
Robust and Accurate Inference for Generalized Linear

Models

by

Serigne N. Lô
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Abstract

In the framework of generalized linear models, the nonrobustness of classical estimators and

tests for the parameters is a well known problem and alternative methods have been proposed

in the literature. These methods are robust and can cope with deviations from the assumed

distribution. However, they are based on first order asymptotic theory and their accuracy in

moderate to small samples is still an open question. In this paper we propose a test statistic

which combines robustness and good accuracy for moderate to small sample sizes. We combine

results from Cantoni and Ronchetti (2001) and Robinson, Ronchetti and Young (2003) to ob-

tain a robust test statistic for hypothesis testing and variable selection which is asymptotically

χ2−distributed as the three classical tests but with a relative error of order O(n−1). This leads

to reliable inference in the presence of small deviations from the assumed model distribution and

to accurate testing and variable selection even in moderate to small samples.

Keywords: M-estimators, Monte Carlo, Robust inference, Robust variable selection, Sad-

dlepoint techniques, Saddlepoint Test.



1 Introduction

Generalized linear models (GLM) (McCullagh and Nelder, 1989) have become

the most commonly used class of models in the analysis of a large variety of data.

In particular, GLM can be used to model the relationship between predictors and

a function of the mean of a continuous or discrete response variable. Let Y1, ..., Yn

be n independent observations of a response variable. Assume that the distribu-

tion of Yi belongs to the exponential family with E[Yi] = µi and V ar[Yi] = V (µi),

and

g(µi) = ηi = xTi β, i = 1, ..., n, (1)

where β ∈ R
q is a vector of unknown parameters, xi ∈ R

q, and g(.) is the link

function.

The estimation of β can be carried out by maximum likelihood or quasi-

likelihood methods, which are equivalent if g(.) is the canonical link, such as the

logit function for logistic regression or the log for Poisson regression. Standard

asymptotic inference based on likelihood ratio, Wald, and score test is then read-

ily available for these models.

However, two main problems can potentially invalidate p-values and confidence

intervals based on standard classical techniques. First of all, the models are ideal

approximations to reality and deviations from the assumed distribution can have

important effects on classical estimators and tests for these models (nonrobust-

ness). Secondly, even when the model is exact, standard classical inference is

based on approximations to the distribution of the test statistics provided by (first

order) asymptotic theory. This can lead to inaccurate p-values and confidence

intervals when the sample size is moderate to small or when probabilities in the
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far tails are required (and in some cases both are required). Since these tests are

typically used for model comparison and variable selection, these problems can

have important implications in the final choice of the explanatory variables. As an

illustration, consider for instance the data set discussed in section 5, where a Pois-

son regression is used to model adverse events of a drug on 117 patients affected

by Crohn’s disease (a chronic inflammatory disease of the intestine) by means of

7 explanatory variables describing the characteristics of each patient. In this case

a classical variable selection is affected by the presence of outlying observations,

while a deviance analysis obtained using our new test is more reliable; see section 5.

The nonrobustness of classical estimators and tests for β is a well known prob-

lem and alternative methods have been proposed in the literature; see, for instance

Pregibon (1982), Stefanski, Carroll, and Ruppert (1986), Künsch, Stefanski, and

Carroll (1989), Morgenthaler (1992), Bianco and Yohai (1996), Ruckstuhl and

Welsh (2001), Victoria-Feser (2002), and Croux and Haesbroeck (2003) for robust

estimators and Cantoni and Ronchetti (2001) for robust inference. Although these

methods are devised to cope with deviations from the assumed model distribution,

their statistical properties are based on first order asymptotic theory and the ac-

curacy of the asymptotic approximation of their distributions in moderate to small

samples is still an open question.

In this paper we propose a test statistic which combines robustness and good

accuracy for small sample sizes. As a first step we apply the results in Robinson,

Ronchetti, and Young (2003) to the GLM case and obtain the new test statistic in

this case. We then combine the results of Cantoni and Ronchetti (2001) and Robin-

son, Ronchetti, and Young (2003) to obtain a robust test statistic for hypothesis

testing and variable selection in GLM which is asymptotically χ2−distributed as

the three classical tests but with a relative error of order O(n−1), i.e. the differ-
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ence between the exact tail probability and that obtained by the χ2 distribution

divided by the exact is of order O(n−1). This is in contrast with the absolute error

of order O(n− 1
2 ) for the classical tests, where the difference between the exact tail

probability and that obtained by the χ2 distribution is of order O(n− 1
2 ). For a

more detailed discussion of these properties we refer to Robinson, Ronchetti, and

Young (2003), p.1155-1156. The accuracy of the new robust test statistic is stable

in a neighborhood of the model distribution and this leads to robust inference even

in moderate to small samples. The new test statistic is easily computed. Given a

robust estimator for β, it has an explicit form in the case of a simple hypothesis

and it requires an additional minimization in the case of a composite hypothesis.

