Anti-Polarity in Ideal BiMnO$_3$

Pio Baettig,†‡§ Ram Seshadri,† and Nicola A. Spaldin*,†

Materials Department, University of California, Santa Barbara, California 93106-5050, Chemistry Department, University of Fribourg, Pèrolles, 1700 Fribourg, Switzerland, and Department of Quantum Matter, ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima 739-8530, Japan

Perovskite-structure bismuth manganite has been the focus of recent attention because of its potential as a multiferroic material exhibiting simultaneous ferromagnetism and ferroelectricity. Indeed, early reports of ferromagnetism, and ferromagnetic ordering temperature of ~ 100 K and substantial magnetization of $\sim 3.2 \mu_B$ per formula unit are now well-established. In addition, two recent structure determinations using room temperature and low temperature powder neutron diffraction found a noncentrosymmetric $C2$ space group, which permits the existence of ferroelectricity. Subsequently, ferroelectric hysteresis loops were measured on polycrystalline and thin-film samples, and second harmonic response, indicative of polarity, was reported in BiMnO$_3$ thin films.

The polar behavior has been rationalized, using first-principles density functional calculations, in terms of the stereocchemical activity of the Bi$^{3+}$ lone pair. In stereochemically lone-pair-active cations, off-centering toward a neighboring anion (or anions) is accompanied by charge transfer into formally empty cation states (in this case Bi 6p orbitals). The resulting covalent bond formation stabilizes the off-centering and produces characteristic lobe-shaped “lone pairs” around the cation (see for example, Figure 10 of ref 11). Although early first-principles calculations for the high symmetry cubic structure found an unstable zone-center phonon suggestive of ferroelectric behavior, subsequent calculations for the experimentally reported structure showed that the local Bi–O displacements in fact anti-align. The resulting structure is almost antiferroelectric, with small inequivalences between sites yielding a ferri-electric arrangement with a net polarization. The off-centering of the Bi ions also introduces a strain into the lattice which is responsible for the unusual orbital ordering that results in ferromagnetism.

The seemingly consistent picture of ferro- or ferri-electricity and ferromagnetism in BiMnO$_3$ was recently called into question, however, by an analysis of the related material, BiScO$_3$. BiScO$_3$ is not a multiferroic (the formally trivalent Sc$^{3+}$ ion is nonmagnetic) and is therefore a more straightforward system for studying Bi lone pair activity in perovskite-structure oxides, without the accompanying complication of magnetism. BiScO$_3$ was found to have the same monoclinic crystal system as BiMnO$_3$, with similar lattice parameters. However, both X-ray powder and electron diffraction reflections yielded unambiguously a centrosymmetric $C2/c$ structure. As expected, Rietveld analysis of the neutron powder diffraction data within this $C2/c$ space group gave typical positive thermal parameters, small estimated standard deviations for the fractional atomic coordinates and thermal parameters, and appropriate R factors. Interestingly, Rietveld refinement within the $C2$ space group gave slightly smaller R factors (a result of the larger number of structural parameters in $C2$) but unphysically negative thermal parameters for two of the oxygen atoms and estimated standard deviations 1 order of magnitude larger than those obtained within $C2/c$. The negative thermal parameters and large estimated standard deviations are indicators that a center of symmetry has been missed. The authors of ref 13 pointed out that similarly large estimated standard deviations occurred in the earlier refinements of BiMnO$_3$ within the $C2$ space group13 and suggested that BiMnO$_3$ might in fact be centrosymmetric. Subsequently, the same group used selected area electron diffraction, convergent beam electron diffraction, and Rietveld analysis of neutron diffraction data to study polycrystalline BiMnO$_3$ directly.14 Their data indicated that BiMnO$_3$ crystallizes in the centrosymmetric $C2/c$ space group. In addition, Montanari et al. recently found that the actual structure depends sensitively on the oxygen stoichiometry15,16 and used neutron studies on polycrystalline samples as a function of magnetic field and temperature to suggest that the ideal structure is centrosymmetric $C2/c$.17

In an effort to resolve this controversy, here we use the LDA+U method of density functional theory to perform the first full computational structural optimization of BiMnO$_3$ and to compare the structure and properties of our calculated lowest energy structure to the experimentally reported structures. We find that, although the two reported $C2$ structures are indeed polar, they are in fact higher in energy than a closely related centrosymmetric $C2/c$ structure with zero polarization. Our result is consistent with the recent structural work on polycrystalline bulk samples but cannot explain the earlier ferroelectric hysteresis loops or second harmonic signals.

First we compare the energies and polarizations of the experimental structures reported by Atou and co-workers6 and dos Santos and co-workers7 (we refer to these as the “Atou” and “dos Santos” structures in the following; note that the x position of O(5) in the dos Santos structure is 0.349 not 0.300 as reported in ref 712). Our calculations are performed using the projector augmented wave (PAW) method18,19 of density functional theory20,21 as implemented in the VASP code.22,23 The exchange-correlation functional is treated using the LDA+U model in the around mean field limit24 with a $U_{\text{eff}} (=U - J)$ of 5.2 eV on the Mn d orbitals. We use the default VASP PAW potentials (Bi$_d$, Mn$_p$, O) and calculate the charge densities using a Γ-centered $4 \times 4 \times 2$ k-point mesh and an energy cutoff of 450 eV. Polarizations are extracted using the Berry phase method$^{25-28}$ with a sampling of 10 k-points per string in the direction of polarization. We find that the two structures differ considerably in their total energies and polarizations, with the Atou structure having a substantial polarization of 18.96 μC/cm2, compared with a small value of 0.9 μC/cm2 for the dos Santos structure. (This latter value is comparable to an earlier report of 0.52 μC/cm2 calculated for the same structure using the full-potential linear augmented plane wave approach,12 $U = 8$ eV and $J = 1.06$.

1 University of California, Santa Barbara.
2 University of Fribourg.
3 Hiroshima University.
experimental values for many transition metal oxides, including BiFeO$_3$. We point out, however, that our calculations are for ideal, stoichiometric BiMnO$_3$, which might not always be achieved experimentally. We hope that our computations will motivate further work on BiMnO$_3$, in order to resolve the inconsistency between the apparently lower energy centrosymmetric structure and the reports of ferroelectric hysteresis and second harmonic generation which indicate noncentrosymmetry.

Acknowledgment. This work was supported by the Chemical Bonding Centers program of the National Science Foundation, grant number CHE-0434567, and made use of the central facilities provided by the NSF-MRSEC Award No. DMR05-20415. The authors thank Juergen Eckert for useful discussions.

References