Characterization of industrial activated carbons by adsorption and immersion techniques and by STM

Fritz Stoeckli, Teresa A. Centeno, Jean-Baptiste Donnet,† Nadia Pusset* and Eugène Papirer*
Institut de Chimie de l'Université, Av. de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
†Centre de Recherches sur la Physico-Chimie des Surfaces Solides, 24 Avenue du Président Kennedy, F-68200 Mulhouse, France

The results obtained from a variety of techniques (vapour adsorption, selective adsorption of caffeine and immersion calorimetry) used to characterize activated carbons of industrial origin are compared. It is shown that gaseous effects due to constrictions, and often overlooked, can be revealed by simple experiments with larger molecular probes. Immersion calorimetry appears to be a simple and efficient technique, as illustrated by an activation series. Complementary information is also provided by scanning tunnelling microscopy (STM).

Activated carbons are widely used in filtration technology and in heterogeneous catalysis, where their microporous structure (pore sizes and volume) as well as the external surface area play an important role. It has been known for a long time that the sorptive capacity generally increases with the degree of burnoff (mass loss) resulting from the physical or the chemical activation of the precursor. However, depending on its origin and on the treatment, various types of activated carbons can be obtained. It is therefore essential to be able to characterize them in a reliable fashion, in order to assess the influence of the various factors leading to the final material. This approach provides the information needed in the various applications of activated carbons.

The present paper illustrates this approach, by describing a variety of techniques available for full characterization of microporous carbons. The study is based on two series of industrial activated carbons, obtained from different precursors and by different methods (physical activation of coconut shells at \(\sim 900^\circ\text{C}\) and chemical activation of hardwood by \(\text{H}_3\text{PO}_4\) at \(\sim 450^\circ\text{C}\)).

It is shown how the main structural properties of the carbons can be determined to various degrees of sophistication, depending on the techniques used, and how these properties depend on the history of the material. Emphasis is also put on the comparison of various techniques and on the convergence of overlapping techniques. It is therefore left to the reader to decide which approach might be most suitable for specific needs.

THEORETICAL

The study is based on the adsorption from the vapour and liquid phases, on immersion calorimetry and on scanning tunnelling microscopy (STM), a technique which has been applied only recently—but successfully—to active carbons.

The various techniques have been described separately elsewhere and therefore only their essential characteristics are recalled here. Basically, for microporous carbons, the gas–solid and liquid–solid interactions (adsorption and calorimetry) are based on the theory of Dubinin and its developments. The fundamental expression is the equation of Dubinin and Astakhov:

\[
N_\text{a} = N_0 \exp\left[-\left(A/B_\sigma\right)^n\right]
\]

where \(N_\text{a}\) represents the amount (in mmol g\(^{-1}\)) adsorbed at temperature \(T\) and relative pressure \(P/P_\sigma\). \(N_0\) is the limiting amount adsorbed in the micropores, \(A = RT \ln(P/P_\sigma)\), and \(n\), \(B_\sigma\) and \(\beta\) are temperature-invariant parameters depending on the system under investigation. For activated carbons, \(n\) varies typically between 1.5 (very heterogeneous micropore distributions) and 3 (narrow distributions), the average being \(\sim 2\). This value corresponds to the classical equation of Dubinin and Radushkevich (D–R), which is used to describe adsorption by most industrial activated carbons.
Parameter β is an empirical scaling factor called the affinity coefficient, which depends on the adsorbate. By convention, benzene is the reference vapour and $\beta(C_6H_6) = 1$.

Parameter E_o (kJ mol$^{-1}$), called the characteristic energy of the system, is related to the average micropore width L. Various techniques have suggested the approximate relation

$$L = 10.8/(E_o - 11.4) \text{ nm}$$

which is of fundamental importance in the characterization of microporous carbons. If it is assumed, to a good first approximation, that the molar volume in the adsorbed state is close to that of the liquid state, V_m, it follows that the micropore volume is $W_o = N_a \cdot V_m$. It is the volume filled as P/P_o tends to unity and may vary, depending on molecular sieve effects (see below, Figures 4 and 6). Usually an activated carbon is characterized by the volume W_o, filled by a small molecular probe such as CH$_2$Cl$_2$ or C$_6$H$_6$ near room temperature. (These molecules are preferred to nitrogen and CO$_2$, which may lead to problems.)

