Refine my results

Document type

Specific Collection

Language

Université de Fribourg

Entropy and electronic orders of the three-orbital Hubbard model with antiferromagnetic Hund coupling

Yue, Changming ; Hoshino, Shintaro ; Werner, Philipp

In: Physical Review B, 2020, vol. 102, no. 19, p. 195103

An antiferromagnetic Hund coupling in multiorbital Hubbard systems induces orbital freezing and an associated superconducting instability, as well as unique composite orders in the case of an odd number of orbitals. While the rich phase diagram of the half-filled three-orbital model has recently been explored in detail, the properties of the doped system remain to be clarified. Here, we...

Université de Fribourg

High-harmonic generation in spin-orbit coupled systems

Lysne, Markus ; Murakami, Yuta ; Schüler, Michael ; Werner, Philipp

In: Physical Review B, 2020, vol. 102, no. 8, p. 081121

We study high-harmonic generation in two-dimensional electron systems with Rashba and Dresselhaus spin-orbit coupling and derive harmonic generation selection rules with the help of group theory. Based on the band structures of these minimal models and explicit simulations we reveal how the spin-orbit parameters control the cutoff energy in the high-harmonic spectrum. We also show that the...

Université de Fribourg

Entropy and specific heat of the infinite-dimensional three-orbital Hubbard model

Yue, Changming ; Werner, Philipp

In: Physical Review B, 2020, vol. 102, no. 8, p. 085102

The Hund's coupling in multiorbital Hubbard systems induces spin freezing and associated Hund metal behavior. Using dynamical mean-field theory, we explore the effect of local moment formation, spin, and charge excitations on the entropy and specific heat of the three-orbital model. For fillings 2≲n<3 and low temperature, we demonstrate a substantial enhancement of the entropy in the...

Université de Fribourg

Unconventional free charge in the correlated semimetal Nd2Ir2O7

Wang, K. ; Xu, Bing ; Rischau, C. W. ; Bachar, N. ; Michon, B. ; Teyssier, J. ; Qiu, Y. ; Ohtsuki, T. ; Cheng, Bing ; Armitage, N. P. ; Nakatsuji, S. ; van der Marel, D.

In: Nature Physics, 2020, p. -

Nd2Ir2O7 is a correlated semimetal with the pyrochlore structure, in which competing spin–orbit coupling and electron–electron interactions are believed to induce a time- reversal symmetry-broken Weyl semimetal phase characterized by pairs of topologically protected Dirac points at the Fermi energy1,2,3,4. However, the emergent properties in these materials are far from clear, and exotic...

Université de Fribourg

Signatures of bosonic excitations in high-harmonic spectra of Mott insulators

Lysne, Markus ; Murakami, Yuta ; Werner, Philipp

In: Physical Review B, 2020, vol. 101, no. 19, p. 195139

The high-harmonic spectrum of the Mott insulating Hubbard model has recently been shown to exhibit plateau structures with cutoff energies determined by nth-nearest- neighbor doublon-holon recombination processes. The spectrum thus allows one to extract the on-site repulsion U. Here, we consider generalizations of the single-band Hubbard model and discuss the signatures of bosonic excitations...

Université de Fribourg

Collective modes in excitonic insulators: Effects of electron-phonon coupling and signatures in the optical response

Murakami, Yuta ; Golež, Denis ; Kaneko, Tatsuya ; Koga, Akihisa ; Millis, Andrew J. ; Werner, Philipp

In: Physical Review B, 2020, vol. 101, no. 19, p. 195118

We consider a two-band spinless model describing an excitonic insulator (EI) on the two-dimensional square lattice with anisotropic hopping parameters and electron-phonon (el-ph) coupling, inspired by the EI candidate Ta2NiSe5. We systematically study the nature of the collective excitations in the ordered phase which originates from the interband Coulomb interaction and the el-ph coupling. ...

Université de Fribourg

Photoenhanced excitonic correlations in a Mott insulator with nonlocal interactions

Bittner, Nikolaj ; Golež, Denis ; Eckstein, Martin ; Werner, Philipp

In: Physical Review B, 2020, vol. 101, no. 8, p. 085127

We investigate the effect of nonlocal interactions on the photodoped Mott insulating state of the two-dimensional Hubbard model using a nonequilibrium generalization of the dynamical cluster approximation. In particular, we compare the situation where the excitonic states are lying within the continuum of doublon-holon excitations to a setup where the excitons appear within the Mott gap. In...

Université de Fribourg

Ultrafast nonequilibrium evolution of excitonic modes in semiconductors

Murakami, Yuta ; Schüler, Michael ; Takayoshi, Shintaro ; Werner, Philipp

In: Physical Review B, 2020, vol. 101, no. 3, p. 035203

We study the time evolution of excitonic states after photoexcitation in the one- dimensional spinless extended Falicov-Kimball model. Several numerical methods are employed and benchmarked against each other: time-dependent mean-field simulations, the second-Born approximation (2BA) within the Kadanoff-Baym formalism, the generalized Kadanoff-Baym ansatz (GKBA) implemented with the 2BA, and...

Université de Fribourg

Nickelate superconductors: multiorbital nature and spin freezing

Werner, Philipp ; Hoshino, Shintaro

In: Physical Review B, 2020, vol. 101, no. 4, p. 041104

Superconductivity with a remarkably high Tc has recently been found in Sr-doped NdNiO2 thin films. While this system bears strong similarities to the cuprates, some differences, such as a weaker antiferromagnetic exchange coupling and possible high-spin moments on the doped Ni sites have been pointed out. Here, we investigate the effect of Hund coupling and crystal field splitting in a simple...

Université de Fribourg

Classification and characterization of nonequilibrium Higgs modes in unconventional superconductors

Schwarz, L. ; Fauseweh, B. ; Tsuji, N. ; Cheng, N. ; Bittner, Nikolaj ; Krull, H. ; Berciu, M. ; Uhrig, G.S. ; Schnyder, A.P. ; Kaiser, S. ; Manske, D.

In: Nature Communications, 2020, vol. 11, no. 1, p. 1–9

Recent findings of new Higgs modes in unconventional superconductors require a classification and characterization of the modes allowed by nontrivial gap symmetry. Here we develop a theory for a tailored nonequilibrium quantum quench to excite all possible oscillation symmetries of a superconducting condensate. We show that both a finite momentum transfer and quench symmetry allow for an...