S-PLUS code is available from the authors upon request.

The paper is organized as follows. Section 2 reviews the classical and robust

estimators for GLM. In section 3.1 we review the saddlepoint test statistic in a

general setup and in section 3.2 we give its explicit form in the case of GLM.

Three important special cases (Normal, Poisson, Binomial) are treated in detail.

In section 3.3 we present the robustified version of the saddlepoint test which

is obtained by replacing the classical score function by its robust version in the

saddlepoint test statistic. Section 4 presents a simulation study in the case of

Poisson regression which shows the advantage of robust saddlepoint tests with

respect to standard classical tests. As an illustration, the new procedure is applied

to a real data example in section 5. Finally, section 6 concludes the article with

some potential research directions.
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2 Classical and Robust Inference for Generalized

Linear Models

Let Y1, ..., Yn be n of independent random variables with density (or probability

function) belonging to the exponential family

fY (y; θ, φ) = exp
{yθ − b(θ)

a(φ)
+ d(y;φ)

}

, (2)

for some specific functions a(·), b(·) and d(·; ·). Then E[Yi] = µi = b′(θi) and

V ar[Yi] = b′′(θi)a(φ). Given n observations x1, ..., xn of a set of q explanatory

variables (xi ∈ R
q), (1) defines the relationship between a linear predictor of the

xi’s and a function g(µi) of the mean response µi. When g(µi) is the canonical link,

g(µi) = θi, the maximum likelihood estimator and the quasi-likelihood estimator

of β are the solution of the system of equations

n
∑

i=1

(yi − µi) · xij = 0, j = 1, ..., q, (3)

where µi = g−1(xTi β).

The maximum likelihood and the quasi-likelihood estimator defined by (3) can

be viewed as an M-estimator (Huber, 1981) with score function

ψ(yi; β) = (yi − µi) · xi, (4)

where xi = (xi1, ..., xiq)
T .

Since ψ(y; β) is in general unbounded in x and y, the influence function of

the estimator defined by (3) is unbounded and the estimator is not robust; see

Hampel, Ronchetti, Rousseeuw, and Stahel (1986). Several alternatives have been
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proposed. One of these methods is the class of M-estimators of Mallows’s type

(Cantoni and Ronchetti 2001) defined by the score function:

ψ(yi; β) = ν(yi, µi)w(xi)µ
′
i − ã(β), (5)

where ã(β) = 1
n

∑n
i=1E[ν(yi, µi)]w(xi)µ

′
i, µ′

i = ∂µi

∂β
,

ν(yi, µi) = ψc(ri)
1

V 1/2(µi)
, ri = yi−µi

V 1/2(µi)
are the Pearson residuals, V 1/2(.) the square

root of the variance function, and ψc is the Huber function defined by

ψc(r) = r |r| ≤ c

= c · sign(r) |r| > c.

When w(xi) = 1, we obtain the so-called Huber quasi-likelihood estimator.

The tuning constant c is typically chosen to ensure a given level of asymptotic

efficiency and ã(β) is a correction term to ensure Fisher consistency at the model.

that can be computed explicitly for binomial and Poisson models and does not

require numerical integration. The choice of this estimator is due to the fact

that standard (first order aymptotic) inference based on robust quasi-deviances is

available; see Cantoni and Ronchetti (2001). This will allow us to compare our

new robust test with classical and robust tests based on first order asymptotic

theory.