The combination of W_o and L leads to the approximate area of slit-shaped micropores12:

$$S_{mi} = 2 \cdot 10^4 W_o/L \text{ m}^2 \text{ g}^{-1}$$

with W_o in cm3 g$^{-1}$ and L in nm. The external surface area S_e, found in meso and macropores, can be determined from isotherm analysis18 or immersion calorimetry3, with an overall accuracy of $\sim 10 - 15\%$. The total surface area of the carbonaceous material, derived from adsorption data, is therefore $S_{mi} = S_{mi} + S_e$.

Pore size distributions and molecular sieve properties, on the other hand, can be derived from adsorption experiments with molecules of different sizes. However, owing to experimental difficulties, it is preferable to use immersion calorimetry with liquids having molecular sizes between 0.4 and 1.5 nm. In this case, the fundamental equation12 is

$$\Delta h = \beta E_o W_o (1 + \alpha T)^{1/2} 2V_m + h_S \text{ J g}^{-1}$$

where α is the thermal expansion coefficient of the liquid.

The term h_S, takes into account the wetting of the external surface by the liquid h_i being obtained from experiments with non-porous carbons of known surface areas. As shown elsewhere20, Equation (4) is a thermodynamic consequence of Equation (1).

On the other hand, immersion calorimetry in water provides information on the hydrophilic/hydrophobic character of the surface, depending on the number of primary centres c_o. The relation between Δh_i (H$_2$O) and the parameters of the water adsorption isotherm is discussed in detail elsewhere20.

It has been observed9 that adsorption from aqueous solutions by activated carbons often follows an expression similar to Equation (1):

$$N_a = N_o \exp \left[-D \log^2 (c_o/c) \right]$$

where c is the equilibrium concentration and c_o is the saturation concentration of the adsorbate. Strictly speaking, the affinity coefficient of the solute should also be taken into account, but its influence is small, in view of the logarithmic relation between c and N_a. As shown below, this relation applies also to the selective adsorption of caffeine on to carbons. This molecule has a limited solubility in water and a high affinity for carbonaceous surfaces. As shown elsewhere21, its net enthalpy of adsorption from aqueous solutions is 0.112 \pm 0.015 J m$^{-2}$, as opposed to typical values of 0.035 - 0.060 J m$^{-2}$ for water. This provides a means to assess rapidly the area accessible to this molecule in industrial activated carbons (the external surface and the area of the pores wider than ~ 0.7 nm).

EXPERIMENTAL

The equipment and the techniques used in the present study have been described in detail elsewhere15. The properties of the main adsorbates are given in Table 1.

In caffeine adsorption, the initial and equilibrium concentrations were determined by u.v. spectroscopy (maximum at 273 nm), using an internal calibration. A reference isotherm was also determined for a graphitized carbon black (N-326), which has an N_2(77K) surface area of 83 m2 g$^{-1}$. Some earlier data on caffeine adsorption by carbon black M-100 and active carbons N-125 and P-02 were also included, to obtain a better overall assessment of this technique.

The activated carbons of series DE resulted from the physical activation of coconut shells by steam at ~ 900 - 1000°C after carbonization at 600 - 800°C. Sample DE-60 was reactivated in the laboratory to a weight loss of 69%, to investigate the evolution of gate effects described below. Samples BTH and CBH resulted from the activation of pine wood. BTH was obtained from the same physical activation as in series DE. BCH, on the other hand, was carbonized and activated in one step at 450-500°C with phosphoric acid.

Scanning tunnelling microscopy (STM), developed by Binnig and Rohrer in 1982, has become a powerful tool for the exploration of carbon surfaces. Most interesting results have been obtained so far on well-oriented carbons (graphite), carbon fibres11, and more recently also on small-particle carbon blacks12. However, to the authors’ knowledge, activated carbons have not hitherto been examined extensively by STM13. Surface-activated carbon fibres have already been observed in the laboratory4.

