Fig. 10A). The first left metatarsal is pathologic. At mid-height the shaft is expanded by a bony callosity (Figs. 10D, 10E), larger than the distal end. The distal articulation is small, round, and twisted away from alignment of the normal central axis of the bone. The shaft of the second metatarsal becomes lateromedially thin (3.3 mm) but anteroposteriorly long (5.9 mm) at midshaft, and reaches its thinnest dimensions a third of the distance from the distal end. The proximal end of the third metatarsal separates the second and fourth ones by 5 mm on the flexor surface. The shaft of the third metatarsal thins at midshaft, as in *Tochisaurus* (Kurzanov and Osmólska 1991), *Troodon* (Wilson and Currie 1985), and other troodontids, and only a 1 mm width can be seen between the second and fourth metatarsals on the right foot (Fig. 10A) for most of its height. Although it has been reported that Metatarsals II and IV contact each other along the flexor surface in *Tochisaurus* (Kurzanov and Osmólska 1991), this does not seem to have happened in *Sinornithoides*. The fourth metatarsal is more powerfully built, with cross-sectional dimensions of 5.3 by 8.6 mm at midshaft.

Metatarsal III has the tongue-like extension of the distal articulation typical of other troodontids, although it is not as well-developed as in Late Cretaceous genera (Russell and Dong 1993). Unlike other troodontids, the tongue-like extension has a shallow concave trough separating the articular surface into medial and lateral ridges, and the proximal outline is indented in posterior view (Fig. 10F). Surprisingly, there is also a tongue-like extension of the medial articular surface of the distal end of the fourth metatarsal. Such a process is present but not as well developed in other troodontids, including *Troodon* (TMP 92.36.575) and *Sinornithoides* (Currie and Peng 1993). Its surface seems to be continuous with that of the tongue-like process of the distal articulation of the third metatarsal. It demonstrates that troodontids were able to flex their third and fourth pedal digits to a much greater extent than all other theropods with the possible exception of dromaeosaurids.

The proximal end of the split-like fifth metatarsal protrudes above the other metatarsals and the distal tarsals, presumably to contact the astragalus and calcaneum. Compared with *Troodon* (TMP 92.36.575), where the ratio of the length of mtVIII to III is 0.30, that of *Sinornithoides* is higher (0.38). This is apparently not a juvenile characteristic, because the ratio is only 0.20 in a juvenile specimen of *Saurornithoides* (Currie and Peng 1993). The fifth metatarsal is 3.2 mm wide at the proximal end, but rapidly tapers to only 1.3 mm at midshaft and to a point distally. As in other troodontids (Currie and Peng 1993), it is gently arched posteriorly and only contacts the fourth metatarsal with its proximal and distal ends.

As in other troodontids, the first digit is positioned equally on the medial and posterior surfaces close to the end of the second metatarsal. It is relatively short, only about a quarter of the length of the third digit. As in most coelurosau rs, other than dromaeosaurids and tyrannosaurs, it is even shorter than the first phalanx of the third digit. There is a typical troodontid raptorial second digit (Currie and Peng 1993), in which the first phalanx is longer than the second and is almost as long as the third. The second phalanx has a proximoventral extension (heel) that is characteristic of all troodontids. In both articulated feet, the second digit is raised so that it angles about 145 degrees from the longitudinal axis of the first phalanx (Fig. 10B). Although this suggests that the raptorial claw was normally raised off the ground, the angle is less than in other troodontids and dromaeosaurids, where it is often less than 90 degrees (Currie and Peng 1993). It is possible that the raptorial function of this claw had not evolved as far from the ancestral condition. The ungual is more strongly curved than the unguals of the other digits (Fig. 10B) and is similar in development to all other troodontids, except *Borogovia*. The fourth digit is almost 90% the length of the third, emphasizing the important role of the fourth digit in locomotion.

Troodontid material from Iren Dabasu

Isolated bones (AMNH 21751, AMNH 21772, IVPP 230790-16) from Iren Dabasu show that the fauna included a troodontid of about the same size as *Saurornithoides mongoliensis*. AMNH 21772 is the proximal end of a second metatarsal. It is identified as a troodontid on the basis of its contact surface for the fourth metatarsal, its size, and especially its lateromedial compression. The tongue-like posterior extension of the distal articular surface for phalanx III-1 is highly characteristic of advanced troodontids (Wilson and Currie 1985) and is clearly seen in both third metatarsal fragments numbered AMNH 21751. These two distal ends
Fig. 10. *Sinornithoides youngi*, IVPP V9612. Posterior view of left metatarsus (A), left pedal digits (B) in medial aspect, right metatarsal I in ventral view (C), left metatarsal I in ventral (D) and medial (E) aspects, and posterior view of the distal end of left metatarsal III (F).
of third metatarsals are about the same size and represent left and right elements. Although they may represent the same individual, the two fossils are different colours, which suggests they may not have been found together. As previously stated, Sinornithoides has the distinctive troodontid, tongue-like extension of the distal articulation of the third metatarsal. However, it retains a shallow longitudinal groove, which is presumably a remnant of the deep groove separating the two articulating ridges that extend from the distal articulation in non-troodontid theropods. In contrast, the tongue-like extensions of the third metatarsals from Iren Dabasu are flat like those of Troodon (Wilson and Currie 1985), Borogovia (Osmólska 1987; Osmólska and Barsbold 1990), and Tochisaurus (Kurzanov and Osmólska 1991). Curiously, the only described specimen of Sauornithoides with the distal end of the third metatarsal (Currie and Peng 1993) lacks the tongue-like articular surface, presumably because it is a juvenile. The Iren Dabasu troodontid, therefore, cannot be identified further without additional material, although it does seem to be an advanced representative of the family.

