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Estimating body mass from silhouettes: testing the assumption
of elliptical body cross-sections
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Abstract.—In computational studies of the body mass and surface area of vertebrates, it is custom-
ary to assume that body cross-sections are approximately elliptical. However, a review of actual
vertebrate cross-sections establishes that this assumption is not usually met. A new cross-sectional
model using superellipses is therefore introduced, together with a scheme that allows estimates to
be given with ranges. Tests of the new method, using geometrical shapes, miniature vertebrate
models, and actual animals, show that the method has a high accuracy in body mass estimation.
A new computer program to perform the computation is introduced. The application of the method
to some Mesozoic marine reptiles suggests that the tuna-shaped ichthyosaur Stenopterygius prob-
ably had body masses comparable to those of average cetaceans of the same body length.
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Introduction

Body mass and surface area are among the
most fundamental characteristics of animals.
These values are essential elements of physi-
ology and biomechanics (e.g., Schmidt-Niel-
sen 1997; Alexander 1998), and therefore it is
important for biologists to make accurate es-
timates. For example, in energetic studies of
dolphins, a 10% error in surface area estimate
would produce about a 9% error in drag co-
efficient, whereas 10% overestimation of body
mass would result in about a 9% error in cal-
culating mass-specific metabolic rates from
metabolic rate measurements.

Despite such importance, body mass esti-
mation involves errors not only for extinct an-
imals, but also for some extant animals whose
body mass is difficult to measure directly
(e.g., whales). For example, a series of studies
conducted by the Whale Research Institute of
Tokyo around 1950 (e.g., Nishiwaki and Hay-
ashi 1950; Nishiwaki and Oye 1951) measured
large whales by dividing the great carcasses
into small blocks. Although they tried to cap-
ture the blood along with bone- and meat-res-
idues resulting from the sawing of the car-
casses, some blood escaped, leading to under-
estimation of body mass (but the proportion
of error was probably small, as discussed lat-
er). Body surface area estimation is problem-
atic for virtually all animals, both extant and

extinct. Therefore, it is a shared interest of pa-
leontologists and neontologists to establish
methods to estimate body mass and surface
area without direct measurement, and to
quantify the error levels of such methods.

Both neontologists and paleontologists
have attempted body mass estimation in the
past. There is a common feature in these stud-
ies: they first calculate the volume of a given
animal and then convert it to body mass by
multiplying it by the density of water. Hen-
derson (1999) recently reviewed such studies
concerning extinct vertebrates, so it is not re-
peated here. These studies are divided into
two categories: those that use actual scaled
models (Gregory 1905; Colbert 1962; Alexan-
der 1985), and those that use computerized
mathematical models (Henderson 1999; this
study). Mathematical models have also been
used in neontological studies to estimate body
mass and surface area of whales. For example,
Bose and Lien (1989) calculated the body mass
and surface area of a 14.5-m fin whale from
girth (or half-girth) measurements taken at a
constant interval along the body axis. They as-
sumed elliptical cross-sections of varying ec-
centricity for the body to facilitate volume
computation. Also, Fish (1993, 1998) estimated
the surface area of four odontocete species
from photographs, assuming elliptical body
cross-sections.
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TABLE 1. Fork length and fluke dimensions of eight cetacean species. Abbreviations: FL 5 fork length; Aflat 5 flat
area of the fluke (see text); S 5 surface area of the fluke; V 5 volume of the fluke. Calculated from data presented
by Bose et al. (1990). E-02 5 1022, etc.

Species FL (m)
Aflat
(m2) S (m2) V (m3)

Harbor porpoise

White-sided dolphin
White-beaked dolphin
Common dolphin

Phocoena phocoena

Lagenorhynchus acutus
L. albirostris
Delphinus delphis

1.8
1.47
1.42
2.22
2.5

1.78E-02
3.87E-02
3.23E-02
7.77E-02
5.30E-02

3.96E-02
8.74E-02
7.34E-02
1.71E-01
1.71E-01

2.05E-04
7.98E-04
6.56E-04
1.61E-03
7.50E-04

White whale
Sowerby’s beaked whale
Minke whale
Fin whale

Delphinapterus leucas
Mesoplodon physalus
Balaenoptera acutorostrata
B. physalus

3.79
4.64
6.14

14.5

2.47E-01
2.32E-01
4.95E-01

1.82

5.45E-01
5.25E-01

1.11
4.02

8.80E-03
7.05E-03
2.04E-02
1.65E-01

Henderson’s (1999) study represents the
most elaborate mathematical modeling of
body mass and surface area to date. He out-
lined a method to construct three-dimension-
al computer models of vertebrates on the basis
of their orthogonal silhouettes, and he used a
scientific visualization software package to
calculate the volume and surface area of the
models. The coordinates of selected points
along the silhouette outline were obtained
with a digitizing tablet, and then imported to
the software. Like Bose and Lien (1989), he as-
sumed elliptical body cross-sections to gen-
erate three-dimensional models from two-di-
mensional silhouettes. Although this study
was a remarkable technical refinement, its ac-
curacy was compromised by (1) errors intro-
duced during manual operation of digitizing
tablets (Henderson 1999: p. 105) and (2) the
slice count of 32 or fewer for the entire body,
which may be sufficient for such simple
shapes as ellipsoids (Henderson 1999: p. 96),
but not for more complicated shapes of ver-
tebrates that usually contain multiple inflec-
tion points.

