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A renaissance in the study of fossil footprints has been driven by a multitude of discoveries and the realization that
vertebrate ichnology makes important contributions to our understanding of terrestrial vertebrates. More striking is
the insight the track record gives us into bias and incompleteness in the vertebrate fossil record.

We recognize that the fossil record, especially that of terrestrial
vertebrates, is incomplete, but is it as incomplete as we assume? A
huge tetrapod track record ®lls many gaps in our knowledge of the
distribution of fossil vertebrates1±4, and research into tetrapod ichnology
has contributed to a range of palaeontological subdisciplines. Ichnology
has generated its own extensive database, which complements the
skeletal record in some cases but offers new insights in others. The
data point to biases and gaps in the tetrapod fossil record4,5.

De®ning and rede®ning the track record
What do tracks tell us about the fossil record? To answer this
question effectively, we must rede®ne our understanding of the
track record, evaluate what we have learned, and identify problems
that still lie ahead. In the wake of the dinosaur renaissance6, the ®eld
of vertebrate ichnology has grown rapidly. Great progress has been
made in documentation of numerous track sites on all continents1±4

and in understanding tracks as essential for correct reconstructions
of posture and gait7,8. Ichnologists have also asked new questions
about the usefulness of tracks for palaeoecological and biostrati-
graphical research, and shown that tracks help us to understand and
measure bias in the body fossil record5.

Despite commanding attention early in the nineteenth
century9,10, vertebrate ichnology failed to mature until recently,
leading to the perception that tracks are rare and of limited utility.
As recently as 1962, only about 27 discrete dinosaur footprint
localities were known worldwide11. Now the number is more than
300 for the western USA4, with comparable numbers from elsewhere
in the world1,10,12±16. Fossil footprints are found abundantly in strata
from the Carboniferous period to the Holocene epoch, and occur in
almost all terrestrial sedimentary deposits4. Consequently, tetrapod
ichnology has the potential to yield large samples5,15. It is well known
that many Palaeozoic red beds are track-rich and bone-poor17. The
Mesozoic stages of the western USA provide an even better example
of the magnitude of track samples. There are at least three `dinosaur
freeways' from the Jurassic and Cretaceous stages of this region3,4.
These are regionally extensive surfaces, or thin stratigraphic units, of
area 1,000±10,000 km2. Dinosaur track densities average about 1
million per km2 (1 per m2) and densities in excess of 100 tracks per
m2 have been reported for birds and other small tetrapods. In the
temporal dimension, many track-bearing layers occur with a
frequency as high as two per metre in sections measuring hundreds
of metres in thickness3,4,15.

The Jurassic System of the western USA is a good example of such
track abundance. More than 200 track sites have been reported from
seven well-known stratigraphic units (Fig. 1). Three of these units
contain no skeletal remains and two have only a very sparse skeletal
fauna. Allowing for an average of ten individual trackways per track
site, our total sample is about 2,000. Even after extracting non-
dinosaurian footprints, such a ®gure compares favourably with the
total of generically determined dinosaur individuals (about 2,000)
recovered from the entire Mesozoic stage worldwide18,19.

Tracks are traditionally seen as useful for demonstrating verte-
brate presence and activity where skeletal remains are absent. This
bone-centred view is inherited from students of body fossils,
looking at ichnology as a possible means of addressing speci®c

questions unanswered by the skeletal evidence. Now that vertebrate
ichnology has matured it poses its own empirically derived
questions20. From a track-centred viewpoint we appreciate better20

that, in most cases, footprints are fundamentally different from
skeletal evidence (Box 1).

Preservation problems and progress
An obstacle to the use of some tracks and trackways is their
incompleteness, which may result from several factors. True tracks
(those made on the actual surface available for ichnological study)
may be incomplete if the substrate was too soft, too ®rm or too
variable. Track depth can determine the number of digit impres-
sions preserved1±3: thus, tracks may include fewer digits than the
maximum number preserved under optimal conditions. Track-
makers may also overprint their front footprints with their hind
footprints, giving rise to the concept of primary, secondary or tertiary
overlap21 and the potential for quadrupeds to appear bipedal22.

Some footprints are transmitted into underlayers as underprints
or ghost prints2,3, which may not re¯ect the precise anatomy of the
trackmaker's foot. Experiments duplicate and describe accurately
the range of morphological variation found in the subfossil record
and show the relationship of variation to substrate type23.

Despite views to the contrary24, we are now reaching a consensus
that ichnotaxonomic names should be assigned only to well-preserved
tracks that re¯ect the morphology of the trackmaker17,18. This does not,
however, imply that we must know the identity of the trackmaker.