3 Small Sample Accuracy and Robustness

3.1 Saddlepoint Test Statistic

Let Y1, ..., Yn be an independent, identically distributed sample of random vec-

tors from a distribution F on some sample space Y. Define the M-functional β(F )

to satisfy

E[ψ(Y ; β)] = 0, (6)
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where ψ is assumed to be a smooth function from Y×R
q −→ R

q with q = dim(β)

and the expectation is taken with respect to F . Suppose we wish to test the

hypothesis u(β) = η0, where u : R
q → R

q1 , q1 ≤ q and consider test statistics

based on u(Tn), where Tn is the M-estimate of β given by the solution of

n
∑

i=1

ψ(Yi;Tn) = 0. (7)

When q1 = 1, saddlepoint approximations with relative error of order O(n−1)

for the p-value P [u(Tn) > u(tn)], where tn is the observed value of Tn, are available;

see for instance DiCiccio, Field, and Fraser (1990), Tingley and Field (1990),

Daniels and Young (1991), Wang (1993), Jing and Robinson (1994), Fan and

Field (1995), Davison, Hinkley, and Worton (1995), Gatto and Ronchetti (1996),

and Butler (2007) for a recent general overview on saddlepoint methods. In the

multidimensional case (q1 > 1), Robinson, Ronchetti, and Young (2003) proposed

the one dimensional test statistic h(u(Tn)), where

h(y) = inf
{β:u(β)=y}

sup
λ
{−Kψ(λ; β)} (8)

and

Kψ(λ; β) = logE[eλ
Tψ(Y ;β)] (9)

is the cumulant generating function of the score function ψ(Y ; β) and the expec-

tation is taken with respect to F under the null hypothesis.

Using the saddlepoint approximation of the density of the M-estimator Tn, they

proved that under the null hypothesis, 2nh(u(Tn)) is asymptotically χ2
q1

with a rel-

ative error of order O(n−1). Therefore, although this test is asymptotically (first

order) equivalent to the three standard tests, it has better small sample properties,

the classical tests being asymptotically χ2
q1

with only an absolute error of order

O(n− 1
2 ).
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Notice that (8) can be rewritten as

h(y) = inf
{β:u(β)=y}

{−Kψ(λ(β); β)}, (10)

where Kψ is defined by (9) and λ(β) is the so-called saddlepoint satisfying

K ′
ψ(λ; β) ≡

∂

∂λ
Kψ(λ; β) = 0. (11)

Moreover, in the case of a simple hypothesis, i.e. u(β) = β, (10) simply becomes

h(β) = −Kψ(λ(β); β).

In order to apply the saddlepoint test statistic to GLM, we first adapt this result

to the case when the observations Y1, ..., Yn are independent but not identically

distributed. In this case the formulas given above still hold with the cumulant

generating function (9) replaced by

Kψ(λ; β) =
1

n

n
∑

i=1

Ki
ψ(λ; β), (12)

where K i
ψ(λ; β) = logEF i [eλ

Tψ(Yi;β)] and F i is the distribution of Yi.

This follows from the fact that the proof about the accuracy of the test requires

the saddlepoint approximation of the density of the M-estimator Tn, which in the

case of independent but not identically distributed observations is given in section

4.5c of Field and Ronchetti (1990) or in section 4 of Ronchetti and Welsh (1994)

and is based on the cumulant generating function (12).

The saddlepoint test statistic can now be applied to GLM with different score

functions ψ, such as those defined by (4) and (5). In the next section, we will

exploit the structure of GLM to provide explicit formulas for the new test statistic.
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3.2 Saddlepoint Test Statistic with Classical Score Func-

tion

In this section we first consider the classical situation. Robust versions of the

test will be derived in section 3.3. The quasi-likelihood and the maximum likeli-

hood estimators of β are defined by the same score function. The solution of (3) is

an M-estimator defined by the score function (4). We now derive the explicit form

of the saddlepoint test statistic (8) with the classical score function (4). The com-

plete computations are provided in Appendix A, B, C, D in the document “Robust

and Accurate Inference for Generalized Linear Models: Complete Computations”

available at http://www.unige.ch/ses/metri/ronchetti/ERpapers01.html.

We consider first the case of a simple hypothesis β = β0. Let Kψ(λ; β) =

1
n

∑n
i=1K

i
ψ(λ; β), where K i

ψ(λ; β) = logEF i
0
[eλ

Tψ(Yi;β)] and F i
0 is the distribution of

Yi defined by the exponential family (2) with θ = θ0i and b′(θ0i) = µ0i = g−1(xTi β0).