STM observations were carried out with a Nanoscope II microscope (Digital Instruments), using a commercially available 80/20 Pt-Ir tip. The STM images were obtained in the constant-current mode, at room temperature and in air, with a setpoint current varying from 1 to 5 nA and a positive bias voltage of 20 - 100 mV, depending on the scan size and on the tunnel current applied.

One of the major limitations of STM is the fact that it is applicable only to conducting materials, since the imaging mechanism depends on a tunnelling current. Activated carbons are considered to be bad conductors and therefore it has been generally assumed that a study by STM would prove difficult. The present paper shows that such a study is indeed possible, provided that a number of precautions are taken. To remove surface oxidation by-products, which are poor conductors of electricity, the samples are subjected to toluene extraction for 2 d. They are then dried in vacuum at 110°C and a small particle of carbon to be examined by STM is fixed to a glass plate by a conducting glue (based on silver) which ensures electrical conductivity. The reproducibility of images is good at low and high (atomic) resolutions. About 80 raw
Table 1 Main properties of the adsorbates

<table>
<thead>
<tr>
<th>Carbon</th>
<th>(L_c (\text{mm}))</th>
<th>(\alpha (\text{10}^{-3} \text{K}^{-1}))</th>
<th>(\nu_m (\text{cm}^3 \text{mol}^{-1}))</th>
<th>(\beta)</th>
<th>(-h (\text{J m}^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichloromethane</td>
<td>0.33</td>
<td>1.34</td>
<td>64.02</td>
<td>0.66</td>
<td>0.152</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.41</td>
<td>1.24</td>
<td>88.91</td>
<td>1.00</td>
<td>0.114</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>0.54</td>
<td>0.96</td>
<td>108.10</td>
<td>1.04</td>
<td>0.101</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>0.63</td>
<td>1.22</td>
<td>96.50</td>
<td>1.05</td>
<td>0.115</td>
</tr>
<tr>
<td>Cyclohexane-1,5,9-triene (CDTD)</td>
<td>0.76</td>
<td>0.76</td>
<td>182.02</td>
<td>1.90</td>
<td>0.103</td>
</tr>
<tr>
<td>Tetrabutylurea (TBU)</td>
<td>0.93</td>
<td>0.85</td>
<td>283.34</td>
<td>3.50</td>
<td>0.118</td>
</tr>
<tr>
<td>Ti-2,4xyl/IPsphosphate (TXP)</td>
<td>1.50</td>
<td>0.66</td>
<td>360.04</td>
<td>4.05</td>
<td>0.160</td>
</tr>
</tbody>
</table>

