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Abstract

Sequence stratigraphy in deeper water, epicontinental carbonates such as in the Upper Jurassic of southern Germany is

difficult because the recognition of parasequences, sequences and sequence boundaries is impeded by the paucity in diagnostic

sedimentological criteria or stratal surfaces. Using the bgenetic stratigraphicQ approach, and integrating facies, stable isotope (C,

O) and palynofacies analysis two types of genetic depositional sequences can be discriminated: small-scale sequences are

stacked into medium-scale sequences which may record a 400 kyr Milankovitch signal. The medium-scale sequences were

correlated regionally using both gamma-ray logs and stable isotope records. Regional correlations show that the depocentres are

controlled by underlying palaeotectonic elements (Late Palaeozoic troughs).

The rise/fall turnarounds of medium-scale sequences are marked by negative y18O peaks (temperature maxima) and reduced

absolute palynoclast contents.

The fall/rise turnarounds are marked by positive y18O peaks (temperature minima) and high absolute palynoclast contents.

The initiation and termination of sponge/microbial mounds show characteristic patterns: thrombolitic microbialites form during

intervals of (1) reduced input of terrestrial palynomorphs interpreted as an increase in distality, (2) decreasing y13C trends

interpreted to be related to decreasing nutrient supply and (3) decreasing y18O values interpreted as phases of warming and

rising relative sea-level. In contrast, thrombolitic/stromatolitic microbialites were found to occur during phases of (1) increasing

input of terrestrial palynomorphs interpreted as an increase in proximality, (2) increasing y13C values interpreted to reflect

increasing terrestrial input and nutrient supply as well as increasing y18O values (interpreted as phases of cooling and relative
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sea-level falls). Isotopic and palynofacies evidence suggests that bioherms were terminated by sudden input of nutrients during

relative sea-level falls.

Sedimentological criteria were clearly not sufficient to delineate a robust sequence stratigraphic framework.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Deeper ramp, epeiric carbonates, deposited below

and up to storm wave base such as the Upper

Jurassic of southern Germany are relatively uniform

in lithological character (Pawellek and Aigner,

2003b). These deposits are poor in diagnostic

sedimentological criteria commonly used for the

identification of sequence boundaries or maximum

flooding surfaces. Thus, when applying classical

sequence stratigraphic methods, sequence boundaries

are difficult to delineate. This paper attempts to

document sequence stratigraphic patterns character-

istic for deeper ramp carbonates. Facies, sequence,

stable isotope and palynofacies analysis were inte-

grated, resulting in an improved understanding of

depositional processes and palaeoenvironmental

changes.
2. Geological framework

The Upper Jurassic of southern Germany is

subdivided by a well-defined framework of lithostra-

tigraphy (Quenstedt, 1858; Gygi, 2000a,b), biostratig-

raphy (Hantzpergue et al., 1998; Gygi, 2000a,b;

Schweigert, 2000; Baier and Schweigert, 2001) and

sequence stratigraphy (Hardenbol et al., 1998; Shar-

land et al., 2001; Taylor et al., 2001; Colombié, 2002;

Hug, 2003; Pawellek and Aigner, 2003a). This study

covers the Late Jurassic Transversarium to Pseudo-

mutabilis (lower part) ammonite zones (Fig. 1). In the

submediterranean realm the Pseudomutabilis zone

covers the same time interval as the Eudoxus zone.

However, according to Baier and Schweigert (2001),

the top of the Eudoxus zone in southern Germany

does not correspond to the top of the Eudoxus zone in

Great Britain and France. Instead, the uppermost part

of the British and French Eudoxus zone correlates
with the lower part of the Tethyan/submediterranean

Beckeri zone. To avoid confusion, Baier and Schwei-

gert (2001) suggest to replace the term Eudoxus zone

by Pseudomutabilis zone in the Tethyan/submediter-

ranean realm.

The lithostratigraphic subdivision for southern

Germany dating back to Quenstedt (1858) is used

here because it proved to be very practicable in

outcrop, core and gamma-ray log analysis. Fur-

thermore in the Swabian Basin the lithostrati-

graphic boundaries defined by Quenstedt (1858)

correlate with biostratigraphic boundaries (Schwei-

gert, personal communication 2004). To achieve the

best fit between lithostratigraphic and biostrati-

graphic zonations Schweigert (personal communi-

cation, 2004) suggests to use the Mutabilis zone

instead of the Acanthicum zone as the Mutabilis

zone is more sharply defined. The Divisum and

Mutabilis zones cover a time-span of about 1.1 Ma

(Hardenbol et al., 1998; Fig. 1). This time-span

was used to determine the duration of the identified

sequences.

During the Late Jurassic, the study area was

located in the deeper part of a gently inclined

carbonate ramp, below and up to storm wave base

(Pawellek and Aigner, 2003b). It was inundated by

an epicontinental shelf sea marginal to the Tethys

Ocean in the South (Meyer and Schmidt-Kaler, 1989;

Ziegler, 1990). Towards the North, it was separated

from the boreal realm by the Rhenish and the

London–Brabant Massifs. Two shallow-water plat-

forms flanked the study area: the Swiss Platform in

the Southwest and the Franconian Platform in the

East (Fig. 2). Between these two platforms the more

basinal Swabian facies developed. The Swabian

realm is characterized by two main lithofacies types:

(1) well-bedded limestones alternating with marls and

(2) sponge–microbial bioherms or mounds (Gwinner,

1976; Ziegler, 1977). Clastic input was mainly
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Fig. 1. Stratigraphic subdivision of the Upper Jurassic. The ammonite zonation according to Leinfelder (1993), Schweigert (2000) and Baier and

