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Measurement of the forbidden electric tensor polarizability of Cs atoms trapped in solid “He

S. Ulzegaf’< A. Hofer, P. Moroshkin, R. Miiller-Siebert,T D. Nettels,i and A. Weis .
Département de Physique, Université de Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland®

We have measured the electric tensor polarizabilities of the hyperfine levels of Cs atoms embedded in a
body-centered cubic “He crystal. The polarizabilities are inferred from the shift of optically detected magnetic
resonance lines in each hyperfine level induced by static electric fields up to 50 kV/cm. We recorded the
magnetic resonances both by scanning the rf frequency and in a configuration in which the system is operated
as a phase-stabilized magnetometer. The results from both measurements agree well with model calculations
taking the effect of the solid helium matrix and our recent extension of the theory of forbidden tensor
polarizabilities into account. We have also performed the first measurement of the differential tensor Stark
splittings of the F'=3 and F'=4 hyperfine levels of the ground state, thus confirming the recently revised sign
of this shift which affects the blackbody correction of primary frequency standards.

I. INTRODUCTION

The Stark effect, i.e., the effect of a static electric field on
atomic properties is one of the fundamental interactions in
atomic physics. In this paper we address tiny modifications
of the energy of the magnetic sublevels of the cesium ground
state induced by the tensor part of the electric interaction.

The Stark effect of the atomic hyperfine structure was
treated in a comprehensive paper by Angel and Sandars [1]
who showed that in second order perturbation theory the
Stark shift of a level |y)=|nL;,F,M) can be parametrized in
terms of scalar, oz(()2 ), and tensor, azz), polarizabilities. As ten-
sor polarizabilities have nonzero values for states with L
=1 only, the spherically symmetric nS;, ground state of
alkali atoms has only a scalar polarizability and all its mag-
netic sublevels |F,M) are expected to experience the same
Stark shift, independent of F and M. However, it has been
experimentally known since several decades that an electric
field leads to F-dependent [2] and M-dependent [3] energy
shifts in the alkali ground states. The latter effect is described
by a (forbidden) tensor polarizability a,. Improved measure-
ments of the ground state tensor polarizabilities were per-
formed by Carrico er al. [4] and Gould et al. [5] using con-
ventional atomic beam Ramsey resonance spectroscopy. A
recent remeasurement of the tensor polarizability of '**Cs in
an all optical atomic beam experiment [6] has confirmed the
earlier experimental values [4,5] of a,(F=4) of cesium.

In 1967 Sandars [7] showed that the F- and
M-dependence of the Stark effect can be explained by ex-
tending the perturbation theory to third order after including
the hyperfine interaction. The theoretical expression for the
tensor polarizability a(23)(F =4) given in [7] was evaluated
numerically in [3,5] under simplifying assumptions. The
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comparison with the experimental polarizabilities showed
that the absolute theoretical values were systematically larger
for all five alkalis studied in [5]. We note that in cesium the
third order Stark splittings of the Zeeman levels due to a(23)
are approximately seven orders of magnitude smaller than
the overall shift of the ground state due to the second order
polarizability agz) .

In a recent paper [8] we have revisited the third order
Stark theory by identifying and evaluating contributions
which were not included in the earlier calculations. This led
to a theoretical value of the tensor polarizability of Cs which
is in good agreement with all existing experimental results
[4-6]. As described in [8] we have also identified a sign error
in the previous treatment [7] of the Stark effect concerning
the relative signs of the tensor polarizabilities of the two
ground state hyperfine levels. We have shown that this rela-
tive sign has a direct implication for the precise evaluation of
the blackbody radiation shift of the hyperfine transition fre-
quency from static Stark shift measurements [8].

