Université de Fribourg

A biological perspective toward the interaction of theranostic nanoparticles with the bloodstream – what needs to be considered?

Clift, Martin J. D. ; Dechézelles, Jean-François ; Rothen-Rutishauser, Barbara ; Petri-Fink, Alke

In: Chemical Engineering, 2015, vol. 3, p. 7

Nanomedicine intends to create and further use novel materials at the nanoscale in order to provide an improvement upon current medical applications for human healthcare (ESF, 2005; Etheridge et al., 2013). In line with the advances made within nanotechnology since the late twentieth century (Mamalis, 2007) nanomedicine has received heightened attention due to its potential advantages, most...

Université de Fribourg

Preparation and characterization of functional silica hybrid magnetic nanoparticles

Digigow, Reinaldo G. ; Dechézelles, Jean-François ; Dietsch, Hervé ; Geissbühler, Isabelle ; Vanhecke, Dimitri ; Geers, Christoph ; Hirt, Ann M. ; Rothen-Rutishauser, Barbara ; Petri-Fink, Alke

In: Journal of Magnetism and Magnetic Materials, 2014, vol. 362, p. 72–79

We report on the synthesis and characterization of functional silica hybrid magnetic nanoparticles (SHMNPs). The co-condensation of 3-aminopropyltriethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) in presence of superparamagnetic iron oxide nanoparticles (SPIONs) leads to hybrid magnetic silica particles that are surface-functionalized with primary amino groups. In this work, a...

Université de Fribourg

Magnetic microreactors for efficient and reliable magnetic nanoparticle surface functionalization

Digigow, Reinaldo G. ; Dechézelles, Jean-François ; Kaufmann, J. ; Vanhecke, Dimitri ; Knapp, H. ; Lattuada, Marco ; Rothen-Rutishauser, Barbara ; Petri-Fink, Alke

In: Lab on a Chip, 2014, p. -

Microreactors have attracted wide attention in the nano- and biotechnology fields because they offer many advantages over standard liquid phase reactions. We report the development of a magnetic microreactor for reliable, fast and efficient surface functionalization of superparamagnetic iron oxide nanoparticles (SPIONs). A comprehensive study of the development process in terms of setup, loading...

Université de Fribourg

A general method to label metal oxide particles with fluorescent dyes using aryldiazonium salts

Dechézelles, Jean-François ; Griffete, Nébéwia ; Dietsch, Hervé ; Scheffold, Frank

In: Particle & Particle Systems Characterization, 2013, vol. 30, no. 7, p. 579-583

Different metal oxide particles are dye labeled by a novel and versatile approach based on aryldiazonium salt chemistry. For dye labeling the particles, the simplicity of aryldiazonium salts to be grafted onto metallic or metal oxide surface is advantageous. The salt is used as a linking agent for attaching the fluorescent molecules.