All mathematical models thus far devel-
oped share the important simplifying as-
sumption that body cross-sections are ellipti-
cal. Despite its popularity, this assumption
has never been rigorously tested. Bose et al.
(1990) tested the method of Bose and Lien
(1989) by applying it to smaller whales with
known body masses. They found that the
method underestimated the true body mass
by a factor of up to 31.7% (based on Bose et al.
1990: Table 1). This study indicates that the as-

sumption of elliptical body cross-sections is
often not met in nature.

The purpose of the present paper is three-
fold. First, I test the assumption of elliptical
body cross-sections and propose an alterna-
tive model. Second, I describe a method to cal-
culate body mass and surface area from or-
thogonal silhouettes of vertebrates. The meth-
od, empowered by the new cross-sectional
model, is more accurate in many cases and
simpler to perform than that presented by
Henderson (1999). An earlier version of the
method was used by Motani et al. (1999).
Third, I test the method with a wide range of
data, and apply it to some Mesozoic marine
reptiles.

Body and Limb Cross-Sections in
Vertebrates

The cross-sectional shape changes exten-
sively along the axis of a given vertebrate,
which makes it difficult to construct a uniform
mathematical model. The cross-sections are
usually not truly elliptical, although there are
exceptions. When cross-sections of vertebrate
body parts are compared with ellipses that
share their heights and widths (Fig. 1), the fol-
lowing is commonly observed:

Trunk (Fig. 1A–K). In the presacral region,
the elliptical approximation almost always
underestimates the true area of cross-sections
in tetrapods, except in the lumbar area of
some species (Fig. 1B,K). The perimeters of the
true cross-sections are always longer than
those of the ellipses, even when the area is
overestimated by ellipses (Fig. 1B,K). These
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indicate that the assumption of elliptical
cross-sections leads to underestimation of
both volume and surface area of the trunk re-
gion of tetrapods. In teleosts, ellipses tend to
overestimate the actual cross-sectional areas
(Fig. 1E), except in species with somewhat
round bodies, such as tunas (Fig. 1C,D).

Tail (Fig. 1L–P). In the caudal region of Al-
ligator sinensis, the ellipses always overesti-
mate the true cross-sectional areas (Fig. 1L–
O), and the same is observed for the Atlantic
mackerel (Scomber scombrus; Fig. 1P), except in
the peduncular area where the cross-sections
are well approximated by ellipses. The true
perimeter is underestimated by the ellipses in
all vertebrates examined. The tails are much
lighter than the presacral areas in most tetra-
pods, so the true volume is probably under-
estimated by the assumption of elliptical
cross-sections when the presacral and caudal
regions are combined. In most teleosts, the use
of ellipses probably leads to overestimation of
the true volume, except possibly in tunas and
similarly shaped forms.

Limb (Fig. 1Q–Z). Vertebrate limbs differ
from their main bodies in that the variation of
cross-sectional shape is much more pro-
nounced than in the latter. The ellipses under-
estimate the perimeter, whereas the cross-sec-
tional area may or may not be underestimat-
ed. Therefore, the surface area of a vertebrate
limb is always underestimated by the assump-
tion of elliptical cross-sections, whereas its
volume may or may not be. On average, it is
probably reasonable to assume elliptical
cross-sections for limb volume estimation
when no actual cross-section is available.

Superellipse. The above observations are far
from exhaustive, but it is at least evident that
elliptical cross-sections compromise the qual-
ity of modeling of vertebrate bodies. The mod-
eling accuracy may be improved by introduc-
ing other cross-sectional shapes, such as the
superellipse. The superellipse is defined by
the equation

k kz x/az 1 z y/bz 5 1 (1)

where a and b are the lengths of the major and
minor semi-axes, and k is an exponential con-
stant that determines the degree of ‘‘swelling’’
(Fig. 2A). The ellipse is a special case of the

superellipse, with a k-value of 2.0. As the value
of k increases from 2.0, the superellipse ap-
proaches the rectangle, whereas it approaches
a rhomboid as k decreases toward 1.0 (Fig.
2A). At k-values of below 1.0, the superellipse
approaches a cross shape, passing through the
asteroid at a k-value of 2/3. The superellipse
was invented by Piet Hein (Gardner 1965) and
is used, along with its three-dimensional ex-
tension called the superellipsoid, or, more in-
clusively, superquadric, in computer model-
ing of three-dimensional shapes (e.g., Barr
1981; Pilu and Fisher 1995; Rosin and West
1995).

Superelliptical body cross-sections are also
found in nature, including cross-sections of
vertebrates (Fig. 2C–H). For example, the
cross-section of the trunk of a kawakawa (Eu-
thynnus affinis), figured by Dewar et al. (1994:
Fig. 1A), is very closely approximated by a su-
perellipse with a k-value of 2.5 (Fig. 2B). Many
cross-sections through the bodies of verte-
brates are not dorsoventrally symmetrical, the
dorsal half having higher k-values than its
ventral counterpart. A superellipse with a k-
value of 2.5, for example, approximates a
cross-section through the human thoracic re-
gion dorsally, whereas the k-value is about 2.0
ventrally (Figs. 1F, 2F–H).