Careful description of the three-dimensional morphology and
sedimentological context of tracks should be encouraged, to estab-
lish the palaeoenvironmental setting of tracks. Sedimentologists
have yet to take full advantage of what vertebrate ichnology can
teach about the palaeoenvironment. Exceptions are Nadon and
Issler25, who use dinosaur tracks as `̀ palaeopenetrometers'' (tools
for measuring compaction in ¯oodplain sediments).

What can be learned from tracks?
Studies of locomotion based on tracks precipitated a revival of
tetrapod ichnology with a debate over the speeds attained by
dinosaurs26. Estimates of rapid progression of large dinosaurs
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Figure 1 About 200 Jurassic track sites have been recorded in a small part of the

western United States (mainly eastern Utah and Colorado), most during the last

decade. At an estimated ten trackways per site, the total trackway sample is

,2,000 individuals.
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were proposed in support of the idea that dinosaurs were warm-
blooded, and athletic27,28. However, there is little evidence for high-
speed progression except among small- and medium-sized bipeds
(mainly theropods)2,29. Ichnology has also forced debate about
ceratopsian posture and locomotion, by showing that forelimbs
were not placed as far from the midline as suggested by many
reconstructions7. The use of footprints has also settled a debate
about pterosaur locomotion by showing that they progressed
quadrupedally on land8,30,31.

A synthesis of all known brontosaur trackways (.400) reveals a
pronounced shift from mixed gauge (narrow and wide) to predomi-
nantly wide gauge at the end of the Jurassic period15, presumably
re¯ecting a major trend in sauropod evolutionÐthat is, the rise of the
brachiosaurids and titanosaurids. Another unexpected result is the
recognition of considerable variation in heteropody (manus:pes foot
area ratios vary from 1:5 to 1:2)15. Large manus sauropod trackways
from the Upper Cretaceous have been identi®ed as titanosaurid
simply because they were the only family extant at that time. Such
biostratigraphic processes of elimination, in combination with evi-

dence of gauge, heteropody and palaeobiogeography, help to differ-
entiate the trackways of other sauropod families.

It is becoming clear that manus tracks of large Cretaceous ornitho-
pods are variable, ranging from oval4 to bilobed32 and V-shaped33.
Such variation justi®es the recognition of different ichnotaxa and
increases the potential to differentiate between trackmakers at pro-
gressively lower taxonomic levels. In the absence of foot bones,
sophisticated analyses of limb elements may be required to determine
whether mammals were digitigrade or plantigrade34, whereas tracks
can distinguish these and unguligrade types unequivocally.

Megalosaurid tracks in Late Jurassic deposits from North
America, Europe and Asia offer insight into a family that is
poorly known from osteological remains16. The footprints are the
largest theropod tracks known from the Jurassic period (up to 70 cm
in length) and show that the megalosaurids moved with a short step
and primitive gait (wide trackway and low pace angulation; Fig. 2)35.
Osteological evidence con®rms that megalosaurs were primitive,
and long-bodied, with relatively short, bandy legs36.

Ichnology is also useful in study of social behaviour3,4,37. It is now
known that large herbivorous dinosaurs (especially brontosaurs and
ornithopods) often travelled in herds, and that both groups
acquired gregarious tendencies early in their history. From study
of trackway samples of up to 80 or more individuals, we know that
such herds were sometimes segregated into distinct age or size
classes4,37. Claims that brontosaurs are represented in the fossil
record by a huge preponderance of adults apply only to skeletal
remains. Many large footprint samples, from continental palaeoen-
vironments, are dominated by the tracks of juveniles15. Small
sauropod tracks from island archipelago palaeoenvironments, how-
ever, may indicate the presence of dwarfed populations38.

As tracks are found in situ, they offer palaeoecological insight into
trackmaker±habitat relationships. Recurrent associations between
particular track assemblages and sedimentary facies allow recogni-
tion of distinct tetrapod ichnofacies39. The most striking example is
perhaps the recurrent association of synapsid and arthropod (ara-
chnid/scorpion) tracks in sand dune facies throughout much of the
Permian, Triassic and Early Jurassic in North and South America
and Europe. In contrast, non-eolian facies exhibit entirely different,
and more diverse, tetrapod track assemblages. Our understanding
of the palaeoecology of such Jurassic units as the Wingate, Navajo,
Carmel and Summerville (Fig. 1) is based almost exclusively on
footprints. There are also examples of lacustrine and lagoonal
ichnofacies dominated by swim-tracks attributed to amphibians,
turtles40 and pterosaurs41.

