Faculté des sciences

The “Micromorph” cell: a new way to high-efficiency-low-temperature crystalline silicon thin-film cell manufacturing?

Keppner, H. ; Kroll, U. ; Torres, P. ; Meier, J. ; Platz, R. ; Fischer, D. ; Beck, N. ; Dubail, S. ; Anna Selvan, J. A. ; Pellaton Vaucher, N. ; Goerlitzer, M. ; Ziegler, Y. ; Tscharner, R. ; Hof, Ch. ; Goetz, M. ; Pernet, P. ; Wyrsch, Nicolas ; Vuille, J. ; Cuperus, J. ; Shah, Arvind ; Pohl, J.

In: AIP Conference Proceeding, 1997, vol. 394, no. 1, p. 271-281

Hydrogenated microcrystalline Silicon (µc-Si:H) produced by the VHF-GD (Very High Frequency Glow Discharge) process can be considered to be a new base material for thin-film crystalline silicon solar cells. The most striking feature of such cells, in contrast to conventional amorphous silicon technology, is their stability under light-soaking. With respect to crystalline silicon technology,... Plus

Ajouter à la liste personnelle
    Summary
    Hydrogenated microcrystalline Silicon (µc-Si:H) produced by the VHF-GD (Very High Frequency Glow Discharge) process can be considered to be a new base material for thin-film crystalline silicon solar cells. The most striking feature of such cells, in contrast to conventional amorphous silicon technology, is their stability under light-soaking. With respect to crystalline silicon technology, their most striking advantage is their low process temperature (220 °C). The so called “micromorph” cell contains such a µc-Si:H based cell as bottom cell, whereas the top-cell consists of amorphous silicon. A stable efficiency of 10.7% (confirmed by ISE Freiburg) is reported in this paper. At present, all solar cell concepts based on thin-film crystalline silicon have a common problem to overcome: namely, too long manufacturing times. In order to help in solving this problem for the particular case of plasma-deposited µc-Si:H, results on combined argon/hydrogen dilution of the feedgas (silane) are presented. It is shown that rates as high as 9.4 Å/s can be obtained: furthermore, a first solar cell deposited with 8.7 Å/s resulted in an efficiency of 3.1%.