It is best to examine the actual cross-sec-
tions when determining k-values for each slice
of the body of a given vertebrate. Such a pro-
cedure is not possible for extinct animals, but
this does not mean that one should assume el-
liptical cross-sections (i.e., k 5 2.0). Assuming
k-values to be constantly 2.0 for tetrapods is
probably less reasonable than assuming a con-
stant value of, say, 2.2. One way to proceed is
to choose two k-values that most likely repre-
sent the upper and lower limits within a given
animal, and then estimate body mass with a
range using these values. Such k-values may
be 2.5 (upper limit) and 2.0 (lower limit) in the
cases examined above for tetrapods, but some
cetaceans may have higher values (see below).
For most teleosts, the values may be about 2.0
and 1.5, but they should probably be 2.5 and
2.0 for tunas and similarly shaped forms. In
the future, it is desirable to examine as many
extant animals as possible for the variation of
k-values along the body. These data should
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FIGURE 1. Cross-sections of the body and limbs of selected vertebrates, compared with ellipses that share their
heights and widths. Gray areas are commonly shared by the actual cross-section and its elliptical model. Areas
where cross-sections are larger than ellipses are painted black, whereas the area is left white if the ellipses are
larger than the cross-sections. The numbers given represent how much the true area (A) and perimeter (P) are
overestimated by elliptical models. For example, ‘‘A24.43%’’ indicates that the actual cross-section is underesti-
mated by the ellipse by 4.43%. A, Thoracic section of a rabbit; B, Lumbar section of a rabbit; C, Trunk section of a
kawakawa (Euthynnus affinis); D, Trunk section of a yellowfin tuna (Thunnus albacares); E, Cloacal section of an At-
lantic mackerel (Scomber scombrus); F, Cervical section of a human; G, Thoracic section of a human (at T11); H,
Thoracic section of a human (at T12); I, Spiracular section of a dogfish (Squalus acanthias); J, Thoracic section of a
Chinese alligator (Alligator sinensis); K, Lumbar section of the same; L, Anterior caudal section of the same; M, The
same, but slightly posterior; N, Middle caudal section of a Chinese alligator; O, Posterior caudal section of the same;
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FIGURE 2. Superellipses, and their occurrences in vertebrate cross-sections. A, Examples of superelliptical shapes
with varying exponent value (k) of equation (1); B, Trunk section of a kawakawa (Euthynnus affinis), compared with
a superellipse; C, Thoracic section of a rabbit; D, Thoracic section of a human (at T12); E, Lumber section of a rabbit;
F, Trunk section of a yellowfin tuna (Thunnus albacares); G, Trunk section of a bluefin tuna (Thunnus thynnus); H,
Thoracic section of a human (at T11); I, Anterior view of a white whale (Delphinapterus leucas). B, F, and G based
on Dewar et al. 1994. C and E based on Graigie 1966. D and H based on Mori et al. 1982. I based on Murayama and
Kasamatsu 1996.

←

P, Caudal section of an Atlantic mackerel; Q, Upper arm section of a Chinese alligator; R, Thigh section of the same;
S, Upper arm section of a human; T, Thigh section of the same; U, Thigh section of a cat; V, Forearm section of the
same; W, Upper arm section of a rabbit; X, Thigh section of the same; Y, Lower leg section of the same; Z, Lower
leg section of a cat. A, B, and W–Y based on Graigie 1966; C and D based on Dewar et al. 1994; E and P based on
personal data; F–H, S, and T based on Mori et al. 1982; I based on Walker and Homberger 1992; J–O, Q, and R based
on Cong et al. 1998; U, V, and Z based on Gilbert 1968.

then be combined with analogies based on
habitats and behavior, as well as phylogenetic
brackets (Bryant and Russell 1992; Witmer
1995) when possible, to infer k-values in ex-
tinct vertebrates.

Methods

Data Preparation (Fig. 3). The first step is to
obtain orthogonal views of vertebrates (Fig.
3A). These are usually lateral and dorsal
views for aquatic vertebrates with flippers,
whereas anteroposterior views are also need-
ed for terrestrial vertebrates in order to con-
strain limb shapes. Such protruding structure
as limbs, fins, and flukes are then separated
from the main body (Fig. 3B). In the present
study, this process was done in a vector-based
drawing program (CorelDraw 9) and used
vector outlines of silhouettes traced from bit-
map images using CorelTrace 9. After the sep-
aration, each view of each body part is saved

in a separate bitmap file (each body part
should have two bitmap files representing or-
thogonal views around its longitudinal axis to
constrain three-dimensional shapes, except
finlike elements). The dot counts of these im-
ages determine the sampling rate during the
calculation that follows. For example, if the
body is 1000 dots axially, it will be analyzed
in 1000 slices. Scales are kept constant among
views of a single body part (e.g., if the lateral
view of the body is 1000 dots long, its dorso-
ventral view should also be 1000 dots long).
Once the bitmap images are made, they are
converted to coordinate data (Fig. 3C). This is
easily achieved by free software packages,
such as ImageTool and NIH Image.