Table 2 Structural parameters of the carbons

<table>
<thead>
<tr>
<th>Carbon</th>
<th>DE-60</th>
<th>DE-69</th>
<th>DE-80</th>
<th>DE-150</th>
<th>BTH</th>
<th>BCH</th>
<th>N-326</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_0 (\text{cm}^2 \text{g}^{-1}))</td>
<td>0.42</td>
<td>-</td>
<td>0.57</td>
<td>0.80</td>
<td>0.48</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(E_a (\text{kJ mol}^{-1}))</td>
<td>20.6</td>
<td>-</td>
<td>17.4</td>
<td>15.2</td>
<td>18.1</td>
<td>16.5</td>
<td>-</td>
</tr>
<tr>
<td>(L (\text{mm}))</td>
<td>1.17</td>
<td>-</td>
<td>1.80</td>
<td>2.84</td>
<td>1.61</td>
<td>2.12</td>
<td>-</td>
</tr>
<tr>
<td>(S_{un} (\text{m}^2 \text{g}^{-1}))</td>
<td>718</td>
<td>-</td>
<td>633</td>
<td>521</td>
<td>596</td>
<td>462</td>
<td>-</td>
</tr>
<tr>
<td>(S_{un} (\text{m}^2 \text{g}^{-1}))</td>
<td>118</td>
<td>-</td>
<td>86</td>
<td>263</td>
<td>81</td>
<td>831</td>
<td>-</td>
</tr>
<tr>
<td>(S_{equ} (\text{m}^2 \text{g}^{-1}))</td>
<td>836</td>
<td>-</td>
<td>719</td>
<td>784</td>
<td>677</td>
<td>1293</td>
<td>-</td>
</tr>
<tr>
<td>(N_{max} (\text{mmol} \text{g}^{-1}))</td>
<td>2.03</td>
<td>-</td>
<td>2.75</td>
<td>3.86</td>
<td>2.39</td>
<td>2.64</td>
<td>-</td>
</tr>
<tr>
<td>(\Delta h_{ads} (\text{J g}^{-1}))</td>
<td>50.0</td>
<td>52.5</td>
<td>69.4</td>
<td>76.6</td>
<td>67.0</td>
<td>164.1</td>
<td>9.2</td>
</tr>
<tr>
<td>(\Delta h_{ads}(\text{J g}^{-1})/S_{un} (\text{m}^2))</td>
<td>42.9</td>
<td>30.8</td>
<td>40.6</td>
<td>50.7</td>
<td>39.7</td>
<td>139.7</td>
<td>0.3</td>
</tr>
<tr>
<td>(\Delta h_{ads}(\text{J g}^{-1})/S_{un} (\text{m}^2))</td>
<td>0.051</td>
<td>-</td>
<td>0.056</td>
<td>0.065</td>
<td>0.059</td>
<td>0.108</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3 Molecular sieve properties of the carbons

<table>
<thead>
<tr>
<th>Adsorbate</th>
<th>(W_0 (\text{cm}^2 \text{g}^{-1}))</th>
<th>(\Delta h (\text{J g}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE-60</td>
<td>0.42 0.40 0.35 0.36 0.16 0.11 0.00</td>
<td>128.1 124.0 91.3 109.6 49.2 44.0 19.0</td>
</tr>
<tr>
<td>DE-69</td>
<td>0.57 0.60 - 0.39 - 0.60 0.33 139.3 152.2 143.7 151.9 82.5</td>
<td></td>
</tr>
<tr>
<td>DE-80</td>
<td>0.80 0.76 0.81 0.88 0.88 194.6 186.1 191.4 213.4 200.7</td>
<td></td>
</tr>
<tr>
<td>DE-150</td>
<td>0.48 0.43 0.38 0.33 0.17 122.8 115.9 100.1 91.5 49.4</td>
<td></td>
</tr>
<tr>
<td>BTH</td>
<td>0.49 0.44 - 0.43 - 0.32 229.1 193.4 187.8 - 195.0</td>
<td></td>
</tr>
<tr>
<td>BCH</td>
<td>- - - - - - - - - -</td>
<td></td>
</tr>
</tbody>
</table>

images were collected for each sample, and the most typical are presented here.

RESULTS AND DISCUSSION

The results of the adsorption and immersion experiments are summarised in Tables 2 and 3. Figures 1 and 2 show the logarithmic plots of Equation (5) for the selective adsorption of caffeine from aqueous solutions at 293 K. These plots are linear and lead to the limiting values \(N_{lim} \) corresponding, in principle, to the monolayer capacity of the accessible surface area of the carbons (the isotherms are practically of type I). These values were compared with the surface areas derived from the selective adsorption of caffeine, measured by immersion calorimetry, \(S_{(imm)} = \Delta h_{(o)} / 0.112 \text{J m}^{-2} \), or by other techniques. It appears, that the comparison of \(N_{lim} \) with the surface area derived from immersion calorimetry is subject to a certain scatter, although the two should be proportional. On the other hand, the surface area derived from the enthalpy of immersion into aqueous solution of caffeine is in good agreement with the total surface area, \(S_{ tot} = S_{m} + S_{t} \), derived from independent adsorption data (see Figure 3), provided that no molecular sieve effects are present (such an effect is observed in sample DE-60). An overall assessment of the data in Table 2 and Figure 3 suggests an average molecular surface area of \(\sim 65 \times 10^{-20} \text{m}^2 \) for caffeine, but the values range from 40 to 100 \(\times 10^{-20} \text{m}^2 \). It appears that the calorimetric technique leads to better results than the caffeine isotherm. The latter is also more time-consuming.
In the case of series DE, the vapour adsorption of a small molecule (Ar at 77 K) shows that the micropore volume V_p increases with activation, as expected.\cite{1} The average micropore size, on the other hand, is relatively large in all samples. This behaviour, which has been observed previously\cite{13,14}, reflects the origin and history of the material. The adsorption data, combined with the determination of the external surface area S_e, lead to the total surface areas S_{total}, which can be compared with the values obtained from caffeine adsorption and immersion.