Schweigert (2001) applies in the study area. However, the lithostratigraphic subdivision for southern Germany after Quenstedt (1858) is used in

this study because it is very practicable in outcrop, core and gamma-ray log analysis and correlates with biostratigraphy (Schweigert, personal

communication, 2004).
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derived from the North (Gygi, 1986), probably from

the Rhenish Massif (Meyer and Schmidt-Kaler,

1989). At least part of the carbonate mud deposited

in the study area is supposed to be imported from the

Swiss Platform (Pittet and Strasser, 1998; Pittet et al.,

2000).
3. Material and methods

3.1. Sedimentology

This study is based on data from 97 sections (3

outcrops, 7 borehole cores, 3 outcrop gamma-ray



Fig. 2. Palaeogeography of southern Germany during the White Jurassic alpha (Upper Oxfordian) according to Meyer and Schmidt-Kaler (1989,

1990) and Gygi (1990). The study area is located in the Swabian Basin which is dominated by marly sediments (Swabian Facies). The Swabian

basin is located in the deeper part of a gently inclined carbonate ramp marginal to the Tethys Ocean in the South. To the SW and the NE the

Swabian Basin is bounded by two shallower water platforms: the Swiss platform and the Franconian platform. Clastic input was mainly derived

from the Rhenish Massif in the North (Gygi, 1986; Meyer and Schmidt-Kaler, 1989).
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logs and 91 borehole gamma-ray logs) in southern

Germany and northern Switzerland (Fig. 3). Seven

borehole cores and three outcrops were logged in

detail. All cores were cut to allow continuous and

semiquantitative logging. Microfacies analysis was

carried out on 790 polished slabs and acetate

peels. Out of this large database, the present paper

has a particular focus on two borehole cores

(Ro7324/B2 Auendorf and Ro7324/B3 Tqrkheim)

and one outcrop (Plettenberg quarry; for locations

see Fig. 3).
For gamma-ray log correlation 91 well logs and 3

outcrop gamma-ray logs were used. All gamma-ray

measurements were recorded as counts per second

(cps). The correlations were done by tracing character-

istic successions of gamma-ray peaks. A prominent

marker bed, the so-called bGlaukonitbankQ, was chosen
as datum for gamma-ray log correlation because it is

regionally well traceable and considered to be isochro-

nous within the limits of biostratigraphic resolution.

The gamma-ray characteristics of the Glaukonitbank

are well defined by a typical succession of peaks.
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Fig. 3. Study area and database. 97 sections (borehole cores, outcrops and gamma-ray logs) were analysed in this study.
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Gamma-ray logs are valuable tools for tracing

litho-, sequence- and biostratigraphic boundaries

(Taylor and Sellwood, 2002; Ruf and Aigner, 2004).

In this study the gamma-ray logs were calibrated at

litho- and biostratigraphic boundaries recognized in

cores and correlated regionally. In this way a frame-

work of time lines was established.

To discriminate marlstone from limestone in the

gamma-ray log, the logs were normalized and core

calibrated. A cut-off was set at 60% between the

lowest and the highest gamma-ray peak. Peaks higher

than 60% were regarded to represent marlstones,

peaks lower than 60% limestones.

3.2. Stable isotope geochemistry

442 bulk rock samples were taken for stable

isotope analysis of carbon and oxygen. Diagenetically

not altered micrite areas were selected and powdered

using an agate mill. After reacting the powder at 70 8C
with phosphoric acid the isotopic composition of the

resulting CO2 was measured in an automated mode

with a Gasbench II directly connected to a Finnigan

Mat 252 mass spectrometre. All isotopic results are

reported relative to the VPDB standard. The measure-

ment precision is 0.1x for carbon and 0.2x for

oxygen.

3.3. Palynofacies

Samples for palynofacies analysis were taken

from the same rock specimens that were used for

stable isotope analysis. Palynofacies samples were

weighed and then processed using standard palyno-

logical techniques (Wood et al., 1996; Pross, 2001).

100 g of sediment for limestone and 50 g of

sediment for marlstone were processed. In order to

facilitate the calculation of absolute palynoclast

abundance, the sample material was spiked with

Lycopodium spore tablets (Stockmarr, 1971). No

oxidation was applied to the sample material. The

residues were sieved through an 11-Am nylon mesh.

from each sample at least 300 palynoclasts were

counted using a classification scheme based on

Whitaker (1984), Boulter and Riddick (1986), Cole

and Harding (1998) and Waterhouse (1995, 1999).

The error induced during sample preparation, split-

ting and counting is assumed to be lower than 8%.
Since absolute palynoclast abundances per gram bulk

sediment in carbonate-dominated regimes strongly

depend on the dilution by carbonate, a bcarbonate
adjustmentQ was performed for all palynofacies

samples. First, absolute palynoclast abundances per

gram bulk sediment were calculated using the

Lycopodium marker spore method of Stockmarr

(1971). Subsequently, bcarbonate-adjustedQ SOM

(sedimentary organic matter) abundances were calcu-

lated following the equation:

A ¼ N d
100

C
ð1Þ

with A—carbonate-adjusted number of SOM clasts

per gram of sediment, N—number of palynoclasts

per gram of original sediment (including carbonate),

and C—non-carbonate content of the sample in

percent.