Calculation (Fig. 4). The calculation of vol-
ume and surface area is done in slices, with
dots as the unit. The unit will later be con-
verted to the International System (SI) accord-
ing to the calibration factor of the original im-
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FIGURE 3. Outline of the data preparation for the pre-
sent method. The coordinates of the body outline are di-
rectly obtained from bitmap images, without manual
digitization.

ages. The width of each slice corresponds to
one dot of the original bitmap image (Fig. 4C).

For the main body and limbs, the height and
width of each three-dimensional slice are ob-
tained by slicing two-dimensional views from
orthogonal directions (e.g., lateral and dorsal
views for the main body; Fig. 4A). A super-
ellipse with the obtained width and height is
constructed around the center of the slice (Fig.
4B). The exponent k of the superellipse is set
to the most appropriate values when known
from cross-sections. Otherwise, the upper and
lower limits of k are set to compute the results
with ranges, as discussed earlier. From the su-
perellipses thus constructed, the volume and
surface area of each slice is approximated as
in Figure 4C. The volume of the ith slice (Vi) is
calculated as that of a superelliptical cone
frustum, with the height of one dot. This is
given as

0.5V 5 (A 1 A 1 (A A ) )/3i i i11 i i11

where Ai denotes the area of the ith cross-sec-
tion, which is calculated as the area of a su-
perellipse. When two subaxes of a superel-
lipse are equal and have a unit length, its area
(ASE-UNIT) is given as

1

k 1/kA (k) 5 4 (1 2 x ) dxSE-UNIT E
0

The more general equation for the area of a
superellipse (ASE) is given as

a

k 1/kA (k) 5 4b [1 2 (x/a) ] dxSE E
0

1

k 1/k5 4ab (1 2 t ) dt 5 abA (k)E SE-UNIT
0

Thus, the area of a superellipse as in equa-
tion (1) is a 3 b times that of a unit superel-
lipse with the same exponent k.

The surface area of the ith slice (Si) is calcu-
lated as the side of the frustum of a superel-
liptical cone (Fig. 4C). The computational bur-
den of the calculation of Si using integration
algorithms is prohibitive, so it is approximat-
ed by

S 5 SH (P 1 P )/2ii i i11

where Pi and SHi are the perimeter and aver-
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FIGURE 4. Outline of the computational process of the present method, as implemented in the computer program
PaleoMass. Round structures, such as the body, and finlike structures are computed with different algorithms (left
and right column, respectively).
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TABLE 2. Results of least-square regressions on ceta-
cean fluke measurements. The upper two rows are for
complete flukes whereas the bottom two are for half the
fluke, which are used for computation of asymmetrical
finlike structures, such as dorsal fins and flippers. The
standard allomatic equation y 5 bxa was used. See Table
1 for abbreviations.

Independent
variable

Dependent
variable a b r2

Aflat
Aflat
Aflat/2
Aflat/2

S
V
S/2
V/2

0.998
1.40
0.998
1.40

2.22
6.10E-02
2.27
8.04E-02

1.00
0.993
1.00
0.993

age slant height of the ith cross-section, re-
spectively. The perimeter of the superellipse,
PSE, is given as

0.5p

(22k)/k 2P 5 4 {[2a sin t(cos t) ]SE E
0

(22k/k) 2 0.51 [2b cos t(sin t) ] } dt

The average slant height is calculated as

SH 5 l 3 SHrighti i i

where li is the ratio of side areas between the
right and oblique cone frustums and SHrighti

is the average slant height of the right cone
frustum with the top and bottom surfaces
identical to the ones in the ith cone frustum. It
should be noted that this heuristic method is
not truly accurate, although it does provide
sufficient accuracy as will be shown.

The volume and surface area of finlike
structures are calculated from their flat areas
(i.e., the areas of their two-dimensional im-
ages; Fig. 4D,E). Bose et al. (1990) examined
the flukes of nine cetacean species and depict-
ed the flat view and one cross-section for each
of the flukes (Bose et al. 1990: Figs. 1, 2). As-
suming that the cross-sectional shape is con-
stant throughout a given fluke, I calculated its
volume and surface area using these figures
(Table 1). When plotting these calculated val-
ues against flat areas of the flukes, there is a
high correlation (Table 2, Fig. 4F). Therefore, it
is reasonable to use regression lines to esti-
mate the volume and surface area of flukes
from the flat areas (Fig. 4F). Constants ob-
tained from least-square regression are given
in Table 2. Caudal flukes are laterally sym-
metrical in flat view, but flippers and dorsal

fin are not. Therefore, the regression equations
for the flukes cannot be used for these latter
structures. To facilitate approximation, I as-
sumed that these structures behave like half a
caudal fluke and calculated regression con-
stants accordingly (Table 2).

Tests

I tested the method described above in
three ways. I first used geometrical shapes of
known volumes and surface areas to test the
accuracy when the assumption of elliptical
cross-section is met. The second test was done
with commercial miniature models of extant
animals, whose volumes are measurable. The
third test was performed with actual aquatic
vertebrates with known body masses, namely,
two species of teleosts (Scomber scombrus and
Trachurus trachurus) and Heaviside’s dolphin
(Cephalorhynchus heavisidii; [silhouettes based
on Best 1988]).

