Ergebnisse einschränken

Dokumententyp

Institution

Spezialsammlung

Sprache

Fachgebiet

Université de Fribourg

Nanoparticle administration method in cell culture alters particle-cell interaction

Moore, Thomas L. ; Urban, Dominic A. ; Rodriguez-Lorenzo, Laura ; Milosevic, Ana ; Crippa, Federica ; Spuch-Calvar, Miguel ; Balog, Sandor ; Rothen-Rutishauser, Barbara ; Lattuada, Marco ; Petri-Fink, Alke

In: Scientific Reports, 2019, vol. 9, no. 1, p. 900

As a highly interdisciplinary field, working with nanoparticles in a biomedical context requires a robust understanding of soft matter physics, colloidal behaviors, nano- characterization methods, biology, and bio-nano interactions. When reporting results, it can be easy to overlook simple, seemingly trivial experimental details. In this context, we set out to understand how in vitro...

Université de Fribourg

Nanoparticles and Taylor dispersion as a linear time-invariant system

Lemal, Philipp ; Petri-Fink, Alke ; Balog, Sandor

In: Analytical Chemistry, 2019, vol. 91, no. 2, p. 1217–1221

The physical principles underpinning Taylor dispersion offer a high dynamic range to characterize the hydrodynamic radius of particles. While Taylor dispersion grants the ability to measure radius within nearly 5 orders of magnitude, the detection of particles is never instantaneous. It requires a finite sample volume, a finite detector area, and a finite detection time for measuring...

Université de Fribourg

Beyond global charge: role of amine bulkiness and protein fingerprint on nanoparticle–cell interaction

Burnand, David ; Milosevic, Ana ; Balog, Sandor ; Spuch-Calvar, Miguel ; Rothen-Rutishauser, Barbara ; Dengjel, Jörn ; Kinnear, Calum ; Moore, Thomas L. ; Petri-Fink, Alke

In: Small, 2018, vol. 14, no. 46, p. 1802088

Amino groups presented on the surface of nanoparticles are well‐known to be a predominant factor in the formation of the protein corona and subsequent cellular uptake. However, the molecular mechanism underpinning this relationship is poorly defined. This study investigates how amine type and density affect the protein corona and cellular association of gold nanoparticles with cells in...

Université de Fribourg

Synthesis and biophysical characterization of an odd-numbered 1,3-diamidophospholipid

Neuhaus, Frederik ; Mueller, Dennis ; Tanasescu, Radu ; Balog, Sandor ; Takashi Ishikawa ; Brezesinski, Gerald ; Zumbuehl, Andreas

In: Langmuir, 2018, vol. 34, no. 10, p. 3215–3220

Nanomedicine suffers from low drug delivery efficiencies. Mechanoresponsive vesicles could provide an alternative way to release active compounds triggered by the basic physics of the human body. 1,3-Diamidophospholipids with C16 tails proved to be an effective building block for mechanoresponsive vesicles, but their low main phase transition temperature prevents an effective application in...

Université de Fribourg

Structural behavior of cylindrical polystyrene-block-poly(ethylene-butylene)-block-polystyrene (SEBS) triblock copolymer containing MWCNTs: on the influence of nanoparticle surface modification

Hasanabadi, Noushin ; Nazockdast, Hossein ; Gajewska, Bernadetta ; Balog, Sandor ; Gunkel, Ilja ; Bruns, Nico ; Lattuada, Marco

In: Macromolecular Chemistry and Physics, 2017/218/22/n/a-n/a

In this work, the influence of carbon nanotubes (CNTs) on the self-assembly of nanocomposite materials made of cylinder-forming polystyrene-block-poly(ethylene- butylene)-block-polystyrene (SEBS) is studied. CNTs are modified with polystyrene (PS) brushes by surface-initiated atom transfer radical polymerization to facilitate both their dispersion and the orientation of neighboring PS domains...

Université de Fribourg

Biodistribution of single and aggregated gold nanoparticles exposed to the human lung epithelial tissue barrier at the air-liquid interface

Durantie, Estelle ; Vanhecke, Dimitri ; Rodriguez-Lorenzo, Laura ; Delhaes, Flavien ; Balog, Sandor ; Septiadi, Dedy ; Bourquin, Joel ; Petri-Fink, Alke ; Rothen-Rutishauser, Barbara

In: Particle and Fibre Toxicology, 2017, vol. 14, p. 49

The lung represents the primary entry route for airborne particles into the human body. Most studies addressed possible adverse effects using single (nano)particles, but aerosolic nanoparticles (NPs) tend to aggregate and form structures of several hundreds nm in diameter, changing the physico-chemical properties and interaction with cells. Our aim was to investigate how aggregation might...

Université de Fribourg

Rheological characterization of nanostructured material based on Polystyrene-b-poly(ethylene-butylene)-b-polystyrene (SEBS) block copolymer: Effect of block copolymer composition and nanoparticle geometry

Hasanabadi, Noushin ; Nazockdast, Hossein ; Balog, Sandor ; Lattuada, Marco

In: Composites Science and Technology, 2017, vol. 149, no. Supplement C, p. 192–206

Block copolymer (BCP) nanocomposite systems are of broad interest; however, reports on the role of nanoparticles on microphase separation behavior are rare. The goal of present study is to investigate the preparation of composite nanostructured materials containing Multi-Walled Carbon Nanotubes (MWCNTs) or graphene nanoplates. BCP nanocomposites based on the linear triblock copolymer, ...

Université de Fribourg

Vesicle origami: cuboid phospholipid vesicles formed by template‐free self‐assembly

Neuhaus, Frederik ; Mueller, Dennis ; Tanasescu, Radu ; Balog, Sandor ; Ishikawa, Takashi ; Brezesinski, Gerald ; Zumbuehl,  Andreas

In: Angewandte Chemie International Edition, 2017, vol. 56, no. 23, p. 6515–6518

Phospholipid liposomes are archetypical self-assembled structures. To minimize the surface tension, the vesicles typically are spherical. Deciphering the bilayer code, the basic physical interactions between phospholipids would allow these molecules to be utilized as building blocks for novel, non-spherical structures. A 1,2- diamidophospholipid is presented that self-assembles into a cuboid...

Université de Fribourg

Plasmonic nanoparticles and their characterization in physiological fluids

Urban, Dominic A. ; Rodriguez-Lorenzo, Laura ; Balog, Sandor ; Kinnear, Calum ; Rothen-Rutishauser, Barbara ; Petri-Fink, Alke

In: Colloids and Surfaces B: Biointerfaces, 2016, vol. 137, p. 39–49

Nanoparticles possess unique properties beyond that of classical materials, and while these properties can be used for designing a dedicated functionality, they may also pose a problem to living organisms, to human health and the environment. The specific primary routes by which nanoparticles may interact with the human body include inhalation, injection, ingestion and application to the skin....