Université de Fribourg

Biodistribution, clearance, and long‐term fate of clinically relevant nanomaterials

Bourquin, Joël ; Milosevic, Ana ; Hauser, Daniel ; Lehner, Roman ; Blank, Fabian ; Petri-Fink, Alke ; Rothen-Rutishauser, Barbara

In: Advanced Materials, 2018, p. -

Realization of the immense potential of nanomaterials for biomedical applications will require a thorough understanding of how they interact with cells, tissues, and organs. There is evidence that, depending on their physicochemical properties and subsequent interactions, nanomaterials are indeed taken up by cells. However, the subsequent release and/or intracellular degradation of the...

Université de Fribourg

Beyond global charge: role of amine bulkiness and protein fingerprint on nanoparticle–cell interaction

Burnand, David ; Milosevic, Ana ; Balog, Sandor ; Spuch-Calvar, Miguel ; Rothen-Rutishauser, Barbara ; Dengjel, Jörn ; Kinnear, Calum ; Moore, Thomas L. ; Petri-Fink, Alke

In: Small, 2018, vol. 14, no. 46, p. 1802088

Amino groups presented on the surface of nanoparticles are well‐known to be a predominant factor in the formation of the protein corona and subsequent cellular uptake. However, the molecular mechanism underpinning this relationship is poorly defined. This study investigates how amine type and density affect the protein corona and cellular association of gold nanoparticles with cells in...

Université de Fribourg

Artificial lysosomal platform to study nanoparticle long-term stability

Milosevic, Ana ; Bourquin, Joël ; Burnand, David ; Lemal, Philipp ; Crippa, Federica ; Monnier, Christophe A. ; Rodriguez-Lorenzo, Laura ; Petri-Fink, Alke ; Rothen-Rutishauser, Barbara

In: CHIMIA International Journal for Chemistry, 2019, vol. 73, no. 1, p. 55–58

Nanoparticles (NPs) possess unique properties useful for designing specific functionalities for biomedi- cal applications. A prerequisite of a safe-by-design and effective use in any biomedical application is to study NP–cell interactions to gain a better understanding of cellular consequences upon exposure. Cellular uptake of NPs results mainly in the localization of NPs in the complex...

Université de Fribourg

Nanoparticle administration method in cell culture alters particle-cell interaction

Moore, Thomas L. ; Urban, Dominic A. ; Rodriguez-Lorenzo, Laura ; Milosevic, Ana ; Crippa, Federica ; Spuch-Calvar, Miguel ; Balog, Sandor ; Rothen-Rutishauser, Barbara ; Lattuada, Marco ; Petri-Fink, Alke

In: Scientific Reports, 2019, vol. 9, no. 1, p. 900

As a highly interdisciplinary field, working with nanoparticles in a biomedical context requires a robust understanding of soft matter physics, colloidal behaviors, nano- characterization methods, biology, and bio-nano interactions. When reporting results, it can be easy to overlook simple, seemingly trivial experimental details. In this context, we set out to understand how in vitro...

Université de Fribourg

A rapid screening method to evaluate the impact of nanoparticles on macrophages

Mottas, Inès ; Milosevic, Ana ; Petri-Fink, Alke ; Rothen-Rutishauser, Barbara ; Bourquin, Carole

In: Nanoscale, 2017, vol. 9, no. 7, p. 2492–2504

Nanotechnology is an emerging and highly promising field to develop new approaches for biomedical applications. There is however at present an unmet need for a rapid and universal method to screen nanoparticles (NP) for immunocompatibility at early stages of their development. Indeed, although many types of highly diverse NP are currently under investigation, their interaction with immune...

Université de Fribourg

A rational and iterative process for targeted nanoparticle design and validation

Rodriguez-Lorenzo, Laura ; Rafiee, Sarah D. ; Reis, Corine ; Milosevic, Ana ; Moore, Thomas L. ; Balog, Sandor ; Rothen-Rutishauser, Barbara ; Rüegg, Curzio ; Petri-Fink, Alke

In: Colloids and Surfaces B: Biointerfaces, 2018, vol. 171, p. 579–589

The lack of understanding of fundamental nano-bio interactions, and difficulties in designing particles stable in complex biological environments are major limitations to their translation into biomedical clinical applications. Here we present a multi- parametric approach to fully characterize targeted nanoparticles, and emphasizes the significant effect that each detail in the synthetic...

Université de Fribourg

Rapid and sensitive quantification of cell-associated multi-walled carbon nanotubes

Steinmetz, Lukas ; Bourquin, Joel ; Barosova, Hana ; Haeni, Laetitia ; Caldwell, Jessica ; Milosevic, Ana ; Geers, Christoph ; Bonmarin, Mathias ; Taladriz-Blanco, Patricia ; Rothen-Rutishauser, Barbara ; Petri-Fink, Alke

In: Nanoscale, 2020, vol. 12, no. 33, p. 17362–17372

Evaluating nanomaterial uptake and association by cells is relevant for in vitro studies related to safe-by-design approaches, nanomedicine or applications in photothermal therapy. However, standard analytical techniques are time-consuming, involve complex sample preparation or include labelling of the investigated sample system with e.g. fluorescent dyes. Here, we explore lock-in...