Université de Fribourg

Use of EpiAlveolar lung model to predict fibrotic potential of multiwalled carbon nanotubes

Barosova, Hana ; Maione, Anna G. ; Septiadi, Dedy ; Sharma, Monita ; Haeni, Laetitia ; Balog, Sandor ; O’Connell, Olivia ; Jackson, George R. ; Brown, David ; Clippinger, Amy J. ; Hayden, Patrick ; Petri-Fink, Alke ; Stone, Vicki ; Rothen-Rutishauser, Barbara

In: ACS Nano, 2020, vol. 14, no. 4, p. 3941–3956

Expansion in production and commercial use of nanomaterials increases the potential human exposure during the lifecycle of these materials (production, use, and disposal). Inhalation is a primary route of exposure to nanomaterials; therefore it is critical to assess their potential respiratory hazard. Herein, we developed a three-dimensional alveolar model (EpiAlveolar) consisting of human...

Université de Fribourg

Lipid nanoparticles biocompatibility and cellular uptake in a 3D human lung model

Magalhães, Joana ; Pinheiro, Marina ; Drasler, Barbara ; Septiadi, Dedy ; Petri-Fink, Alke ; Santos, Susana G ; Rothen-Rutishauser, Barbara ; Reis, Salette

In: Nanomedicine, 2020, vol. 15, no. 3, p. 259–271

Aim: Design nanostructured lipid carriers (NLC) to facilitate drug delivery to tuberculosis-infected areas, exploiting macrophage mannose receptors and assess their uptake in a 3D human lung model. Materials & methods: NLCs and mannosylated-NLCs were synthetized and characterized. Their uptake and biocompatibility were tested in a 3D human lung model. Results: The formulations have...

Université de Fribourg

A novel 3D intestine barrier model to study the immune response upon exposure to microplastics

Lehner, Roman ; Wohlleben, Wendel ; Septiadi, Dedy ; Landsiedel, Robert ; Petri‑Fink, Alke ; Rothen‑Rutishauser, Barbara

In: Archives of Toxicology, 2020, p. -

The plausibility of human exposure to microplastics has increased within the last years. Microplastics have been found in different food types including seafood, salt, sugar and beverages. So far, human health effects of microplastics after ingestion are unknown. Herein, we designed a novel, three- dimensional in vitro intestinal model consisting of the human intestinal epithelial cell lines...

Université de Fribourg

Polydopamine nanoparticle doped nanofluid for solar thermal energy collector efficiency increase

Hauser, Daniel ; Steinmetz, Lukas ; Balog, Sandor ; Taladriz‐Blanco, Patricia ; Septiadi, Dedy ; Wilts, Bodo D. ; Petri‐Fink, Alke ; Rothen‐Rutishauser, Barbara

In: Advanced Sustainable Systems, 2020, vol. 4, no. 1, p. 1900101

Polydopamine can form black nanoparticles and has recently been gaining attention due to its extraordinary heating properties upon excitation with light. Herein, polydopamine hybrid nanoparticles are synthesized in different sizes and subsequently added to a solar fluid to analyze heating ability. The solar fluids with the differently sized hybrid polydopamine particles are compared to a...

Université de Fribourg

Reduction of nanoparticle load in cells by mitosis but not exocytosis

Bourquin, Joël ; Septiadi, Dedy ; Vanhecke, Dimitri ; Balog, Sandor ; Steinmetz, Lukas ; Spuch-Calvar, Miguel ; Taladriz-Blanco, Patricia ; Petri-Fink, Alke ; Rothen-Rutishauser, Barbara

In: ACS Nano, 2019, vol. 13, no. 7, p. 7759–7770

The long-term fate of biomedically relevant nanoparticles (NPs) at the single cell level after uptake is not fully understood yet. We report that lysosomal exocytosis of NPs is not a mechanism to reduce the particle load. Biopersistent NPs such as nonporous silica and gold remain in cells for a prolonged time. The only reduction of the intracellular NP number is observed via cell division,...

Université de Fribourg

Revealing the role of epithelial mechanics and macrophage clearance during pulmonary epithelial injury recovery in the presence of carbon nanotubes

Septiadi, Dedy ; Abdussalam, Wildan ; Rodriguez‐Lorenzo, Laura ; Spuch‐Calvar, Miguel ; Bourquin, Joël ; Petri‐Fink, Alke ; Rothen‐Rutishauser, Barbara

In: Advanced Materials, 2018, vol. 30, no. 52, p. 1806181

Wound healing assays are extensively used to study tissue repair mechanisms; they are typically performed by means of physical (i.e., mechanical, electrical, or optical) detachment of the cells in order to create an open space in which live cells can lodge. Herein, an advanced system based on extensive photobleaching‐induced apoptosis; providing a powerful tool to understand the repair...

Université de Fribourg

Carbon nanodots: Opportunities and limitations to study their biodistribution at the human lung epithelial tissue barrier

Durantie, Estelle ; Barosova, Hana ; Drasler, Barbara ; Rodriguez-Lorenzo, Laura ; Urban, Dominic A. ; Vanhecke, Dimitri ; Septiadi, Dedy ; Hirschi-Ackermann, Liliane ; Petri-Fink, Alke ; Rothen-Rutishauser, Barbara

In: Biointerphases, 2018, vol. 13, no. 6, p. 06D404

Inhalation of combustion-derived ultrafine particles (≤0.1 μm) has been found to be associated with pulmonary and cardiovascular diseases. However, correlation of the physicochemical properties of carbon-based particles such as surface charge and agglomeration state with adverse health effects has not yet been established, mainly due to limitations related to the detection of carbon...

Université de Fribourg

Nanoparticle–cell interaction: a cell mechanics perspective

Septiadi, Dedy ; Crippa, Federica ; Moore, Thomas Lee ; Rothen-Rutishauser, Barbara ; Petri-Fink, Alke

In: Advanced Materials, 2018, p. -

Progress in the field of nanoparticles has enabled the rapid development of multiple products and technologies; however, some nanoparticles can pose both a threat to the environment and human health. To enable their safe implementation, a comprehensive knowledge of nanoparticles and their biological interactions is needed. In vitro and in vivo toxicity tests have been considered the gold...