Then by (4) we can write

Ki
ψ(λ; β) = log

∫

eλ
Tψ(y;β)fYi

(y; θ0i, φ) · dy

= log

∫

eλ
T (y−µi)xi · e

yθ0i−b(θ0i)

a(φ) · ed(y;φ) · dy

= log

∫

e−µiλ
T xi · e

−b(θ0i)

a(φ) · e
y(θ0i+λT xia(φ))

a(φ) · ed(y;φ) · dy

= log

∫

e−µiλ
T xi · e

−b(θ0i)

a(φ) · e
b(θ0i+λT xia(φ))

a(φ) · e
y(θ0i+λT xia(φ))−b(θ0i+λT xia(φ))

a(φ) · ed(y;φ) · dy

= log
[

e
−[µiλ

T xi+
b(θ0i)

a(φ)
] · e

b(θ0i+λT xia(φ))

a(φ) ·

∫

e
y(θ0i+λT xia(φ))−b(θ0i+λT xia(φ))

a(φ) · ed(y;φ) · dy
]

=
b(θ0i + λTxia(φ)) − b(θ0i)

a(φ)
− µiλ

Txi . (13)

By taking into account the fact that µi = b′(θi), and that b′(.) is injective, the

solution λ(β) of (11) with Kψ defined by (12) and (13) is unique and given by (see
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Appendix A):

λ(β) =
β − β0

a(φ)
.

Therefore,

h(β) =
1

n

n
∑

i=1

b′(xTi β)xTi (β − β0) − (b(xTi β) − b(xTi β0))

a(φ)
. (14)

The test statistic 2nh(β̂) given by (14) where β̂ is MLE (the solution of (3)) is

asymptotically χ2
q under the simple null hypothesis β = β0 and can be used to test

this null hypothesis.

Notice that in this case (simple hypothesis and canonical link), the classical

saddlepoint test statistic 2nh(β̂) defined by (14) is the log-likelihood ratio test

statistic. Therefore, in this case the latter is asymptotically χ2
q with a relative

error of order O(n−1).

To test the more general hypothesis u(β) = η0, where u : R
q → R

q1 , q1 ≤ q,

the test statistic is given by 2nh(u(β̂)), where h(y) is defined by (10) and from

(13), (14)

−Kψ(λ(β); β) =
1

n

n
∑

i=1

b′(xTi β)xTi (β − β0) − (b(xTi β) − b(xTi β0))

a(φ)
, (15)

and β0 such that u(β0) = η0, i.e. β0 is the estimator of β under the null hypothesis.

Three special cases

(i) Yi ∼ N(µi, σ
2)

b(θ) = θ2

2
, a(φ) = σ2

Then,

h(β) =
1

2nσ2
(β − β0)

T
[

n
∑

i=1

xix
T
i

]

(β − β0).
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(ii) Yi ∼ P(µi)

b(θ) = eθ , a(φ) = 1

Then,

h(β) =
1

n

[

n
∑

i=1

ex
T
i βxTi (β − β0) −

n
∑

i=1

(ex
T
i β − ex

T
i β0)

]

.

(iii) Yi ∼ Bin(m,πi)

b(θ) = m log(1 + eθ) , a(φ) = 1

Then,

h(β) =
m

n

[

n
∑

i=1

ex
T
i β

1 + ex
T
i β
xTi (β − β0) −

n
∑

i=1

[

log(1 + ex
T
i β) − log(1 + ex

T
i β0)

]

]

.

When the model is exact and for composite hypotheses, the saddlepoint test will

be more accurate than the standard classical likelihood ratio test. However, both

are based on the (unbounded) classical score function (4) and will be inaccurate

(even for large n) in the presence of deviations from the model. In the next section,

we construct a robustified version of the saddlepoint test.

3.3 Saddlepoint Test Statistic with Robust Score Function

From (5), the robust score function is defined by ψ̃R(y; β) = ψc(r)w(x) 1
V 1/2(µ)

µ′−

ã(β) and the cumulant generating function of the robust score function by

Kψ̃R
(λ; β) =

1

n

n
∑

i=1

Ki
ψ̃R

(λ; β), (16)

where

Ki
ψ̃R

(λ; β) = logEF i

[

eλ
T ψ̃R(Yi;β)

]

.
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As in the classical case, the robust cumulant generating function K i
ψ̃R

(.) for

each observation i can be written as

Ki
ψ̃R

(λ; β) = log

∫

eλ
T ψ̃R(y;β)fYi

(y; θ0i, φ) · dy

= log

∫

e
λTψc(ri)

w(xi)

V 1/2(µi)
µ′i−λ

T ã(β)
· e

yθ0i−b(θ0i)

a(φ) · ed(y;φ) · dy

= log
[

∫

ri<−c

e
−λT c

w(xi)