The following palynofacies parameters were used

for interpretation: (1) all palynoclasts, (2) terrigenous

palynoclasts (excluding terrigenous palynomorphs),

(3) terrigenous palynomorphs (comprising pollen,

spores, and freshwater algae), (4) marine palyno-

morphs (comprising dinoflagellate cysts, acritarchs,

prasinophytes, other marine algae, and foraminifer test

linings), and (5) degraded debris (representing paly-

noclasts of unknown origin).

Fig. 4 is an example of a datasheet summariz-

ing all available information used for subsequent

interpretation.
4. Results

4.1. Facies analysis

In this study 10 facies types were distinguished

(Table 1). They are grouped into two main

categories:

1. biohermal facies association

2. bedded limestone/marl facies association.

The biohermal facies association comprises:

a) Thrombolite/stromatolite limestones and throm-

bolite limestones: boundstones, mainly consist-
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Lithofacies types

Based on Dunham texture, main components and fabrics ten principal lithofacies types were distinguished (C—clay, M—mudstone, W—Wackestone, P—Packstone, F—Floatstone,
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ing of silicious sponges and microbial throm-

bolitic and thrombolitic/stromatolitic crusts,

forming bioherms with sizes ranging from seve-

ral metres to several tens of metres in width and

height.

b) Micritic sponge limestones and marly sponge

limestones: sponge-rich floatstones, occurring

within sponge-microbial bioherms or inter-bio-

hermal areas.

c) Graded bioherm debris limestones: commonly

graded wacke-, pack- or floatstones, composed

of fragmented sponges and microbial crusts

forming centimetre- to decimetre-thick layers

within bioherms.

d) Tuberoid debris limestones and marly tuberoid

debris limestones: wacke- or packstones, con-

taining abundant sponge and microbial crust

fragments, commonly forming fanlike sheets

extending from sponge–microbial bioherms and

interfingering with basinal facies (Fig. 5).
Sponge/mTuberoid debris
limestone

1m

Sp

Sp

Th

Th

1cm b)

Fig. 5. Example for biohermal facies associations. (a) A small sponge/m

wedges of tuberoid debris limestones extending from the bioherm. (b)

thrombolites and plate-like sponges. (c) Polished slab of tuberoid debris l
The bedded limestone/marl facies association

comprises:

a) Bioclastic debris limestones: wackestones com-

posed of reworked bioclasts and intraclasts,

partly graded.

b) Well-bedded limestones: mudstones, forming

decimetre-thick beds with thin intercalated

marls (Fig. 6).

c) Marls and marly limestones: mostly mudstones

with varying carbonate content.

4.2. Integrated sequence analysis: medium-scale

sequences

The identification of sequences in this study is

based on an integration of evidence derived from

facies, isotope and palynofacies analysis.

Two main types of medium-scale sequences were

distinguished based on rock composition: biohermal
icrobial bioherm Tuberoid debris
limestone

a)

T
T

T

T

1cm c)

icrobial bioherm from Plettenberg quarry is surrounded by fan-like

Polished slab of thrombolite limestone with columnar growing

imestone. Sp—sponge, Th—thrombolite, T—tuberoid.



50 cm a)

Ch

Ch

1cm b)

Fig. 6. Example for limestone/marl facies associations. (a) Well-bedded limestone from Plettenberg quarry. (b) Polished slab of heavily

bioturbated well-bedded limestone. Ch—chondrites.

M. Ruf et al. / Sedimentary Geology 175 (2005) 391–414400
sequences and bedded limestone/marl sequences.

Biohermal sequences are dominated by biohermal

facies associations, bedded limestone/marl sequences

are dominated by bedded limestone/marl facies

associations.

4.2.1. Biohermal sequences

Medium-scale sequences 2 and 3 in Fig. 7 are

typical examples of biohermal medium-scale sequen-

ces. Marls in the basal part are vertically succeeded

by a tuberoid debris limestone. y18O values become

increasingly positive within the tuberoid debris

limestone. This trend correlates with an increase in

absolute abundance of all palynoclast groups, espe-

cially of the terrigenous palynomorphs (medium-

scale sequence 2 in Fig. 7). Above the tuberoid

debris limestone thrombolite limestones developed.

These thrombolite limestones are characterized by an

increasingly negative y18O trend, a decreasing trend

in y13C and decreasing absolute abundance in all

palynofacies parameters. As the thrombolite lime-

stones pass into thrombolite/stromatolite limestones,

y18O and y13C values increase (medium-scale
sequence 3 in Fig. 7). The absolute abundance of

all palynofacies parameters increases upwards and

displays a marked peak just above the thrombolite/

stromatolite limestones. In this study a coupling of

absolute abundance of terrestrial and marine paly-

nomorphs was observed. The high absolute abun-

dance of marine palynomorphs is nearly always

linked with that of terrestrial palynomorphs (Figs. 4,

7 and 9).

4.2.2. Bedded limestone/marl sequences

Bedded limestone/marl sequences are composed of

a variety of limestone facies types (e.g. well-bedded

limestones, bioclast debris limestones or tuberoid

debris limestones) and marls. Medium-scale sequence

1 in Fig. 9 is a typical example for a marl/tuberoid

debris limestone medium-scale sequence.

