Affiner les résultats

Collection spécifique

Langue

Université de Fribourg

Ultrafast coupled charge and spin dynamics in strongly correlated NiO

Gillmeister, Konrad ; Golež, Denis ; Chiang, Cheng-Tien ; Bittner, Nikolaj ; Pavlyukh, Yaroslav ; Berakdar, Jamal ; Werner, Philipp ; Widdra, Wolf

In: Nature Communications, 2020, vol. 11, no. 1, p. 4095

Charge excitations across an electronic band gap play an important role in opto- electronics and light harvesting. In contrast to conventional semiconductors, studies of above-band-gap photoexcitations in strongly correlated materials are still in their infancy. Here we reveal the ultrafast dynamics controlled by Hund’s physics in strongly correlated photoexcited NiO. By combining...

Université de Fribourg

Mapping the unoccupied state dispersions in ${\mathrm{Ta}}_{2}{\mathrm{NiSe}}_{5}$ with resonant inelastic x-ray scattering

Monney, Claude ; Herzog, Marc ; Pulkkinen, Aki ; Huang, Y. ; Pelliciari, Jonathan ; Olalde-Velasco, P. ; Katayama, Naoyuk ; Nohara, Minoru ; Takagi, Hide ; Schmitt, Thorsten ; Mizokawa, Takashi

In: Physical Review B, 2020, vol. 102, no. 8, p. 085148

The transition metal chalcogenide Ta2NiSe5 undergoes a second-order phase transition at Tc=328K involving a small lattice distortion. Below Tc, a band gap at the center of its Brillouin zone increases up to about 0.35 eV. In this work, we study the electronic structure of Ta2NiSe5 in its low-temperature semiconducting phase, using resonant inelastic x-ray scattering (RIXS) at the Ni L3 edge....

Université de Fribourg

Coupling of electronic and nuclear motion in a negative ion resonance: Experimental and theoretical study of benzene

Allan, Michael ; Čurík, Roman ; Čársky, Petr

In: The Journal of Chemical Physics, 2019, vol. 151, no. 6, p. 064119

We present calculated and measured elastic and vibrational excitation cross sections in benzene with the objective to assess the reliability of the theoretical method and to shed more light on how the electronic motion of the incoming electron is coupled with the nuclear motion of the vibrations. The calculation employed the discrete momentum representation method which involves solving the...

Université de Fribourg

High-harmonic generation in quantum spin systems

Takayoshi, Shintaro ; Murakami, Yuta ; Werner, Philipp

In: Physical Review B, 2019, vol. 99, no. 18, p. 184303

We theoretically study the high-harmonic generation (HHG) in one-dimensional spin systems. While in electronic systems the driving by ac electric fields produces radiation from the dynamics of excited charges, we consider here the situation where spin systems excited by a magnetic field pulse generate radiation via a time- dependent magnetization. Specifically, we study the magnetic dipole...

Université de Fribourg

Observation of strongly heterogeneous dynamics at the depinning transition in a colloidal glass

Şenbil, Nesrin ; Gruber, Markus ; Zhang, Chi ; Fuchs, Matthias ; Scheffold, Frank

In: Physical Review Letters, 2019, vol. 122, no. 10, p. 108002

We study experimentally the origin of heterogeneous dynamics in strongly driven glass-forming systems. Thereto, we apply a well-defined force with a laser line trap on individual colloidal polystyrene probe particles seeded in an emulsion glass composed of droplets of the same size. Fluid and glass states can be probed. We monitor the trajectories of the probe and measure displacements and...

Université de Fribourg

Excited-state band mapping and momentum-resolved ultrafast population dynamics in In/Si(111) nanowires investigated with XUV-based time- and angle-resolved photoemission spectroscopy

Nicholson, Christopher W. ; Puppin, M. ; Lücke, A. ; Gerstmann, U. ; Krenz, M. ; Schmidt, W. G. ; Rettig, L. ; Ernstorfer, R. ; Wolf, M.

In: Physical Review B, 2019, vol. 99, no. 15, p. 155107

We investigate the excited state electronic structure of the model phase transition system In/Si(111) using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES). An extreme ultraviolet 500 kHz laser source at 21.7 eV is utilized both to map the energy of excited states above the Fermi level and follow the momentum-resolved population dynamics on a femtosecond timescale....