On the basis of the data obtained from small molecular probes, such as CH$_2$Cl$_2$ at 293 K, it might be concluded that the activated carbons of series DE have large micropores and that sample DE-80 should be very similar to N-125, a carbon described in detail elsewhere\cite{14} ($W_p = 0.64 \text{ cm}^2 \text{ g}^{-1}$, $E_p = 16.6 \text{ kJ mol}^{-1}$ and $S_e = 157 \pm 20 \text{ m}^2 \text{ g}^{-1}$). As found experimentally, the micropore system of this solid is equally accessible to molecules of different sizes.

However, for carbons DE-60, DE-69 and DE-80, immersion calorimetry with molecules of different sizes reveals a limited accessibility of the micropore systems.\cite{15,16} Figure 4 shows the volumes $W_s(L_v)$ accessible to the molecules of critical dimension L_v, as calculated from Δh_0 (Table 3). It appears that the largest molecule, TXP (1.5 nm) is completely excluded from the micropore volume of solid DE-60, although its average pore size is $\sim 1.2 \text{ nm}$. This behaviour reflects a gate effect, probably due to constrictions at the entrance of the pores. As seen in Figure 4, this effect disappears with increasing burnoff. In sample DE-80 a volume of $0.33 \text{ cm}^3 \text{ g}^{-1}$ becomes accessible to TXP, whereas the overall micropore volume is only 0.15 cm^3 greater than that of DE-60. This is a clear indication of the presence of constrictions in solid DE-60 which also exclude to some extent caffeine.

As a consequence, a smaller surface area is obtained than is predicted by S_{total} (446 against 836 m2 g$^{-1}$). It appears that the total accessibility of the pore system is achieved only for sample DE-150. For this carbon, immersion calorimetry with caffeine solutions leads to a total surface area of $\sim 700 \text{ m}^2 \text{ g}^{-1}$, in reasonable agreement with S_{total} (734 m2 g$^{-1}$).

For the carbons of series DE, the specific enthalpies of immersion into water $h(H_2O) = \Delta h/S_{total}$ vary between 0.050 and 0.065 J m$^{-2}$ and are typical for this type of activated carbon. This suggests that within an activation series, the enthalpy of immersion into water can already provide an estimate of the total surface area of the solid.

The STM images shown in Figure 3 were obtained in the constant-current mode. The tip was rastered across the surface, while the tunnelling current was kept constant by a feedback circuit. The STM images describe the surface relief, which is expressed by different shades of colour. This relief reflects the surface topography. At high magnifications (full scale $< 20 \text{ nm}$), the very rough aspect of the surface is apparent. Micrograph 5a (sample DE-150), covering an area of $15 \times 15 \text{ nm}$, shows a central region of $< 5 \text{ nm}$ with slits converging towards it. The overall structure is similar to that described to Stoeckli.\cite{17},

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image1.png}
\caption{D-R plot for the selective adsorption of caffeine from aqueous solutions at 293 K by carbons BTH (○) and BCH (□).

Figure 3 Comparison of the limiting amount of caffeine adsorbed by various activated carbons with the total surface area S_{total} obtained from $S_e + S_m$ (○) and from the enthalpy of immersion into aqueous solutions of caffeine, $\Delta h_0/(0.1123 \text{ m}^2 \text{ g}^{-1})$ (△).}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image2.png}
\caption{Micro pore volume $W_s(L_v)$ filled by liquids with average molecular sizes L_v for carbons DE-60 (●), DE-80 (□) and DE-150 (△).}
\end{figure}
Figure 5 Typical STM micrographs of samples DE-150 (a, b, c) and DE-60 (a', b', c')

Such slits appear more clearly on micrographs 5b and 5c with corresponding areas of observation equal to 10×10 nm and 5×5 nm. The width of these slits is ~2 nm, which corresponds to supermicropores. The quantitative analysis of STM micrographs is difficult because of the small areas observed, but as suggested by micrographs 5a–c, the microporosity of sample DE-60 is less important than that of DE-150.