The base is located within a thick tuberoid debris

limestone. y18O values show a negative peak and the

absolute palynoclast abundance is low. This is

followed by a succession of tuberoid debris lime-

stones and bioclast debris limestones with intercalated

marls. Towards the top of this succession y18O values



Th, S thrombolites, stromatolites

thrombolite limestones and
thrombolite/stromatolite limestones

domal microbial crusts

dendroid microbial crusts

flat microbial crusts

stylolithes

pressure solution seams

marly

fall hemisequence

rise hemisequence

tuberoid debris limestones

sponge limestones

well-bedded limestones and
bioclast debris limestones

marls and marly mudstones

thrombolitic
stromatolitic

thrombolitic

stromatolitic
3

2

1 2 3-5 -3 -1

stable isotopes

sa
m

pl
es

m
ed

iu
m

-s
ca

le
se

qu
en

ce
s

sm
al

l-s
ca

le
se

qu
en

ce
s

δ 18O PDB
[‰]

δ 13C PDB
[‰]

T79

T77

T75
T73

T71

T69

T67
T65

T63
T62

T60
T58

T55

T53
T54

T51
T50

barren barren barren barren barren

C M W P F B

??

??

( )

( )

Th

Th

Th

Th

S

S

(S)

Th

Th
Th S

(S)

(S)Th

Th
Th

(S)Th

d
e

p
th

[m
]

lit
h

o
st

ra
tig

ra
p

h
y

components

lit
h

o
lo

g
y

&
st

ru
ct

u
re

s

microbial
crusts

ty
p

e

a
b

u
n

d
a

n
ce

g
ro

w
th

m
o

d
e

sp
o

n
g

e
s

tu
b

ip
h

yt
e

s

te
re

b
e
lle

s

si
m

p
le

co
m

p
le

x

in
tr

a
cl

a
st

s

tu
b

e
ro

id
sb

io
-

tu
rb

a
tio

n

1000
100000

100
10000

100
10000

100
10000

Dunham-
texture

&
facies

60

65

70

75

80

85

de
lta

ga
m

m
a

b
io

st
ra

tig
ra

p
h

y

1

2
3

de
lta

M
ut

ab
ili

s
P

se
u.

-
m

ut
ab

.
D

iv
is

um

1000
100000

to
ta

lp
al

yn
oc

la
st

s
[p

ar
t./

g
se

d.
]

ca
rb

.a
dj

us
te

d

te
rr

ig
.p

al
yn

oc
la

st
s

[p
ar

t./
g

se
d.

]
ca

rb
.a

dj
us

te
d

te
rr

ig
.p

al
yn

om
or

ph
s

[p
ar

t./
g

se
d.

]
ca

rb
.a

dj
us

te
d

m
ar

in
e

pa
ly

no
m

.
[p

ar
t./

g
se

d.
]

ca
rb

.a
dj

us
te

d

de
gr

ad
ed

de
br

is
[p

ar
t./

g
se

d.
]

ca
rb

.a
dj

us
te

d

Th

(S)Th

Th

Fig. 7. Example for biohermal sequences from well Ro7324/B3 Tqrkheim. Medium-scale sequences are apparent in the trends in the oxygen isotope curve and absolute palynoclast

abundance (black arrows). Increasing y18O values and increasing absolute palynoclast abundance are interpreted as fall hemisequences, decreasing y18O values and decreasing absolute

palynoclast abundance are interpreted as rise hemisequences. Trends in y18O and palynofacies allowed to discriminate small-scale sequences (dotted arrows). Thrombolitic microbialites

form during periods of decreasing absolute palynoclast abundance, decreasing y13C values and decreasing y18O values interpreted as phases of decreasing nutrient input and rising

relative sea-level. Stromatolitic microbialites form during periods of increasing absolute palynoclast abundance, increasing y13C values and increasing y18O values interpreted as phases

of increasing terrestrial input and nutrient supply as well as falling relative sea-level. C—clay, M—mudstone, W—wackestone, P—packstone, F—floatstone, B—boundstone.

M
.
R
u
f
et

a
l.
/
S
ed
im
en
ta
ry

G
eo
lo
g
y
1
7
5
(2
0
0
5
)
3
9
1
–
4
1
4

4
0
1



M. Ruf et al. / Sedimentary Geology 175 (2005) 391–414402
become more positive and the absolute abundance of

palynoclasts increases (Fig. 9). A thick marlstone

covers the debris limestones, passing into a succession

of bioclast debris and tuberoid debris limestones. This

is accompanied by decreasing y18O values and

decreasing absolute palynoclast abundance.

4.3. Correlation

Two correlation approaches were pursued in this

study. Firstly, gamma-ray logs were core calibrated

and correlated regionally to establish time lines within

a frame defined by litho- and biostratigraphy. Sec-

ondly the medium-scale sequences identified in this

study were correlated by means of carbon and oxygen

isotope trends within the time-slices provided by

gamma-ray log correlation.

A correlation of medium-scale sequences using

only the gamma-ray log proved to be problematic as

the turnarounds of medium-scale sequences do not

always correspond to well-defined gamma-ray peaks

but are often located at some point on the rising or

falling part of the gamma-ray curve and are therefore

hard to pick. The reason for that is that the turn-

arounds of medium-scale sequences are picked at

pronounced oxygen isotope and palynoclast peaks and

the sample resolution of isotope and palynofacies data

is considerably lower than that of the gamma-ray logs.

4.3.1. Gamma-ray log correlation

Fig. 10a is a transect from the south-western

margin of the Swabian Basin towards its north-eastern

basin margin (line 1 in Fig. 10b). The sedimentary

packages vary considerably in thickness. The thickest

accumulations are documented in wells 86 to 62,

corresponding to the central part of the Swabian basin.

Towards the basin margins the succession becomes

thinner.