Geometrical Shapes. Using geometrical
shapes, I tested the accuracy of the proposed
method with changing major-axis angle and
resolutions when the assumption of elliptical
cross-sections is met. Henderson (1999) con-
ducted a similar test for his method but only
regarding the relationship between the accu-
racy of estimated volume and resolution. I
used a prolate spheroid with a fineness ratio
of 4.0, which approximates the values known
for some living cetaceans (Massare 1988).

In the first subtest, I examined the tolerance
of the method to changes in the angle of the
major axis. The size of the spheroid was kept
constant, with polar and equatorial radii of
1000 and 250 dots, respectively. The major
semi-axis was initially set to the horizontal
(08), and then its angle was increased by 108
until 908 was reached (i.e., the major semi-axis
was vertical). The result is given here in Fig-
ure 5A. The volume was constantly estimated
with high accuracies between 99.1% and
99.5%, whereas the surface area was affected
more substantially by changes in the angle of
the major axis (accuracy varied between 98.0%
and 103.7%). The number of slices was varied
in the second subtest, which examined the tol-
erance of the method to resolution. The sam-
pling rate of the major semi-axis was varied
from 5 to 3000. The major semi-axis was kept
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FIGURE 5. Results from the test of the present method using prolate spheroids. A, Test of axial angle, showing how
the accuracy changes as the angle of the major axis increases from horizontal. B, Test of resolution, showing how
the accuracy improves with increasing sampling rate (in number of slices). Note that the volume is almost always
estimated with more than 99% of accuracy, regardless of the major-axis angle and as long as the slice count is high
(about 1000 or more). The surface area estimates are less reliable.

TABLE 3. The results of the tests using miniature models of vertebrates.

Model

Estimated
volume range

(cc)
True volume

(cc)
Equivalent

k-value

Horse (Equus)
Asian elephant (Elaphus)*
Bottlenose dolphin (Tursiops)
Ichthyosaurus

21–23
130–137
163–174

75–80

23
135
186

91

2.5
2.3
3.3
4.1

* Without ears or tusks.

horizontal in all cases. The accuracy of volume
estimates asymptotically approaches 100%
with increasing slice number, whereas the
same for surface area estimates is about 104%
(Fig. 5B). This error of about 4% seems to be
common among calculations of perimeters
and surface areas using computational inte-
gration: the perimeter estimation by Image-
Tool also shows a similar level of error.

Miniature Models. Four commercially avail-
able models of vertebrates were used for this
test (Table 3). The volumes of the models were
measured in a one-liter measuring cylinder
with 10-ml scales. The cylinder was first filled
halfway (500 ml) with water, and then the
model was submerged. Additional water was
supplied from a syringe with 0.5-ml scales,
until the water level reached the next gradu-
ated mark on the cylinder. The volume of the
model was then calculated by subtracting the
total volume of water (i.e., the original 500 ml
plus the addition from the syringe) from the
final reading of the cylinder. Two measure-
ments per model were taken to obtain aver-
ages. No more than 1% difference was ob-

served between the two measurements of each
model. The lateral and dorsal view outlines of
the models were obtained by scanning the
models with a flatbed scanner. The scanned
images were cropped in CorelPhotopaint 9
and converted to vector-based outlines in
CorelTrace 9.

A horse model was treated differently from
the others in that the body was separated into
two pieces at the shoulder (Fig. 6). This is be-
cause the body axis bends at the shoulder. The
present method is most accurate when the
sampling axis is parallel to the body axis, so
the neck and head were rotated as in Figure 6.

The models used are listed in Table 3, with
the results of the tests. The volumes of the
models were calculated with ranges (2.0 , k
, 2.5), as discussed earlier. The volumes of the
two terrestrial tetrapods (Elephas and Equus)
fell within the calculated ranges, whereas one
marine tetrapod (Tursiops) was bulkier than
the higher end of the estimated range. The vol-
ume of the Tursiops model requires the aver-
age k-value of body cross-sections to be 3.3,
which is far higher than 2.5. This discrepancy
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FIGURE 6. Division of horse silhouettes in practice. A, The lateral and dorsal views of a horse model. B, How the
lateral view was divided into six, and posterodorsal view of the neck was added. C, The resulting eight images that
were used in the analysis. The lines connecting two images indicate that the images are two orthogonal views of
one structure.

TABLE 4. The results of the tests using actual animals. The true body masses of the two teleost species fell within
the estimated ranges (0.7% error for one Trachurus with mature eggs), whereas Heaviside’s dolphin was heavier
than estimated.

Species
Estimated mass range

(g)
True mass

(g)
Equivalent

k-value

Scomber scombrus*
Trachurus trachurus*
Trachurus trachurus
Cephalorhynchus heavisidii

549–630
238–273
234–269

48600–52100

605
275
244

56000

1.8
2.0
1.6
3.5

* Female with eggs.

will be discussed later. The model of Ichthyo-
saurus used is unusual in being almost trian-
gular in body cross-sections. In three-dimen-
sionally reconstructed specimens of Stenopter-
ygius and Ophthalmosaurus, the body cross-
sections are not triangular (e.g., Andrews
1915). These triangular cross-sections make
the volume of the model much larger than el-
liptical cross-sections: it would require a k-val-
ue of 4.1 to approximate the volume with the
superelliptical model.