The initial motivation for our experimental [6] and theo-
retical [8] studies of the third order Stark interaction was the
long standing discrepancy between experimental and theoret-
ical values of a(;). With our revised theory [8] this
40-year-old problem has found a satisfactory solution. In the
work reported here we have extended the study of strongly
suppressed Stark interactions to cesium atoms trapped in a
solid “He matrix. We have measured (and calculated) the
tensor polarizability of Cs in a quantum solid matrix using
two independent experimental techniques. Both methods
yield consistent values of the tensor polarizability a(;) whose
moduli are approximately 10% larger than |a(23)| of the free
cesium atom. A calculation [9] which considers the influence
of the helium matrix on the atomic energies and wave func-
tions entering the third order perturbation theory can account
for this matrix-induced shift. In addition we have made the
first experimental determination of the relative sign and mag-
nitude of the tensor polarizabilities of the two ground state
hyperfine levels and thereby confirmed the sign predicted by
our model calculations.

The extension of the Stark effect investigations to solid
helium was motivated by our past proposal [10,11] that alkali
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atoms in condensed helium matrices might be an interesting
sample to search for a permanent electric dipole moment
(EDM) of the electron. In such experiments the quadratic
Stark shift constitutes a strong background and its (imper-
fect) suppression is a major source of systematic uncertainty.
While the perturbation of optical and magnetic properties of
alkali atoms by condensed (superfluid and solid) “He matri-
ces has been studied extensively in the past decade [12] the
effect of the solid He environment on static electric proper-
ties has never been addressed. To our knowledge the present
study is the first investigation of the Stark effect of atomic
defects in condensed helium. The study confirms that the
so-called extended bubble model is well-suited for the quan-
titative description of such matrix-induced perturbations of
electric polarizabilities.

II. THEORY

The perturbation of the energies of ground state magnetic
sublevels |y)=[6S,,,,F,M) by a static electric field [ is con-
ventionally parametrized in terms of an electric polarizability
a(7y) according to

AE() =~ S () (1)

The polarizability a(y)=a?(y)+a®(y) has contributions
from perturbations arising in second and third order pertur-
bation theory. The second order polarizability o/® gives rise
to the well-studied scalar, i.e., F- and M-independent shift of
the levels. The total third order polarizability can be written
as [8]

a¥(68,,,,F,M) = a(6S,,,F)
3M?-F(F+1)
A0,
2121+ 1) A0
(2)

where the function f(#)=3 cos®> §—1 describes the orienta-
tion of the electric field with respect to the quantization axis,
and where [ is the nuclear spin. The first term of Eq. (2), aff),
is an F-dependent scalar contribution to the third order po-
larizability. It gives the main contribution to the Stark shift of
the hyperfine transition frequency (F-dependent effect) but
does not alter the Zeeman substructure of the ground state.
The second term, described by the third order tensor polar-
izability a(23), produces F- and M>-dependent energy shifts.
Its main effect is the removal of the Zeeman degeneracies
between the magnetic sublevels within each of the two
ground state hyperfine levels (M>-dependent effect). The ten-
sor term, evaluated for M =0, also gives an additional small
contribution (=1%) to the shift of the hyperfine transition
frequency. A straightforward way to measure the effect of the
tensor polarizability is the observation of an electric field
induced shift of magnetic resonance transition frequencies
within a given hyperfine multiplet. Because of the selection
rules magnetic resonances can only be driven between adja-
cent magnetic sublevels |F,M)—|F,M—-1). For Cs (I
=7/2) the differential Stark shift of that transition can be
calculated from Egs. (1) and (2) to be

+a5)(6S)5,F)

3 ()
Av(pn—|pm-1) = = ng(ZM - DE. (3)

The third order polarizabilities involve both the dipole-dipole
and the electric quadrupole hyperfine interactions, so that
a(;) of the two hyperfine levels F=3,4 can be expressed [8]
in terms of these contributions as

a(F=4)=a,+a,, (4a)
5
a(ZS)(F: 3)=—a, + gaz, (4b)

where a, and a, are due to the dipole-dipole and to the quad-
rupole interaction, respectively. The latter contribution is
very small (a,/a; =4 % 107*) and can be neglected. With this
approximation the tensor polarizabilities of the two ground
state hyperfine levels are thus connected by the simple rela-
tion a(23)(3) ~—a(23)(4). This result is in contradiction with an
earlier work [7] which predicts the same sign for the tensor
polarizabilities of the two ground state hyperfine levels. All
measurements of tensor polarizabilities published to date
were performed in the F=1+1/2 hyperfine states, so that no
prior experiment was sensitive to the relative signs of af)
X(3) and a(23)(4). Below we will present experimental evi-
dence for the correctness of the sign derived in our calcula-
tion.