V 1/2(µi)
µ′i−λ

T ã(β)
· e

yθ0i−b(θ0i)

a(φ) · ed(y;φ) · dy (Ii1)

+

∫

−c<ri<c

e
λT y−µi

V 1/2(µi)

w(xi)

V 1/2(µi)
µ′i−λ

T ã(β)
· e

yθ0i−b(θ0i)

a(φ) · ed(y;φ) · dy (Ii2)

+

∫

ri>c

e
λT c

w(xi)

V 1/2(µi)
µ′i−λ

T ã(β)
· e

yθ0i−b(θ0i)

a(φ) · ed(y;φ) · dy (Ii3)
]

= log[Ii1 + Ii2 + Ii3],

where ri = y−µi

V 1/2(µi)
.

For the explicit calculations of Iij for j = 1, 2, 3, we refer to Appendix B.

Finally, the cumulant generating function can be written as

Ki
ψ̃R

(λ; β) = log[Ii1 + Ii2 + Ii3]

= log
[

e
−λT c

w(xi)

V 1/2(µi)
µ′i−λ

T ã(β)
· P (Z i ≤ −cV 1/2(µi) + µi)

+ e
−λT µiµ′

iw(xi)

V (µi) · e−λ
T ã(β) · e

b(θ0i+
λT µ′

iw(xi)a(φ)

V (µi)
)−b(θ0i)

a(φ)

. P (−cV 1/2(µi) + µi < Z i
λ < cV 1/2(µi) + µi)

+ e
λT c

w(xi)

V 1/2(µi)
µ′i−λ

T ã(β)
· P (Z i ≥ cV 1/2(µi) + µi)

]

,

where Z i is a random variable with distribution (2) with θ = θ0i and Z i
λ is a ran-

dom variable with distribution (2) with θ = θ0i +
λTµ′iw(xi)a(φ)

V (µi)
.

To obtain hR(β), we have to solve the equation

∂Kψ̃R
(λ; β)

∂λ
=

1

n

n
∑

i=1

∂Ki
ψ̃R

(λ; β)

∂λ
= 0, (17)
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with respect to λ, i.e.

s(λ; β) =
n

∑

i=1

∂Ki
ψ̃R

(λ; β)

∂λ
=

n
∑

i=1

∂log(Ii1 + Ii2 + Ii3)

∂λ

=
n

∑

i=1

∂Ii1
∂λ

+ ∂Ii2
∂λ

+ ∂Ii3
∂λ

Ii1 + Ii2 + Ii3
= 0 . (18)

(18) can be easily solved numerically. Alternatively, we can approximate the solu-

tion of (18) by a one-step Newton’s algorithm, i.e.

λ̃(β) ∼= λ0 −
[∂s(λ; β)

∂λ
|λ0

]−1
· s(λ0; β) , (19)

where λ0 = β̂R−β0

a(φ)
and β̂R is the robust estimator defined by (7) and (5). The

explicit computations of s(λ; β) and ∂s(λ;β)
∂λ

are provided in Appendix C.

For a given distribution of Yi this leads to the following expression for the ro-

bust saddlepoint test statistic hR(.) :

hR(β) =
1

n

n
∑

i=1

Ki
ψ̃R

(λ̃(β); β) , (20)

where λ̃(β) ∼= β̂R−β0

a(φ)
−

[
∑n

i=1 xix
T
i Ai(

β̂R−β0

a(φ)
)
]−1

· s( β̂R−β0

a(φ)
; β)

and Ai(.) a scalar function defined by the distribution of Yi. For the important

cases of Normal, Poisson and Binomial distributions, we refer to the corresponding

expressions in Appendix D.

The test statistic 2nhR(β̂R) given by (20) where β̂R is the robust M-estimator de-

fined by (7) with the score function given by (5) is asymptotically χ2
q under the

simple null hypothesis β = β0 and can be used to test this null hypothesis.
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To test the more general hypothesis u(β) = η0, where u : R
q → R

q1 , q1 ≤ q,

the robust test statistic is given by 2nhR(u(β̂R)), where hR(y) is defined by

hR(y) = inf
{β:u(β)=y}

{−Kψ̃R
(λ̃(β); β)}. (21)

4 A Simulation Study

To illustrate and compare the different tests, we consider a Poisson regression

model with canonical link g(µ) = log(µ) and 3 explanatory variables plus intercept

(q = 4), i.e.

log(µi) = β1 + β2xi2 + β3xi3 + β4xi4 ,

where xij ∼ U [0, 1], j = 2, 3, 4. The Y ′
i s are generated according to the Poisson

distribution P (µi) and a perturbed distribution of the form (1−ε)P (µi)+εP (νµi),

where ε = 0.05, 0.10 and ν = 2. The latter represents situations where the distribu-

tion of the data is not exactly the model but possibly lies in a small neighborhood

of the model. The null hypothesis is β2 = β3 = β4 = 0 (q1 = 3) and we choose two

sample sizes n = 30, 100. To simulate the data, the parameter β1 was set equal to 1.