Fig. 10c is a zoom into details of correlation line

1. In a thin stratigraphic interval the behaviour of

individual marlstone packages and their correspond-

ing gamma-ray log response was analysed. Marl-

stone packages thin from SW to NE, i.e. from basin

to basin margin. Packages built by several individual

gamma-ray peaks in the more basinal well 62 are

represented by a reduced number of peaks in the

more marginal wells. The clay content of some

marlstones as represented by the gamma-ray log
response is reduced considerably when approaching

the basin margin.

Assuming similar compaction the marlstone thick-

nesses of the gamma-ray log parts in Fig. 10c were

measured and expressed as percentage of the total

thickness: well 62, 78%; well 28, 67%; well 8, 65%;

well 60, 50% marlstones. This corresponds to a 30%-

difference in marlstone content from basin to basin

margin.

4.3.2. Isotope correlation

Stable isotopes, especially of carbon, are widely

used for high-resolution correlation (Padden et al.,

2002; Herrle et al., 2004). The medium-scale

sequences recognized in this study could also be

correlated by means of carbon and oxygen iso-

topes (Fig. 12). Oxygen isotopes correlate reason-

ably well over distances of more than 100 km.

Carbon isotopes also correlate over short distances,

whereas a high-resolution long-distance correlation

is difficult.
5. Discussion and interpretation

5.1. Facies types

Graded bioherm debris limestones consist of in-situ

reworked biohermal debris and are interpreted as

reworked bioherm surfaces. Reworking probably

occurred during episodic storm events (Pawellek and

Aigner, 2003b).

Graded bioclastic debris limestones were com-

monly observed in more basinal settings and inter-

preted as turbidites (Ricken, 1985; Pawellek and

Aigner, 2002).

Well-bedded limestones, marly limestones and

marls are probably deposits of a low-energy quiet

basinal environment.

5.2. General sequence concept

The classic EXXON sequence stratigraphic

approach is based on the recognition of discrete

surfaces, such as sequence boundaries or maximum

flooding surfaces (Mitchum et al., 1977; Van

Wagoner et al., 1988) allowing the discrimination

of systems tracts. The fundamental units are asym-
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metrical shallowing-upward (regressive) parasequen-

ces (Van Wagoner et al., 1990). In contrast, the

fundamental building blocks recognized in the Upper

Jurassic deeper ramp succession of southern Ger-

many are more or less symmetrical (see also Braun,

1999; Pawellek and Aigner, 2003a). They consist of

both a shallowing-upward (regressive) and a deep-

ening-upward (transgressive) hemisequence. Contacts

between sequences tend to be gradational rather than

being defined by sharp stratal surfaces. Therefore,

this study uses the approach of genetic stratigraphy

as proposed by Wheeler (1964), Sonnenfeld (1996),

Cross and Lessenger (1998) and Homewood et al.

(2000).

Two hierarchies of sequences were distinguished:

small-scale sequences, 3 to 7 m thick, are stacked into

medium-scale sequences, 9 to 20 m thick (Fig. 7). The

small-scale sequences show the same isotope and

palynofacies trends as the medium-scale sequences

(Figs. 7 and 8), but of a lower amplitude. The

recognition of even smaller hierarchies of sequences,

like the lime/marlstone bundles described by Mun-

necke and Westphal (2004) was not possible due to

the sample resolution.

Time estimates for the medium-scale sequences

recognized in this study suggest durations of about

400 kyr/sequence. The Divisum and Mutabilis

ammonite zones cover a timespan of about 1.1 ma

(Hardenbol et al., 1998) and contain 3 medium-scale

sequences. The result is a timespan of roughly 400 kyr

per medium-scale sequence taking into account the

error of chronometric dating. Strasser et al. (2000)

suggested that commonly depositional sequences are

formed by the 400 kyr eccentricity cycle and

controlled by climatically induced sea-level changes.

A link between medium-scale sequences and climatic

(temperature) changes was documented using the

y18O curve (see below).

The recognition of sequences in this study is based

on an integration of facies, isotopic and palynofacies

evidence. Previous studies by Pawellek (2001) and

Pawellek and Aigner (2003a) could only rely on

sedimentological criteria for the definition of

sequence turnarounds, resulting in a different

sequence framework. The multi-proxy approach used

here leads most likely to a more robust sequence

delineation compared to the purely sedimentologic

definition in previous studies.
5.3. Biohermal sequences

Besides facies and palynofacies criteria the oxygen

isotope record is a major proxy used for interpretation

of the sequences recognised in this study.

The oxygen isotope composition of sea water is

influenced by many factors. Besides temperature,

salinity can have a major influence on y18O (Bartolini

et al., 2003). Meteoric water has significantly lower

y18O values than sea water and freshwater input may

therefore be the cause of negative excursions in the

oxygen isotope record.

Comparing the oxygen isotope record with the

palynofacies dataset, it is suggested that freshwater

input into the Swabian Marl Basin from surrounding

land masses is not the main cause for the observed

y18O trends. Intervals of high terrestrial input are

characterised by enhanced absolute abundances of

terrigenous palynoclasts. Instead of having more

negative y18O values as would be expected as a result

of influx of isotopically light freshwater, these

intervals are characterised by a positive excursion in

the oxygen isotope record. Furthermore the Late

Jurassic climate in Europe is dominated by a trend to

increasing aridity from the Oxfordian throughout the

Kimmeridgian (Abbink et al., 2001). General circu-

lation model simulations for the Kimmeridgian also

predict at least seasonally arid conditions in Europe

(Valdes and Sellwood, 1992; Valdes, 1993; Valdes et

al., 1995). Significantly increased runoff over longer

time intervals, which would be necessary to explain

major negative trends in the oxygen isotope record are

therefore not compatible with the climatic boundary

conditions during the Kimmeridgian in central Europe.