Actual Animals. The mass estimates of the

three species examined are given in Table 4.
The average density of the entire body was as-
sumed to be that of seawater at 208C (1024 kg/
m3 [Vogel 1994]). The superelliptical expo-
nents were assumed to be 1.5 , k , 2.0 for
teleosts and 2.0 , k , 2.5 for tetrapods, as dis-
cussed earlier. The body mass estimates for
the three teleost individuals successfully ap-
proximated the true values, although a female
Trachurus with eggs was marginally heavier
than estimated (by 0.7%). For Cephalorhynchus
the true body mass was much higher than the
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FIGURE 7. Three-dimensional models of two marine
amniotes. A, Cephalorhynchus heavisidii, reconstructed
with a constant superelliptical exponent (k-value) of 3.0
for body cross-sections. Based on orthogonal photo-
graphs provided in Best 1988. B, The same with k-value
of 2.0 (i.e., elliptical cross-sections). C, Stenopterygius
quadriscissus with k-value of 3.0. Based on PMU R158
and SMNS 54819. D, The same with k-value of 2.0.

estimated values: it requires the average k-val-
ue to be 3.5 to obtain the true body mass from
calculation. Note that this value is similar to
the one obtained for the model of another del-
phinid (Tursiops).

Discussion. The results of the tests indicate
the following: First, the volume estimation by
the present method is reliable when the as-
sumption of elliptical cross-sections is met,
whereas the surface area is slightly overesti-
mated (by 4%). Second, the method can be ap-
plied to actual animals, for which the assump-
tion of elliptical cross-section is often not met,
by giving ranges to estimated values. The
range can be calculated by using empirical su-
perelliptical exponents (k-values), which are
1.5 , k , 2.0 for most teleosts and 2.0 , k ,
2.5 for most tetrapods.

Obvious exceptions to the above conclu-
sions are cetaceans, which seem to have av-
erage k-values of above 3.0. No cross-sections
of cetacean bodies were available for this
study to confirm such high values. However,
external observations suggest that they indeed
have more rectangular body cross-sections
than teleosts or terrestrial tetrapods. For ex-
ample, an anterior view of a Delphinapterus leu-
cas is approximated by a superellipse with a
k-value of 3.0 when the flippers and dorsal fin
are disregarded (Fig. 2I). The presence of high
k-values in cetaceans can also be visually con-
firmed by comparing two three-dimensional
models of Cephalorhynchus with k-values of 2.0
and 3.0, respectively (Fig. 7): the model with
the k-value of 3.0 (Fig. 7A) seems more natural
than the one with 2.0 (Fig. 7B). Also, the flip-
pers are almost detached from the body when
the k-value is assumed to be 2.0. Further sup-
port comes from Bose et al. (1990), who found
the average error factor of 13.3% for the four
cetaceans whose body mass was underesti-
mated by the elliptical cross-section model
they used. This average error factor equals
having superelliptical cross-sections with a k-
value of 3.11, which is comparable to the val-
ues obtained in this study. It should be noted,
however, that the body mass was closely
matched by the estimate (only 1.2% overesti-
mation) for one of the cetaceans they exam-
ined (Lagenorhynchus acutus) (Bose et al. 1990).

Applications to Extinct Vertebrates

With the knowledge obtained from the
above tests, I estimated the body mass and
surface area for some extinct marine reptiles.
The following assumptions were made: (1) the
average k-value of body cross-sections is be-
tween 3.0 and 3.5, as in delphinid cetaceans
examined in this study; (2) the average den-
sity of a given individual was that of seawater
at 208C (1024 kg/m3 [Vogel 1994]). The aver-
age k-value of 4.1, obtained for a miniature
model of Ichthyosaurus, is probably too high as
discussed earlier, so it was not used for the
present purpose. Two examples of three-di-
mensional reconstruction of the ichthyosaur
Stenopterygius are given in Figure 7, to facili-
tate visual assessment of how the animal
would look with two different k-values of 2.0
(i.e., elliptical cross-sections; Fig. 7D) and 3.0
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TABLE 5. Body mass and surface area estimates for some Mesozoic marine reptiles. Institutional abbreviations:
BSPM, Bayerische Staatssammlung für Paläontologie und historische Geologie, Munich; GPIT, Geologisch-Paläon-
tologisches Institut, Tübingen; MHH, Museum Hauff, Holzmaden; PMU, Paleontologiska Museet, Uppsala Uni-
versitet; SMNS, Staatliches Museum für Naturkunde, Stuttgart.

