Université de Fribourg

Priming: getting ready for battle

Conrath, Uwe ; Beckers, Gerold J. M. ; Flors, Victor ; García-Agustín, Pilar ; Jakab, Gábor ; Mauch, Felix ; Newman, Mari-Anne ; Pieterse, Corné M. J. ; Poinssot, Benoit ; Pozo, María J. ; Pugin, Alain ; Schaffrath, Ulrich ; Ton, Jurriaan ; Wendehenne, David ; Zimmerli, Laurent ; Mauch-Mani, Brigitte

In: Molecular Plant-Microbe Interactions, 2006, vol. 19, no. 10, p. 1062–1071

Infection of plants by necrotizing pathogens or colonization of plant roots with certain beneficial microbes causes the induction of a unique physiological state called “priming.” The primed state can also be induced by treatment of plants with various natural and synthetic compounds. Primed plants display either faster, stronger, or both activation of the various cellular defense responses...

Université de Fribourg

Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance

Ton, Jurriaan ; Vos, Martin De ; Robben, Charlotte ; Buchala, Anthony ; Métraux, Jean-Pierre ; Loon, L. C. Van ; Pieterse, Corné M. J.

In: The Plant Journal, 2002, vol. 29(1), p. 11

In Arabidopsis, the rhizobacterial strain Pseudomonas fluorescens WCS417r triggers jasmonate (JA)- and ethylene (ET)-dependent induced systemic resistance (ISR) that is effective against different pathogens. Arabidopsis genotypes unable to express rhizobacteria-mediated ISR against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000)...

Université de Fribourg

NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol

Spoel, Steven H. ; Koornneef, Annemart ; Claessens, Susanne M. C. ; Korzelius, Jerôme P. ; Pelt, Johan A. van ; Mueller, Martin J. ; Buchala, Antony J. ; Métraux, Jean-Pierre ; Brown, Rebecca ; Kazan, Kemal ; Loon, L. C. van ; Dong, Xinnian ; Pieterse, Corné M. J.

In: The Plant Cell, 2003, vol. 15, p. 760

Plant defenses against pathogens and insects are regulated differentially by cross-communicating signal transduction pathways in which salicylic acid (SA) and jasmonic acid (JA) play key roles. In this study, we investigated the molecular mechanism of the antagonistic effect of SA on JA signaling. Arabidopsis plants unable to accumulate SA produced 25-fold higher levels of JA and showed enhanced...

Université de Fribourg

Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production

Pieterse, Corné M. J. ; Pelt, Johan A. van ; Ton, Jurriaan ; Parchmann, Stefanie ; Mueller, Martin J. ; Buchala, Antony J. ; Métraux, Jean-Pierre ; Loon, Leendert C. van

In: Physiological and Molecular Plant Pathology, 2000, vol. 57, no. 3, p. 123-134

Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of nonpathogenic biocontrol bacteria. In Arabidopsis thaliana, this induced systemic resistance (ISR) functions independently of salicylic acid but requires an intact response to the plant hormones jasmonic acid (JA) and ethylene. To further...

Université de Fribourg

Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack

Vos, Martin de ; Oosten, Vivian R. van ; Poecke, Remco M. P. van ; Pelt, Johan A. van ; Pozo, Maria J. ; Mueller, Martin J. ; Buchala, Antony J. ; Métraux, Jean-Pierre ; Loon, L. C. van ; Dicke, Marcel ; Pieterse, Corné M. J.

In: Molecular Plant-Microbe Interactions, 2005, vol. 18, p. 923

Plant defenses against pathogens and insects are regulated differentially by cross-communicating signaling pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. To understand how plants integrate pathogen- and insect-induced signals into specific defense responses, we monitored the dynamics of SA, JA, and ET signaling in Arabidopsis after attack by a...