In the case of adsorption by samples BTH and BCH, a similar pattern is observed as illustrated by Figure 6. The larger molecules are still excluded to some extent, but the gate effect becomes important only beyond 1 nm. Therefore, as shown in Table 2, the bulk of the structure becomes accessible to caffeine and the total surface areas obtained from the isotherm and from immersion calorimetry are in good agreement with the
values based on the adsorption isotherms of the small probes.

It is also worth pointing out the very large external surface area of sample BCH, ~ 850 m²/g. This solid has essentially supermicropores, with a theoretical width of 2 nm. These pores are equally accessible to the various molecular probes, as indicated by the values of \(\Delta h \) given in Table 3 and illustrated by Figure 6. Moreover, the high specific enthalpy of immersion into water (0.108 J m⁻³), unchanged by washing with aqueous HCl, suggests a larger ratio than usual between edges and basal planes, since the oxygen-containing groups are located on the edges.

For sample BTH, the micrographs 7a and b show slit-shaped micropores with a width of < 1 nm. Since the average micropore width is ~ 1.6 nm, as suggested by small molecular probes (Table 2), the micrographs probably show the constrictions indicated by Figure 6. It will therefore be interesting to correlate their modification with the increasing accessibility of the micropore system, after further activation of sample BTH. This combination of STM and adsorption techniques will be reported in due course.

CONCLUSIONS

The exhaustive physical characterization of the carbons of series DE and BH illustrates the possibilities currently available. The techniques based on gas adsorption and on immersion calorimetry can already provide useful information, in particular within a given series of carbons. Scanning tunnelling electron microscopy on the other hand is still in its early stages as far as activated carbons are concerned, but it is likely that it will become a useful tool for the characterization of this type of solid.

It appears that the adsorption of small molecules such as \(\text{CH}_2\text{Cl}_2 \) or benzene at 293 K, combined with immersion into the corresponding liquids, provides a first set of data \((W_\alpha, E_\alpha, L_\alpha, S_\alpha, S_m) \). This approach is probably more reliable than the use of \(N_2 \) at 77 K (where activated diffusion can play a role) and of \(\text{CO}_2 \) at ~ 273 K. However, the presence of a gate effect, often overlooked at this stage, requires additional but simple experiments based on immersion calorimetry. The use of larger molecular probes and the selective adsorption of caffeine from aqueous solutions (0.112 ± 0.015 J m⁻²) provide rapid information on the accessibility of the micropore volume. This is particularly important for the subsequent use of the carbons in filtration technology, where other molecules are involved.

Standard tests, as described here, can also be used in the study of series of carbons, where immersion calorimetry provides a shortcut for the standard characterization, usually based on adsorption isotherms.

ACKNOWLEDGEMENT

T. A. Centeno wishes to express her thanks to Consejo Superior de Investigaciones Científicas (CSIC) for a grant.

![Figure 7](image-url)
REFERENCES

1 Bansal, R. C., Donnet, J. B. and Stoeckli, H. F. In 'Active Carbon', Dekker, New York, 1988
3 Stoeckli, F., Rebstein, P. and Ballerini, L. Carbon 1990, 28, 907
9 Jaroniec, M. and Derylo, A. J. Colloid Interface Sci. 1981, 84, 191; cf. also Ref. 1
13 Donnet, J. B., Papirer, E. Wang, W. and Stoeckli, F. Carbon 1994, 32, 183
15 Stoeckli, H. F. and Ballerini, L. Fuel 1991, 70, 557
16 Stoeckli, H. F. and Krachenbush, F. Carbon 1984, 22, 297
17 Stoeckli, H. F. Carbon 1990, 28, 1