Ergebnisse einschränken

Dokumententyp

Sprache

Université de Fribourg

Silica nanoparticles enhance disease resistance in Arabidopsis plants

El-Shetehy, Mohamed ; Moradi, Aboubakr ; Maceroni, Mattia ; Reinhardt, Didier ; Petri-Fink, Alke ; Rothen-Rutishauser, Barbara ; Mauch, Felix ; Schwab, Fabienne

In: Nature Nanotechnology, 2020, p. 1–10

In plants, pathogen attack can induce an immune response known as systemic acquired resistance that protects against a broad spectrum of pathogens. In the search for safer agrochemicals, silica nanoparticles (SiO2 NPs; food additive E551) have recently been proposed as a new tool. However, initial results are controversial, and the molecular mechanisms of SiO2 NP-induced disease resistance...

Université de Fribourg

Patient-derived and artificial ascites have minor effects on MeT-5A mesothelial cells and do not facilitate ovarian cancer cell adhesion

Estermann, Manuela ; Huang, Yen-Lin ; Septiadi, Dedy ; Ritz, Danilo ; Liang, Ching-Yeu ; Jacob, Francis ; Drasler, Barbara ; Petri-Fink, Alke ; Heinzelmann-Schwarz, Viola ; Rothen-Rutishauser, Barbara

In: PLOS ONE, 2020, vol. 15, no. 12, p. e0241500

The presence of ascites in the peritoneal cavity leads to morphological and functional changes of the peritoneal mesothelial cell layer. Cells loose cell-cell interactions, rearrange their cytoskeleton, activate the production of fibronectin, and change their cell surface morphology in a proinflammatory environment. Moreover, ovarian cancer cell adhesion has been shown to be facilitated by...

Université de Fribourg

Increased uptake of silica nanoparticles in inflamed macrophages but not upon co-exposure to micron-sized particles

Susnik, Eva ; Taladriz-Blanco, Patricia ; Drasler, Barbara ; Balog, Sandor ; Petri-Fink, Alke ; Rothen-Rutishauser, Barbara

In: Cells, 2020, vol. 9, no. 9, p. 2099

Silica nanoparticles (NPs) are widely used in various industrial and biomedical applications. Little is known about the cellular uptake of co-exposed silica particles, as can be expected in our daily life. In addition, an inflamed microenvironment might affect a NP’s uptake and a cell’s physiological response. Herein, prestimulated mouse J774A.1 macrophages with bacterial...

Université de Fribourg

When plants and plastic interact

Schwab, Fabienne ; Rothen-Rutishauser, Barbara ; Petri-Fink, Alke

In: Nature Nanotechnology, 2020, vol. 15, no. 9, p. 729–730

Overcoming the challenges of plastic detection in plants has made it possible to transfer many of the lessons learned from plant–metal nanoparticle interactions to plastic nanoparticles.

Université de Fribourg

An in vitro lung system to assess the proinflammatory hazard of carbon nanotube aerosols

Barosova, Hana ; Karakocak, Bedia Begum ; Septiadi, Dedy ; Petri-Fink, Alke ; Stone, Vicki ; Rothen-Rutishauser, Barbara

In: International Journal of Molecular Sciences, 2020, vol. 21, no. 15, p. 5335

In vitro three-dimensional (3D) lung cell models have been thoroughly investigated in recent years and provide a reliable tool to assess the hazard associated with nanomaterials (NMs) released into the air. In this study, a 3D lung co-culture model was optimized to assess the hazard potential of multiwalled carbon nanotubes (MWCNTs), which is known to provoke inflammation and fibrosis,...

Université de Fribourg

Rapid and sensitive quantification of cell-associated multi-walled carbon nanotubes

Steinmetz, Lukas ; Bourquin, Joel ; Barosova, Hana ; Haeni, Laetitia ; Caldwell, Jessica ; Milosevic, Ana ; Geers, Christoph ; Bonmarin, Mathias ; Taladriz-Blanco, Patricia ; Rothen-Rutishauser, Barbara ; Petri-Fink, Alke

In: Nanoscale, 2020, vol. 12, no. 33, p. 17362–17372

Evaluating nanomaterial uptake and association by cells is relevant for in vitro studies related to safe-by-design approaches, nanomedicine or applications in photothermal therapy. However, standard analytical techniques are time-consuming, involve complex sample preparation or include labelling of the investigated sample system with e.g. fluorescent dyes. Here, we explore lock-in...

Université de Fribourg

Characterization of the shape anisotropy of superparamagnetic iron oxide nanoparticles during thermal decomposition

Vanhecke, Dimitri ; Crippa, Federica ; Lattuada, Marco ; Balog, Sandor ; Rothen-Rutishauser, Barbara ; Petri-Fink, Alke

In: Materials, 2020, vol. 13, no. 9, p. 2018

Magnetosomes are near-perfect intracellular magnetite nanocrystals found in magnetotactic bacteria. Their synthetic imitation, known as superparamagnetic iron oxide nanoparticles (SPIONs), have found applications in a variety of (nano)medicinal fields such as magnetic resonance imaging contrast agents, multimodal imaging and drug carriers. In order to perform these functions in medicine,...

Université de Fribourg

Use of EpiAlveolar lung model to predict fibrotic potential of multiwalled carbon nanotubes

Barosova, Hana ; Maione, Anna G. ; Septiadi, Dedy ; Sharma, Monita ; Haeni, Laetitia ; Balog, Sandor ; O’Connell, Olivia ; Jackson, George R. ; Brown, David ; Clippinger, Amy J. ; Hayden, Patrick ; Petri-Fink, Alke ; Stone, Vicki ; Rothen-Rutishauser, Barbara

In: ACS Nano, 2020, vol. 14, no. 4, p. 3941–3956

Expansion in production and commercial use of nanomaterials increases the potential human exposure during the lifecycle of these materials (production, use, and disposal). Inhalation is a primary route of exposure to nanomaterials; therefore it is critical to assess their potential respiratory hazard. Herein, we developed a three-dimensional alveolar model (EpiAlveolar) consisting of human...

Université de Fribourg

Lipid nanoparticles biocompatibility and cellular uptake in a 3D human lung model

Magalhães, Joana ; Pinheiro, Marina ; Drasler, Barbara ; Septiadi, Dedy ; Petri-Fink, Alke ; Santos, Susana G ; Rothen-Rutishauser, Barbara ; Reis, Salette

In: Nanomedicine, 2020, vol. 15, no. 3, p. 259–271

Aim: Design nanostructured lipid carriers (NLC) to facilitate drug delivery to tuberculosis-infected areas, exploiting macrophage mannose receptors and assess their uptake in a 3D human lung model. Materials & methods: NLCs and mannosylated-NLCs were synthetized and characterized. Their uptake and biocompatibility were tested in a 3D human lung model. Results: The formulations have...