Taxon
Specimen/
reference L (m)*

Surface area (m2)
k 5 3.0 k 5 3.5

Mass (kg)
k 5 3.0 k 5 3.5

Stenopterygius SMNS 16811
PMU R158
Munich2
TUB Re1297/1
TUB Q07

2.40
1.19
1.15
1.11
1.06

2.64
0.580
0.554
0.447
0.444

2.69
0.589
0.564
0.456
0.451

163
17.1
17.3
13.3
11.7

168
17.5
17.7
13.7
12.1

SMNS 56631
Hauff9
PMU R435
SMNS 54818
SMNS Small

1.01
0.957
0.634
0.598
0.450

0.415
0.382
0.152
0.144
0.0809

0.422
0.389
0.154
0.146
0.0823

11.1
9.10
2.46
2.26
0.900

11.4
9.34
2.52
2.32
0.924

Plesiosaurus
Cryptoclidus
Rhomaleosaurus‡
Platecarpus

Hauff and Hauff 1981
Brown 1981
Hauff and Hauff 1981
Williston 1910

2.94
4.0†
3.34
4.0†

2.66
7.70
5.87
3.72

2.71
7.82
5.95
3.79

172
737
482
246

177
756
494
253

* Fork length for Stenopterygius.
† Approximate value.
‡ Body based on dorsoventral view only.

(Fig. 7C). Both lateral and dorsal views were
used whenever possible. It was necessary to
combine the lateral view of one individual
with the dorsoventral view of another with a
similar body length to achieve this goal. In the
case of Stenopterygius, the ventral view of
SMNS 54819 was combined with the lateral
views of ten specimens, after linearly adjust-
ing the position of the pectoral and pelvic gir-
dles of the former to the latter. This could com-
promise the accuracy of the outcome to some
degree but is more reasonable than using only
the lateral views, assuming that the width of
the body cross-sections is equal to their height
(e.g., Motani et al. 1999). The computations
were made for ten ichthyosaurs, three plesio-
saurs, and one mosasaur, and the results are
given in Table 5.

The results obtained are untestable in a
strict sense. However, it is possible to see how
the results compare with the known body
length-mass distribution of cetaceans. Body
masses of twelve cetacean species collected
from the literature (n 5 198; see figure caption
for details) are plotted against body lengths
(fork length) in Figure 8A, with 95% predic-
tion bands. Data for large whales are based on
the studies by the Whales Research Institute,
Tokyo, Japan, which indicate that some blood
that escaped during the sawing process is not
included in the body mass presented (see In-

troduction). However, Physeter and Megaptera
seem to be on the same regression line as
smaller cetaceans (Fig. 8A), suggesting that
the amount of blood that escaped was not sig-
nificant, as originally suspected by Nishiwaki
and Hayashi (1950). Balaenoptera seems to be
lighter than other whales of the same body
length, forming its own distribution that is
parallel to the distribution of the rest (dark
gray in Fig. 8A).

When the estimated body masses of Sten-
opterygius were plotted against their fork
lengths, the points fell near the midline of the
cetacean distribution (Fig. 8B). This adds at
least some confidence to the validity of the
present method. For comparison, Figure 8C
shows a plot of body mass approximations for
the same genus, using a prolate spheroid
model (Massare 1988). It is clear that the pre-
sent method gives results that are more com-
patible with the cetacean data than the spher-
oid model does.

Discussion

There are advantages and a disadvantage to
the present method, when compared to the
one presented by Henderson (1999). The dis-
advantage lies in the inflexibility of the sam-
pling axis: all slices of the present method are
necessarily normal to the horizontal axis of
the image (and thus the slices are parallel to
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FIGURE 8. Body mass plotted against body length. A, Plot for 198 individuals of cetaceans: Balaenoptera borealis (n
5 27; Fujino 1955); B. musculus (n 5 34; Nishiwaki and Hayashi 1950; Nishiwaki and Oye 1951; Ohno and Fujino
1952); B. physalus (n 5 34; Nishiwaki and Hayashi 1950; Nishiwaki and Oye 1951; Ohno and Fujino 1952); Cephal-
orhynchus heavisidii (n 5 16; Best 1988); Delphinus delphis (n 5 21; Gihr and Pilleri 1968); Lipotes vexillifer (n 5 3; Gihr
et al. 1979); Megaptera novaeangliae (n 5 1; Ohno and Fujino 1952); Physeter catodon (n 5 16; Ohno and Fujino 1952);
Platanista gangetica (n 5 9; Pilleri and Gihr 1976a); Pontoporia blainvillei (n 5 14; Pilleri and Gihr 1976b); Stenella
coeruleoalba (n 5 12; Gihr and Pilleri 1968); Tursiops truncatus (n 5 11; Fish 1993; Skrovan et al. 1999). Area in dark
gray represents 95% prediction belt for Balaenoptera, whereas that in white is for the rest. B, Plot for Stenopterygius
based on the present method, superimposed upon the prediction belt for non-Balaenoptera cetaceans. C, Plot for
Stenopterygius based on the prolate spheroid model (Massare 1988).

each other), whereas Henderson’s method al-
lows its slices to be oblique to the horizontal
axis. This characteristic may have effects when
computing animals with bent body axes (such
as the horse, whose neck is erect from the hor-
izontal axis). However, there are indications
that this factor does not cause significant
shortcomings in the present method. First, the
test using the horse model showed that the
method is capable of giving reasonable esti-
mates of its volume, as long as the inclined
part of the body (i.e., neck in this case) was
treated separately (Fig. 6C). Second, the test of
major-axis angle showed that the present

method is not affected by the inclination of the
body axis, as long as the assumption of ellip-
tical cross-sections is met. Third, many ver-
tebrates, aquatic ones especially, have approx-
imately straight body axes, which are suitable
for the present method.