Discussion

Holtz et al. (2000) discuss the possibility that troodontids are herbivorous, because the size of their serrations scale with herbivorous dinosaurs rather than other carnivores. In spite of their arguments to the contrary, troodontids clearly have anatomy consistent with carnivorous, not herbivorous, habits. Furthermore, the structure of individual denticles (Currie 1987a; Currie et al. 1990) is not significantly different from that of other theropods. They are distally curved towards the tip of the tooth, sharply pointed, have razor-sharp enamel ridges between successive denticles, and have blood grooves at the base. These characters are not found in the herbivorous dinosaur serrations, which are overall simpler cones. Furthermore, the discovery of troodontid teeth with juvenile hadrosaurs (Ryan et al. 2000) is suggestive of a predator–prey association.

Norell et al. (2000) recently examined the interrelationships of troodontids and determined that the Late Cretaceous Byronosaurus, Troodon, and Sauornithoides form a clade, which has Sinornithoides as a sister taxon. An unnamed Early Cretaceous troodontid species (GIN 100/44, Barsbold et al. 1987) seems to be the sister taxon of all of these genera. Borogovia (Osmólska 1987), Koparion (Chure 1994), and Tochisaurus (Kurzanov and Osmólska 1991) were not included in their study because of problems associated with the incompleteness of the only known specimens. Their analysis was thorough, and the new information on Sinornithoides does not offer any substantial changes to our understanding of the interrelationships of the Troodontidae. However, there is sufficient confusion about the systematic relationships of troodontids to ornithomimids, dromaeosaurids, birds, and other theropods (Russell and Dong 1993; Sereno 1997) to merit further analysis. In recent years, troodontids have been allied most frequently with either ornithomimids (Thulborn 1984; Currie 1985; Pérez-Moreno et al. 1994; Holtz 1994, 1996) or dromaeosaurids (Russell 1969; Ostrom 1969; Gauthier 1986; Osmólska and Barsbold 1990; Makovicky and Sues 1998). Holtz (2000) found it equally parsimonious to include troodontids as either a paravian maniraptoran (related to dromaeosaurids and birds) or a bullatosaurian arctometatarsalian (related to ornithomimosaurs). Troodontids have also been considered by some (Currie 1985, 1987a; Forster et al. 1998) as the closest sister group to birds, although most workers (including Holtz 2000) feel that dromaeosaurids are closer to birds than troodontids.

The holotype of Sinornithoides youngi is the single best troodontid specimen known. This Lower Cretaceous form has all of the autapomorphies expected of the family Troodontidae, although some of these features are not as fully developed as in Late Cretaceous troodontids. For example, the serrations on teeth are enlarged in comparison with those of most other theropods, but not to the degree that they are in Troodon or Sauornithoides. Troodontidae can be defined by many autapomorphic characters that suggest they had a long independent history that preceded the Early Cretaceous. These include the distinctive teeth with their large serrations and constrictions between crown and root, the loss of interdental plates in the dentary, the implantation of the posterior dentary teeth in a paradental groove rather than sockets, the trochanteric crest of the femur, fusion of the astragalus and calcaneum, the relatively short and mediolaterally compressed shaft of Metatarsal II, and the tongue-like extension of the distal articular surface of the third metatarsal.

Acknowledgments

We would like to thank Drs. Eugene Gaffney and Mark Norell for access to Sauornithoides material at the American Museum of Natural History. Dr. Ken Carpenter (Denver Museum of Natural History) was kind enough to provide a cast of the pelvic region of the Sauornithoides holotype. Linda Strong-Watson (from the former Ex Terra Foundation of Edmonton, Alberta), Dr. Dale Russell (North Carolina State University, Raleigh), and Dr. Yoichi Azuma (Fukui Prefectural Dinosaur Museum, Katsuyama, Japan) helped the first author access the Sinornithoides specimen as it traveled around the world in various displays. The text benefited from reviews by Mark Norell (AMNH) and David Varricchio (MOR). Richelle Humphries (Foothills Hospital, Calgary, Alberta) CT-scanned the specimen, and Dr. Stephen Godfrey (Calvert Marine Museum, Solomons, Maryland), Dr. Hans Larsson (Yale University, New Haven, Connecticut), and Arthur Andersen (Virtual Surfaces, Inc., Mt. Prospect, Illinois) produced the rapid prototype. Support for aspects of this work from the Natural Sciences and Engineering Research Council of Canada (203091–98) is gratefully acknowledged.

References

© 2001 NRC Canada

Makovicky, P.J. 1995. Phylogenetic aspects of the vertebral morphology of Coelurosauria (Dinosauria: Theropoda). MSc. thesis, University of Copenhagen, Faculty of Natural Sciences, Copenhagen, Denmark.

Ostrom, J.H. 1969. Osteology of Deinonychus antirrhopus, an

© 2001 NRC Canada