Faculté des sciences

Device grade microcrystalline silicon owing to reduced oxygen contamination

Torres, P. ; Meier, J. ; Flückiger, R. ; Kroll, U. ; Anna Selvan, J. A. ; Keppner, H. ; Shah, Arvind ; Littlewood, S. D. ; Kelly, I. E. ; Giannoulès, P.

In: Applied Physics Letters, 1996, vol. 69, no. 10, p. 1373-1375

As-deposited undoped microcrystalline silicon (µc-Si:H) has in general a pronounced n-type behavior. Such a material is therefore often not appropriate for use in devices, such as p-i-n diodes, as an active, absorbing i layer or as channel material for thin-film transistors. In recent work, on p-i-n solar cells, this disturbing n-type character had been... Plus

Ajouter à la liste personnelle
    Summary
    As-deposited undoped microcrystalline silicon (µc-Si:H) has in general a pronounced n-type behavior. Such a material is therefore often not appropriate for use in devices, such as p-i-n diodes, as an active, absorbing i layer or as channel material for thin-film transistors. In recent work, on p-i-n solar cells, this disturbing n-type character had been successfully compensated by the ``microdoping'' technique. In the present letter, it is shown that this n-type behavior is mainly linked to oxygen impurities; therefore, one can replace the technologically delicate microdoping technique by a purification method, that is much easier to handle. This results in a reduction of oxygen impurities by two orders of magnitude; it has, furthermore a pronounced impact on the electrical properties of µc-Si:H films and on device performance, as well. Additionally, these results prove that the unwanted donor-like states within µc-Si:H are mainly due to extrinsic impurities and not to structural native defects.