The first advantage of the present method is
its high accuracy, as demonstrated earlier with
three tests. This is achieved by the incorpora-
tion of the following factors: (1) high slice
counts (or sampling rate) of over 1000; (2) ab-
sence of manual operation in obtaining coor-
dinates from bitmap files of vertebrate silhou-
ettes (raw data); and (3) superelliptical model
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of body cross-sections. Henderson’s (1999)
method underestimated the volume of a sim-
ple ellipsoid by 1.2% with the slice count of 32
(Henderson 1999: Fig. 8). The value of 1.2%
may appear to be sufficiently small, but it is
not so, considering that this value is for a very
simple case in which every assumption is met.
Also, slicing an animal into 32 sections does
not provide as accurate a reconstruction as do-
ing the same to an ellipsoid. Animals have
complicated outlines with multiple inflection
points, and higher slice counts are necessary
to achieve the same level of accuracy as for an
ellipsoid. A table given by Henderson (1999:
Table 3), comparing estimated and observed
body masses, is not a rigorous test, because
the estimation and observation values are
based on different individuals, unlike in the
present study. Also, the numbers are not as
close as they may appear to be at first sight: a
3.6-m elephant was estimated to be 1.8%
heavier than a 4.0-m individual (Henderson
1999: Table 3), whereas it should be about 27%
lighter, if the body mass were to change ac-
cording to the cube of the body length. The
second advantage of the present method is in
the use of range estimation, which increases
the scientific value of the outcome. It is better
to have a range of values based on an empir-
ically tested method than a single value of un-
known accuracy. The third advantage is the
ease of computation, which only requires two
free software packages and bitmap files as
data.

Having an accurate calculation protocol
may not seem important, given that most sil-
houettes are reconstructed subjectively by re-
searchers and artists for extinct animals. How-
ever, accuracy in calculation still helps mini-
mize the total error level. If the silhouette re-
construction had errors that are on the border
of being acceptable (e.g., 5%), having inaccu-
rate calculation would increase the error level
to unacceptable values. The best we can do is
to minimize the error at each stage of the body
volume/surface area estimation, and there-
fore having accurate calculation protocol is
important regardless of the accuracy of the sil-
houette to be used. Of course, it is important
to reconstruct reasonable silhouettes, but it is
beyond the scope of the present method,

which is about the stage of estimation after
having silhouettes. In some cases, approxi-
mate body outlines are preserved in fossils as
in Stenopterygius, reducing the bias from sil-
houette reconstruction. The present method is
effective in utilizing such rare information.
Also, it is obviously desirable for neontologi-
cal studies, where silhouettes can be obtained
directly, to have an accurate calculation pro-
tocol.

It should be noted that the superelliptical
model employed in the present method is not
perfect: many cross-sections of vertebrate
bodies are not superelliptical (Fig. 1). This,
however, does not compromise the predictive
value of the present method in volume-mass
estimation. The present method makes esti-
mates with ranges, so the exact match of the
cross-sectional outline is not very important,
as long as the actual cross-sectional area lies
between those of the two superellipses that
define the upper and lower limits. Surface
area estimation is more problematic than vol-
ume-mass estimation. Actual perimeters are
usually much larger than superelliptical pe-
rimeters. Ignoring this factor, as in Henderson
(1999) and the present study, should lead to
some degree of underestimation of the true
surface area. This underestimation (up to 23%
in some cases, judging from Figure 1) is partly
compensated for by the slight tendency to
overestimate surface area, typical of the al-
gorithms used in the present method (about
4%). Still, the overall tendency is probably to
underestimate surface area, on average.

The present method can be modified to in-
corporate center of mass estimation. Doing so,
however, would require the distribution pat-
tern of k-values along the body axis, as well as
differential density distribution within the
body, to be known. It is generally true that the
anterior part of the body tends to have k-val-
ues higher than 2.0, whereas the values are of-
ten 2.0 or less in the posterior part of the body
(especially in the tail). This suggests that as-
suming a constant k-value for the entire body,
as in Henderson’s (1999) study and this one,
would produce a bias toward posterior dis-
placement of the estimated center of mass
from the true position. It would require exten-
sive research of extant animals to establish a
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common pattern of k-value distribution, which
is beyond the scope of the present study. Es-
timation of the center of mass in extinct ani-
mals is not yet as reliable as desired.

Conclusions

Body mass estimates based on orthogonal
silhouettes of vertebrates necessarily incor-
porate errors. The largest and most generally
acknowledged source of error is the assump-
tion that the ellipse can approximate the cross-
sections of vertebrate bodies. The superel-
lipse, which occurs in nature and encompass-
es ellipses, can be used to improve the accu-
racy of cross-sectional modeling, and hence of
body mass estimation. A computerized meth-
od to estimate body masses is given, and a
new computer program that performs this
task (PaleoMass) is introduced. The method
incorporates superelliptical cross-sections and
high density slicing to achieve high accura-
cies. Testing of the method, using geometrical
shapes, miniature vertebrate models, and ac-
tual animals, supports the validity of the
model in practice. The method is also appli-
cable to extinct animals by giving estimates
with ranges. The method can be improved in
the future by increasing the quality and quan-
tity of empirical data on vertebrate body
cross-sections.
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