Generally, y18O values decrease with increasing

sea water CO3
2� -ion concentration. Decreasing

alkalinity may therefore lead to more negative y18O
(Elderfield et al., 1999).

However, decreasing y18O values were often

observed in intervals characterised by thrombolite-

dominated sponge/microbial bioherm growth (Fig. 7).

According to Kempe et al. (1996) and Wood (2001),

mud mound and microbialite formation are favoured

by high pH. Therefore it can be assumed that

alkalinity was not a major factor controlling the

oxygen isotope signature.

Temperature variations are therefore considered as

the most important factor controlling the y18O signal
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Fig. 8. Biohermal small-scale sequence in outcrop (Plettenberg Quarry). (a) Decreasing y18O and y13C values and decreasing absolute palynoclast

abundance reflect periods of thrombolite development, interpreted as a rise hemisequence. Increasing y18O and y13C values and increasing absolute

palynoclast abundance reflect periods of stromatolite development, interpreted as a fall hemisequence. (b) Thrombolite facies develops in periods

of bioherm expansion, thrombolite/stromatolite facies develops during periods of bioherm retreat. See Fig. 7 for a key to the symbols. C—clay,

M—mudstone, W—wackestone, P—packstone, F—floatstone, B—boundstone.
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and thus the y18O curve is used here as a tool for

estimating relative changes in temperature.

A positive y18O shift is interpreted as a trend

towards cooler water temperatures, whereas a neg-

ative shift is regarded to express a temperature

increase (Epstein et al., 1953; Craig, 1965; Weissert

and Erba, 2004). Cooler climates are often periods

with lower sea-level, warmer climates are often

periods with higher sea-level (Sandberg, 1983;

Abbink et al., 2001). Positive y18O excursions (e.g.

in the tuberoid limestone part of biohermal medium-

scale sequence 2 in Fig. 7) are therefore interpreted to

depict a fall in relative sea-level. This interpretation is

supported by the palynofacies data. The high absolute

abundance of all palynoclast groups and especially of

terrestrial palynomorphs suggests a relative sea-level

fall (Waterhouse, 1995; Bombardiere and Gorin,

2000; Tyson and Follows, 2000). Vice versa, a

decrease in absolute palynoclast abundance, espe-

cially in terrestrial palynomorphs, and a negative shift

of y18O in the thrombolitic limestones are interpreted

as relative sea-level rises. A positive y18O peak

associated with a peak in absolute palynoclast

abundance is interpreted as the fall/rise turnaround

of medium-scale sequences (e.g. medium-scale

sequence 2 in Fig. 7).

Thrombolites are associated with transgression or

low energy deeper water conditions according to many

authors (Keupp et al., 1993; Leinfelder, 1993; Lein-

felder et al., 1993, 1996; Dromart et al., 1994; Schmid,

1996). They were observed down to water depths of

several hundreds of metres (Schmid, 1996). Increasing

water depth during thrombolite limestone formation is

indicated by decreasing absolute abundance of terres-

trial palynomorphs. This palynofacies pattern suggests

increasingly distal conditions and therefore a rise in

relative sea-level (Waterhouse, 1995; Bombardiere and

Gorin, 2000; Tyson and Follows, 2000). Progressively

lighter values of y18O values are probably due to an

increase in temperature favouring a relative sea-level

rise. Thrombolites only tolerate rather low sedimenta-

tion rates (Leinfelder et al., 1994, 1996). Pittet and

Strasser (1998) and Pittet et al. (2000) suggest low

export of carbonate mud from the Swiss platform

towards the deeper ramp during phases of early

transgression. In such periods carbonate sedimentation

rates in the Swabian Basin are regarded to be low and

thrombolite growth is favoured.
Removal of isotopically light carbon from sur-

face waters due to increased organic productivity is

supposed to be the cause for a positive y13C shift

(e.g. in the basal part of the thrombolite limestone

in medium-scale sequence 2; Fig. 7; Berger and

Vincent, 1986; Marshall, 1992). High organic

productivity in surface waters is also reflected in

the palynofacies record by high amounts of marine

palynomorphs (Waterhouse, 1995; Bombardiere and

Gorin, 2000; Tyson and Follows, 2000). Degrada-

tion of organic matter raining down from higher

parts of the water column may consume the oxygen

on the sea floor (Huc, 1988). A bloom of planktic

organisms in surface waters may therefore cause

occasional oxygen depletion in bottom waters

which is assumed to have been favourable for

thrombolite development (Rehfeld, 1996; Leinfelder,

2001).

To explain the in-phase variation of the absolute

abundance of terrestrial and marine palynomorphs

(Figs. 4, 7 and 9) it is likely that marine productivity

was boosted by high influx of nutrients from land

areas, with the latter being reflected by high absolute

abundance of terrestrial palynomorphs (Harris and

Tocher, 2003; McCarthy et al., 2004). High nutrient

levels are known to disturb or even prevent carbonate

production on the shallow platform (Hallock and

Schlager, 1986). The result is a reduced export of

carbonate mud from the platform and low carbonate

sedimentation rates on the deeper ramp which, in turn,

favour thrombolite formation. According to Whalen et

al. (2002), thrombolites seem to be associated with

environmental change or biotic crisis in carbonate

systems.