There is a statistical correlation between brontosaur tracks and
low-latitude, carbonate-evaporite substrates15, which is relevant to
debates about sauropod metabolism and biogeography. In contrast,
large Mesozoic ornithopods are associated with plant-rich, coal-
bearing facies indicative of humid, well-vegetated habitats3. Such
ichnofacies distribution patterns are empirically derived, repeatable
results that describe the composition of the track record. Similarly,
in the Triassic of North America, for example, the body fossil record
is dominated by aquatic vertebrates with sparse representation of
terrestrial faunas. The track record, however, compensates for this
bias with good representation of terrestrial tetrapods4,5.
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Box 1 The anatomy and naming of tracks

Do footprints mirror the morphology of foot skeletons? Do foot skeletons

even exist to match footprints? Consider the example of a probable

Tyrannosaurus rex print. At 85 cm in length, this track is the largest

theropod track known63. It reveals a ¯eshy, well-padded foot, as expected

for a 6- or 7-tonne animal, but the foot skeleton (digits II±IV) does not ®t the

outline of the track perfectly; it occupies only a small part of the cross-

sectional area of the foot, as is the case in many large animals (see ®gure).

For example, the reconstructed foot skeleton of a rhinoceros64 or elephant

indicates a digitigrade or unguligrade animal34 but is of little use in

predicting footprint morphology without the large ¯eshy portion of the

foot being available. In general, the larger the trackmaker, the ¯eshier the

foot, and the greater the morphological difference between the footprint

and the foot skeleton. This observation is fundamental in justifying the

use of ichnotaxonomy for naming well-preserved footprint morphologies.

Where footprints are known without corresponding body fossil remains,

as was the case for the `hand animal' Chirotherium from 1835±1965 (ref.

52), the use of ichnotaxonomy is crucial.

The conclusion that tracks are different from foot skeletons might

suggest limited potential for correlating extinct trackmakers and tracks,

but two methods exist for making such correlations. The ®rst involves

trying to ®ll the gap by reconstructing the ¯eshy part of the foot, starting

with either the skeleton or the track. Although many dinosaurs and other

vertebrates have been `¯eshed out'27, there have been no serious

attempts to reconstruct feet either from the track up or from the foot

skeleton down. The second approach involves the simple process of

elimination, that is, matching tracks with trackmakers of the same size

and geological age. M

Footprint morphology is not a simple re¯ection of foot skeletons with thin

skin, as footprints of large dinosaurs such as Hadrosaurus (left) and

Tyrannosaurus (right) show. Flesh and padding (grey areas) surround the

bone. (Hallux restoration is omitted for clarity.)
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Figure 2 This trackway of a megalosaurid (Megalosauripus) from the Late

Jurassic stage of Turkmenistan is unique among theropod trackways in its

irregularity and width of gauge, indicative of a primitive style of locomotion35.
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Calibrating the fossil record
Vertebrate tracks have de®nable distributions in space and time.
Their potentially large geographic range, especially pertinent when
considering birds and pterosaurs, makes them useful for biostrati-
graphy. For example, the large bird track Magnoavipes from the
Lower Cenomanian of Texas42 is also known from deposits of the
same age in Israel43. The subdiscipline of ancient track stratigraphy
(palichnostratigraphy), ®rst introduced in the context of wide-
ranging Pangaean (Permo/Triassic/Early Jurassic) faunas44, can
now be extended to the Middle and Late Jurassic35,45. Such correla-
tions show widespread interchange of species between Europe and
Eurasia after the break up of Pangaea. No such explicit (stage level)
Middle or Upper Jurassic correlations have been made on the basis
of dinosaur skeletal remains (Fig. 3 and Box 2).

Ichnology has also provided insight into the origin, evolution and
extinction of several major groups and behaviours. Trackways have
been used to suggest that the ®rst tetrapods walked on land at about
the time of the Silurian/Devonian transition, as much as 30±40
million years before the appearance of the oldest known skeletal
remains46,47, although this interpretation has been challenged48.
Because tracks are in situ they assume added importance in the
debate about whether tetrapod `walking' originated in fresh or salt
water49. Although not now regarded as tetrapod in origin, there is a
Carboniferous acme zone of giant myriapod trails attributed to
Arthropleura50. Spiral burrows and digging traces also attest to the
Permian origin of den-making activity of synapsids51.

In many areas we know more about Triassic archosaurian
diversi®cation from famous Chirotherium and Chirotherium-like
tracks than we do from bones44,52,53. Preliminary studies of Mesozoic
bird tracks indicate a large-scale radiation of shorebirds in the early
and mid Cretaceous as much as 40 million years before the
appearance of skeletal remains of a postulated Charadriform
ancestor in the Late Cretaceous43,54. Discovery of pterosaur track
sites points to a Jurassic ichnological acme zone in association with
marginal marine habitats and a preference of pterosaurs for terrestrial,
lacustrine habitats in the Cretaceous43 (Fig. 4).

