Faculté des sciences

Concept and Demonstration of Individual Probe Actuation in Two-Dimensional Parallel Atomic Force Microscope System

Akiyama, Terunobu ; Aeschimann, Laure ; Chantada, Laura ; de Rooij, Nicolaas F. ; Heinzelmann, Harry ; Herzig, Hans-Peter ; Manzardo, Omar ; Meister, André ; Polesel-Maris, Jérôme ; Pugin, Raphaël ; Staufer, Urs ; Vettiger, Peter

In: Japanese Journal of Applied Physics, 2007, vol. 46, no. 9B, p. 6458-6462

A concept of an array actuator that is used to control the tip–sample separation of cantilevers in a two-dimensional (2D) probe array scanning system is proposed in this article. The feasibility of the concept is demonstrated with a 10×10 array actuator with 500 µm xy-pitches. The array actuator is made by slicing a bulk piezoceramic block. The obtained maximum actuation of a single... Plus

Ajouter à la liste personnelle
    Summary
    A concept of an array actuator that is used to control the tip–sample separation of cantilevers in a two-dimensional (2D) probe array scanning system is proposed in this article. The feasibility of the concept is demonstrated with a 10×10 array actuator with 500 µm xy-pitches. The array actuator is made by slicing a bulk piezoceramic block. The obtained maximum actuation of a single probe was 2.19 µmp–p at ±168 Vp–p. A major issue for the actuator was the insufficient strength of the frame of the probe array chip. The demonstrated array actuator is highly compatible with previously developed parallel readout modules that use either a parallel optical beam or integrated piezoresistive deflection sensing. A large-scale 2D probe array is our ultimate target.