The most negative y18O peak in combination with

a low absolute abundance in all palynofacies

parameters can be regarded to indicate maximum

flooding and therefore marks a rise/fall turnaround

(see the medium-scale sequence2/medium-scale

sequence3 rise/fall turnaround in Fig. 7). The y13C
curve shifts towards more negative values when

approaching the rise/fall turnaround. This negative

excursion is considered to depict a decrease of

organic productivity in surface waters probably

caused by reduced nutrient availability (see also

Weissert et al., 1998). This is concordant with the

observations of Pittet and Mattioli (2002) who

analysed calcareous nannofossils from the Oxfordian
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of southern Germany and describe an in-phase

coupling of relative sea-level rise and reduced

nutrient availability.

Above the rise/fall turnaround the first stromato-

lites were observed (Fig. 7). Stromatolites are

commonly regarded as indicators for shallower water

and more tolerant towards higher sedimentation rates

(Golubic and Knoll, 1993; Defarge et al., 1994;

Rehfeld, 1996; Schmid, 1996). y18O values increase

towards the top of the thrombolite/stromatolite lime-

stone unit. This trend is interpreted as cooling and

relative sea-level fall. The increasing absolute abun-

dance of terrestrial palynomorphs also indicates fall-

ing sea-level (Waterhouse, 1995; Bombardiere and

Gorin, 2000; Tyson and Follows, 2000). Towards the

top reworking increases suggesting episodic high

energy storm events caused by a sea-level drop

(Pawellek and Aigner, 2003b).

Increased hydrodynamic energy during lowering of

sea-level might result in improved oxygenation

obstructing thrombolite growth (Leinfelder, 2001).

The initial stages of thrombolite/stromatolite limestone

formation are dominated by low values of y13C and low

absolute palynoclast abundance. Both facts suggest

low organic productivity and low nutrient influx

(Waterhouse, 1995; Weissert et al., 1998; Bombardiere

and Gorin, 2000; Tyson and Follows, 2000).

The positive y18O peak and the sudden increase in

absolute palynoclast abundance is interpreted as a fall/

rise turnaround (see medium-scale sequence 3 in Fig.

7). This is combined with a sharp positive shift in

y13C, probably caused by a very sudden input of

nutrients during low relative sea-level. Bioherm

development terminates at this fall/rise turnaround.

The bioherm community was probably smothered by

high terrigenous clastic and nutrient input.

Fig. 8 is an outcrop example of an small-scale

biohermal sequence. The rise to fall turnaround is

characterized by a negative y18O peak and low

palynoclast content. Pure thrombolite limestones are

confined to a period of relative sea-level rise as

indicated by oxygen isotopes and palynofacies

record. Thrombolite/stromatolite limestones devel-

oped during a period of relative sea-level fall.

Outcrop bioherm geometry suggests that the throm-

bolite facies represents periods of bioherm expansion

while the thrombolite/stromatolite facies show a

retreating bioherm (Fig. 8).
The results discussed above suggest that thrombo-

lite growth is triggered during relative sea-level rise

by initially high but decreasing nutrient influx, low

sedimentation rates and presumably occasionally

lowered oxygen level. Thrombolites preferentially

form up to maximum transgression when nutrient

influx is at a minimum. During the subsequent sea-

level fall nutrient availability and organic productivity

increase again giving rise to mixed thrombolite/

stromatolite communities. The maximum relative

sea-level fall and bioherm termination are marked

by a sudden increase in terrestrial input of clay and

palynomorphs. This increase in nutrient influx at the

same time boosted marine productivity. Nutrient

availability seems to be a major factor for the

evolution of deeper water sponge–microbial bioherms

in the Upper Jurassic of SW Germany.

5.4. Bedded limestone/marl sequences

The delineation of bedded limestone/marl sequen-

ces is strongly based on the interpretation of oxygen

isotope and palynofacies data, as sedimentary facies

does not provide clear evidence suitable for the

recognition of medium-scale sequences.

Decreasing absolute palynoclast abundance and

negative trends in y18O are interpreted to indicate a

rising relative sea-level while increasing absolute

palynoclast abundance and positive trends in y18O
are regarded to indicate a falling relative sea-level

(see above). Pronounced negative y18O peaks and

relatively low absolute palynoclast abundance, espe-

cially of terrestrial palynomorphs (e.g. at the base of

medium-scale sequence 1; Fig. 9) are interpreted to

indicate maximum flooding expressed in a rise/fall

turnaround. In contrast a positive shift in y18O and

increased absolute palynoclast abundance (e.g. in the

top of the tuberoid and bioclast debris limestone

succession of medium-scale sequence 1; Fig. 9) are

interpreted to represent a fall/rise turnaround. The

early rise, directly above the fall/rise turnaround

consists of a thick marlstone. Many units containing

very high amounts of clay are in this study

interpreted as deposits of blowstandsQ and early

relative sea-level rises. Pittet and Strasser (1998)

and Pittet et al. (2000) proposed a model connecting

sea-level changes affecting the shallow Swiss plat-

form with associated sediments of the deeper shelf.
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This model suggests that at least in periods of an

overall regressive trend maximum flooding is repre-

sented on the deeper shelf by limestone beds

whereas sequence boundaries are regarded to be

hidden in marlstone layers. In this study, stable

isotope and palynofacies evidence also suggest that

the rise/fall turnaround (maximum flooding) is

situated in limestone beds.
Fig. 10. (a) Regional gamma-ray log correlation (line 1 in b). The sediment