There are also abundant tracks of hadrosaurs and ceratopsians, in
what was previously de®ned as a 3-m gap below the Cretaceous/
Tertiary (K/T) boundary. The gap is now reduced to a maximum of
37 cm (refs 3, 4), solving the debate about whether dinosaurs went
extinct long before, or in conjunction with, the K/T transition.

The Tertiary and Quaternary track record, for example the diverse
avian ichnofauna of the Swiss Oligocene/Miocene55, also improves

our understanding of the palaeobiology of birds and mammals. The
mammal-dominated, Pliocene australopithecine footprint site at
Laeotoli56 pushed back the con®rmed origins of hominid bipedal-
ism from 3.0 to at least 3.6 million years57, and provided evidence of
a social group in which a juvenile was travelling with two adults58.
Late Pleistocene (Palaeolithic) hominid tracks from cave sites show
a predominance of juveniles, without signi®cant incidence of foot
deformities, in association with bear, hyaena and (rare) fox tracks59.
In contrast, outdoor Mesolithic60 and Neolithic61 sites contain more
adult tracks, with higher incidence of foot abnormalities, in asso-
ciation with auroch, deer, unshod horse and bird footprints61. The
use of the term `trace fossil' for several categories of butcher cut
marks on bone62 signi®cantly broadens our concept of hominid
ichnology.
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been demonstrated, at this time, using dinosaur body fossils.

Box 2 Globe-trotting dinosaurs

The distinctive Middle Jurassic track Carmelopodus from the Bathonian of

Utah reveals the existence of a previously unknown species, with a short

metatarsal IV, that also made tracks in Bathonian deposits in England45.

The enigmatic track Ravatichnus has been correlated from Asia to Europe

(Fig. 3)35. Similarly, large `megalosaur' tracks (Megalosauripus) occur at

the Oxfordian/Kimmeridgian (Upper Jurassic) transition in Utah, Arizona,

New Mexico, Oklahoma, Portugal, Uzbekistan and Turkmenistan (Fig. 2)35.

Another distinctive dinosaur track type (Therangospodus) occurs in many

of these samples35 (Fig. 3). Dinehichnus is also correlated between North

America and Europe65. Such stage-level correlations exceed the resolu-

tion of only three land-vertebrate ages spanning 50 Myr66. Track correla-

tions tie footprint zones to stages with a duration of about 7Myr each, and

are as precise as any durations proposed for dinosaur skeletal taxa19.
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Bias and completeness in the fossil record
Ichnology cannot solve the common taphonomic problem of
missing foot skeletons entirely. The perception that vertebrate
palaeontologists are waiting for ichnologists to ®nd footprints to
match their small sample of foot bonesÐwhat I call the `Cinderella'
syndromeÐis largely unjusti®ed. Often it is tetrapod ichnologists
who are waiting for palaeontologists to ®nd foot bones to ®t into
their large sample of tracks (an `overstocked shoe shop' syndrome).
This is because it is the feet that are missing from so many taxa as a
result of taphonomic loss. Viewed from this perspective, the
ichnological community has already found much of the `missing'
foot evidence and is establishing its own database. For example, the
aforementioned Neolithic track site has yielded more than 150
hominid trackways, differentiated into males, females and
children61. A comparable cache of skeletal remains would be
considered quite exceptional.

So vertebrate ichnology is rapidly coming of age. Although
vertebrate ichnology does not lend itself easily to the study of
relationships through cladistic analysis, the ®eld is highly consistent
in comparing foot (manus and pes) morphology from taxon to
taxon. This is not always true in the systematic study of bones, as the
large number of invalid taxa, based on diverse undiagnostic
elements, shows. Although there are many invalid track taxa also,
there is a trend towards caution in ichnotaxonomy.

At a time when palaeontology has been aided by revolutions in
such subdisciplines as molecular palaeontology and cladistics, the
study of tetrapod tracks has also grown steadily and undergone its
®rst true renaissance since its inception more than 150 years
ago1±4,9,10. This has largely been due to an increase in the discovery
and documentation of new sites. This empirically derived database
helps us de®ne and measure spatial and temporal incompleteness in
the skeletal record of terrestrial vertebrates. Thus, we can focus on
which parts of the fossil record must be described ichnologically,
osteologically or by both methods. This holistic view shows that
many questions about foot morphology, posture, locomotion,
behaviour, terrestrial vertebrate palaeoecology, stratigraphy and
information biases cannot be fully understood without considera-
tion of the data encoded in the track record. M
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