We consider four tests: the classical test, the robust quasi-deviance test de-

veloped in Cantoni and Ronchetti (2001), and the two saddlepoint tests derived

from them in sections 3.2 and 3.3. The latter are defined by the new test statis-

tics 2nh(β̂) and 2nhR(β̂R) respectively. The tuning constant c in the robust score

function (5) is set to 1.345. Since the x-design is balanced and uniform on [0, 1],

it is not necessary to use weights on the covariates x′is and we set w(xi) ≡ 1 ∀i.

The computation of the new saddlepoint test statistics involves explicit expres-

sions ((14) and (20)) in the case of a simple hypothesis and an additional minimiza-

tion in the case of a composite hypothesis. In our simulations and in the real data
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example of section 5, we computed (10)-(11) by direct numerical optimization with-

out using (20). In higher dimensional problems the latter would certainly be useful.

S-PLUS code is available from the authors upon request. The evaluation of the

robust version of the saddlepoint test requires the computation of β̂R, the robust

estimator defined by (7) and (5). Code is available in R (function glmrob in the

robustbase package) and S-PLUS (at http://www.unige.ch/ses/metri/cantoni/).

The results of the simulations are represented by PP-plots of p-values against

U [0, 1] probabilities. In Figures 1 to 3, PP-plots for the classical test (left) and

the saddlepoint test based on the classical score function (right) are given in Panel

(a). Panel (b) shows the corresponding PP-plots for their robust versions. The

first row reports the simulation results for sample size n = 30 and the second one

for n = 100.

Figure 1 shows the results when there are no deviations from the model. Even

in this case the asymptotic χ2 approximation of the classical test statistic is in-

accurate (deviation from the 45o line) both for n = 30 and 100 while the χ2

approximation of the distribution of the new test statistic is clearly better. The

robust quasi-deviance test is already doing better than its classical counterpart

and the χ2 approximation to the new robust saddlepoint test statistic provides a

very high degree of accuracy. In the presence of small deviations from the model

(Figure 2), the χ2 approximation of the classical test is extremely inaccurate (even

for n = 100), its saddlepoint version and robust quasi-deviance version are better

but still inaccurate, while the robust saddlepoint test is very accurate even down

to n = 30.

Finally, in the presence of larger deviations from the model (Figure 3), the

robust saddlepoint test is not as accurate as in the previous cases but it is still
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useful. Notice however that this is an extreme scenario especially for n = 30.

To summarize: The new saddlepoint statistic clearly improves the accuracy of

the test. When it is used with a robust score function, it can control the bias due

to deviations from the model and the resulting test is very accurate in the presence

of small deviations from the model and even down to small sample sizes.

5 A Real Data Example

To illustrate the use of the new test for variable selection, we consider a data

set issued from a study of the adverse events of a drug on 117 patients affected by

Crohn’s disease (a chronic inflammatory disease of the intestines).

In addition to the response variable AE (number of adverse events), 7 ex-

planatory variables were recorded for each patient: BMI (body mass index),

HEIGHT, COUNTRY (one of the two countries where the patient lives), SEX,

AGE, WEIGHT, and TREAT (the drug taken by the patient in factor form:

placebo, Dose 1, Dose 2). We consider a Poisson regression model.

Table 1 presents the p−values of an analysis of deviance based on the clas-

sical test, the (first order) robust quasi-deviance test developed in Cantoni and

Ronchetti (2001), and the new robust saddlepoint test respectively. The three

analyses agree on the selection of the variables Dose 1, BMI, HEIGHT, SEX and

the non-selection of Dose 2. The variable COUNTRY is also essentially significant

everywhere. Finally, AGE is supported by the two robust analyses, while WEIGHT

is not selected by the classical and the robust saddlepoint analysis, which seems

to be reasonable in view of the inclusion of BMI and HEIGHT. Additional infor-

mation on the influential points is provided by Figure 4 which shows the robust
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weights obtained by the robust analysis. Points with small weights can have a

big influence on the classical analysis and can lead to a wrong variable selection

when using the classical test. In view of the robustness and better finite sample

behavior of the new test, we recommend the result obtained by the third analysis.