Wells located on palaeohighs show low sediment thicknesses compared to we

sequences based only on gamma-ray logs is problematic as the turnarounds

gamma-ray peaks. Instead the turnarounds are often located at some point on

to pick. The reason for that is that the turnarounds of medium-scale sequence

the sample resolution of isotope and palynofacies data is considerably lo

sequences could be correlatedwithin the time slices established by gamma-ra

correlation lines and underlying Late Palaeozoic troughs and highs (after Zieg

abundance of marlstone beds and the absolute content of marlstones decreas

(thin marls) suggesting a palaeotopographic control on marl deposition.
5.5. Regional correlation

5.5.1. Gamma-ray correlation

The thickness variations observed in the regional

gamma-ray correlation (Figs. 10a and 11) can be

related to underlying palaeotopography. Fig. 10b is a

map of the distribution of the underlying Late

Palaeozoic troughs for the study area according to
thickness distribution is related to the underlying palaeotopography.

lls located above palaeodepressions. The correlation ofmedium-scale

of medium-scale sequences do not always correspond to well-defined

the rising or falling part of the gamma-ray curve and are therefore hard

s are picked at pronounced oxygen isotope and palynoclast peaks and

wer than that of the gamma-ray logs. However, the medium-scale

y log correlation bymeans of stable isotopes. (b)Mapwith datapoints,

ler, 1990; Allenbach, 2001, 2002). (c) Detail of correlation line 1. The

e significantly in the transect from basin (thick marls) to basin margin
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Ziegler (1990) and Allenbach (2001, 2002). Line 1

starts above a Late Palaeozoic trough in the South-

west, passes a palaeohigh and runs through another

underlying Late Palaeozoic trough towards the trough

margin in the NE. The distribution of Late Palaeozoic

troughs is well mirrored in the sediment thickness

distribution. Wells located on palaeohighs show

reduced thicknesses compared to wells located inside

palaeodepressions. The very sharp decrease in thick-

ness between wells 93 and 38 is due to synsedimen-

tary tectonics documented by Allenbach (2001, 2002).

Line 2 (Fig. 11) is a SE to NW transect from

palaeohigh towards palaeodepression. Again, the
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sediment thickness distribution is very well reflected

by the distribution of pre-existing palaeorelief.
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packages has been documented elsewhere by several
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The significant decrease in abundance of marlstone

beds and in absolute marlstone content in the transect

from basin to basin margin displayed in Fig. 10c

seems to be also related to palaeotopography. It is

likely that marlstone deposition occurred preferen-

tially in the deeper basin in more quiet water and that

individual marlstone layers pinch out when approach-

ing the basin margin where deposition of clastic fines

was obstructed by increased water energy.

5.5.2. Isotope correlation

Oxygen isotopes are sensitive to diagenesis

(Veizer, 1974, 1992). However, in the present dataset

a strong diagenetic overprint is unlikely because the

oxygen isotope curves correlate over long distances

(N100 km; Fig. 12). If any overprint has occurred, it

must have been slight, preserving the original trend.

Segments of the carbon and oxygen curves corre-

sponding to medium-scale sequences correlate region-

ally suggesting an allocyclic control on medium-scale

sequence formation. The correlation lines may, in

addition to the sequence stratigraphic units delineated

and gamma-ray log correlation, therefore be used as

high-resolution chemostratigraphic time lines.
6. Conclusions
1. Sequence stratigraphic patterns in mostly mud-

dominated carbonates of a deeper epicontinental

carbonate ramp were investigated in the Upper

Jurassic of southern Germany. Facies, stable

isotope and palynofacies data were integrated as

sedimentological criteria alone were found to be

not sufficient to establish a robust sequence strati-

graphic framework.

2. Various scales of sequences could be distinguished:

small-scale sequences are stacked to form medium-

scale sequences, and the latter probably record 400

kyr Milankovitch signals.

3. Isotope and palynofacies analyses suggest that

climatically induced sea-level fluctuations control

the formation of medium-scale sequences. Rise/

fall sequence turnarounds (maximum flooding)

are indicated by a low absolute palynoclast abun-

dance and a negative peak in oxygen isotopes

(maximum warming). Fall/rise turnarounds are

indicated by a sudden increase in absolute paly-
noclast abundance and a positive peak in oxygen

isotopes.

4. The palynofacies and isotope peaks do not always

coincide with bedding surfaces or lithologic con-

tacts. Sequence stratigraphic boundaries such as

maximum flooding or transgressive surfaces thus do

not necessarily correspond to obvious and distinct

stratal surfaces in these deeper ramp carbonates, but

are marked by bturnaround zonesQ. Maximum

flooding zones are located within limestone units.

Marlstones are regarded as blowstandQ to early-rise

deposits that cannot be differentiated.

5. The growth of deeper-water sponge/microbial

bioherms is strongly controlled by nutrients and

relative sea-level. Thrombolitic bioherms form

during sea-level rises and decreasing nutrient

availability. Thrombolitic/stromatolitic bioherms

form during sea-level falls and increasing nutrient

availability. Bioherm termination is due to smoth-

ering by nutrients and clastic influx.

6. Medium-scale sequences can be correlated region-

ally by means of gamma-ray log and stable isotope

records.

7. Regional correlations revealed that sediment dis-

tribution is controlled by underlying palaeotectonic

elements (Late Palaeozoic troughs and swells).
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