Université de Neuchâtel

A geostatistical approach to the simulation of stacked channels

Rongier, G ; Collon, P ; Renard, Philippe

In: Marine and Petroleum Geology, 2017, vol. 82, p. 318-335

Turbiditic channels evolve continuously in relation to erosion-deposition events. They are often gathered into complexes and display various stacking patterns. These patterns have a direct impact on the connectivity of sand-rich deposits. Being able to reproduce them in stochastic simulations is thus of significant importance. We propose a geometrical and descriptive approach to stochastically...

Université de Neuchâtel

Stochastic simulation of channelized sedimentary bodies using a constrained L-system

Rongier, G ; Collon, P ; Renard, Philippe

In: Computers & Geosciences, 2017, vol. 105, p. 158-168

Simulating realistic sedimentary bodies while conditioning all the available data is a major topic of research. We present a new method to simulate the channel morphologies resulting from the deposition processes. It relies on a formal grammar system, the Lindenmayer system, or L-system. The L-system puts together channel segments based on user-defined rules and parameters. The succession of...

Université de Neuchâtel

A methodology for pseudo-genetic stochastic modelling of discrete fracture networks

Bonneau, François ; Henrion, Vincent ; Caumon, Guillaume ; Renard, Philippe ; Sausse, Judith

In: Computers & Geosciences, 2013, vol. 56, p. 12-22

Stochastic simulation of fracture systems is an interesting approach to build a set of dense and complex networks. However, discrete fracture models made of planar fractures generally fail to reproduce the complexity of natural networks, both in terms of geometry and connectivity. In this study a pseudo-genetic method is developed to generate stochastic fracture models that are consistent...

Université de Neuchâtel

A pseudo-genetic stochastic model to generate karstic networks

Borghi, Andrea ; Renard, Philippe ; Jenni, Sandra

In: Journal of Hydrology, 2012, vol. 414-415, p. 516-529

In this paper, we present a methodology for the stochastic simulation of 3D karstic conduits accounting for conceptual knowledge about the speleogenesis processes and accounting for a wide variety of field measurements. The methodology consists of four main steps. First, a 3D geological model of the region is built. The second step consists in the stochastic modeling of the internal...