6 Conclusion

We derived a robust test for GLM with good small sample accuracy. It keeps its

level in the presence of small deviations from the assumed model and the χ2 ap-

proximation of its distribution is accurate even down to small sample sizes. Since

this test requires only a robust score function, similar test procedures can be de-

veloped for other models where such score functions are available.
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S. Heritier, V. Czellar, M. Mächler, W. Stahel, Y. Ma, M. Genton, E. Parzen,

N. Wang, and seminar participants at the Universities of Sydney and Macquarie

(Australia), the Francqui Foundation Workshop (Brussels), Dalhousie University

(Canada), Texas A&M University, ETH Zürich, Università Cattolica (Milano) for
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Figure 1 (a): PP-plots of classical p−values vs. U [0, 1] when the data are gen-

erated from P (µi).
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Figure 1 (b): PP-plots of robust p−values vs. U [0, 1] when the data are generated

from P (µi).
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Figure 2 (a): PP-plots of classical p−values vs. U [0, 1] when the data are gen-

erated from a contaminated Poisson model with ε = 0.05, ν = 2
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Figure 2 (b): PP-plots of robust p−values vs. U [0, 1] when the data are generated

from a contaminated Poisson model with ε = 0.05, ν = 2
19



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n=30

Class. Quasi-deviance test

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n=30

Class. Saddlepoint test

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n=100

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n=100

Figure 3 (a): PP-plots of classical p−values vs. U [0, 1] when the data are gen-

erated from a contaminated Poisson model with ε = 0.10, ν = 2
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Figure 3 (b): PP-plots of robust p−values vs. U [0, 1] when the data are generated

from a contaminated Poisson model with ε = 0.10, ν = 2
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Table 1: Analysis of deviance for Crohn’s disease data

Variable P.val (class.) P.val (rob. as.) P.val (rob. sad.)

NULL - - -

Dose 1 0.010 0.007 0.019

Dose 2 0.408 0.798 0.730

BMI < 0.0001 0.007 0.0001

HEIGHT < 0.0001 0.0008 0.0003

COUNTRY 0.003 0.06 0.009

SEX 0.001 0.0004 < 0.0001

AGE 0.079 0.045 0.043

WEIGHT 0.401 0.027 0.291
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Figure 4: Plot of the robust weights for each observation
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Künsch, H., Stefanski, L., and Carroll, R. (1989), “Conditionally Unbiased

Bounded Influence Estimation in General Regression Models, with Applications

to Generalized Linear Models,” Journal of the American Statistical Association,

84, 460–466.

McCullagh, P. and Nelder, J. (1989), Generalized Linear Models, London: Chap-

man and Hall.

Morgenthaler, S. (1992), “Least-absolute-deviations Fits for Generalized Linear

Models,” Biometrika, 79, 747–754.

Pregibon, D. (1982), “Resistant Fits for Some Commonly Used Logistic Models

with Medical Applications,” Biometrics, 38, 485–498.

Robinson, J., Ronchetti, E., and Young, G. (2003), “Saddlepoint Approximations

and Tests Based on Multivariate M-estimators,” The Annals of Statistics, 31,

1154–1169.

Ronchetti, E. and Welsh, A. (1994), “Empirical Saddlepoint Approximations for

Multivariate M-estimators,” Journal of the Royal Statistical Society, Series B,

56, 313–326.

Ruckstuhl, A. and Welsh, A. (2001), “Robust Fitting of the Binomial Model,” The

Annals of Statistics, 29, 1117–1136.

23



Stefanski, L., Carroll, R., and Ruppert, D. (1986), “Optimally Bounded Score

Functions for Generalized Linear Models, with Applications to Logistic Regres-

sion,” Biometrika, 73, 413–425.

Tingley, M. and Field, C. (1990), “Small-sample Confidence Intervals,” Journal of

American Statistical Association, 85, 427–434.

Victoria-Feser, M.-P. (2002), “Robust Inference with Binary Data,” Psychomet-

rica, 67, 21–32.

Wang, S. (1993), “Saddlepoint Approximations in Conditional Inference,” Journal

of Applied Probability, 30, 397–404.

24