III. EXPERIMENTAL METHODS
A. Helium matrix isolation spectroscopy

Alkali atoms embedded in the isotropic body-centered cu-
bic (bec) phase of “He impose their symmetry on the local
matrix environment thereby forming spherically symmetric
cavities (atomic bubbles). The isotropy of the trapping sites,
together with the diamagnetic nature of the matrix lead to
longitudinal spin relaxation times T} of 1 to 2 s [13]. This
allows the efficient optical pumping of the sample and the
observation of magnetic resonance linewidths below 20 Hz
in optical-rf double resonance experiments [14]. Moreover,
condensed helium has an electric breakdown voltage in ex-
cess of 100 kV/cm, which makes it, in principle, an ideal
environment for high resolution magnetic resonance experi-
ments in strong electric fields.

B. The sample cell

The measurements reported below were performed on ce-
sium atoms implanted in a solid *He matrix. The experimen-
tal setup is similar to the one described in [15]. The helium
crystal is grown at pressures around 30 bar in a cubic copper
pressure cell (inner volume=175 cm?) immersed in super-
fluid helium cooled to 1.5 K by pumping on the helium bath.
Optical access to the inner cell volume is given by four lat-
eral windows and a top window. Laser excitation and fluo-
rescence detection of the atoms occur through the side win-
dows, while the top window is used for the implantation
process. The host matrix is doped with cesium atoms by
means of laser ablation with a pulsed, frequency-doubled



//doc.rero.ch

http

polycarbonate rf coil

body - N

glass electrode

Cs target

~ — HvV
1cm
I ‘ T feedthroughs

FIG. 1. (Color online) The bottom flange of the pressure cell
with one of the two rf-field coils and one of the two HV electrodes
shown.

Nd:YAG laser beam (2 Hz repetition rate) focused onto a
solid Cs target located at the bottom of the cell. Diffusion of
the implanted atoms and the subsequent binding into dimers
and clusters leads to a drop of the atomic fluorescence signal
with time. Low-energy pulses of the same Nd:YAG laser at a
lower repetition rate are therefore used, once the crystal is
doped, to dissociate dimers and clusters. In this way the
average atomic density can be kept at a level of
10% to 10° cm™.

The pressure cell is surrounded by three orthogonal pairs
of superconducting Helmholtz coils for applying a static
magnetic field and for compensating residual fields, while
another pair of Helmholtz coils mounted inside of the cell
allows the application of an oscillating rf field for driving the
magnetic resonance transitions (Fig. 2). The cryostat is
shielded from laboratory fields by a three-layer u-metal
shield.

The inner part of the cell, shown in Fig. 1, contains a split
polycarbonate body which holds the rf coils as well as two
transparent glass electrodes which allow the application of
the static electric field for the Stark effect experiments. The
electrodes are (4 mm thick) quadratic float glass plates of
40X 40 mm? whose facing surfaces are coated with a con-
ductive tin oxide layer. Their opposite surfaces are partially
coated with gold and electrically connected to the front sur-
face by a vapor deposited gold stripe. Copper rings con-
nected directly to low-temperature compatible high voltage
(HV) feedthroughs containing no magnetic components are
mechanically pressed onto the plates’ back surfaces. The use
of two feedthroughs allows us to charge each plate individu-
ally. The plate spacing of d=6 mm at room temperature ex-
pands to d=6.35(5) mm when the cell is cooled to 1.5 K.
With the given plate spacing ratio the field in the center
deviates by much less than 1% from V/d.

The high voltage was generated by two identical power
supplies of opposite polarities and delivered to the feed-
throughs via HV cables traversing the top flange of the cry-
ostat and the helium bath. In this way we were able to apply
electric fields up to 50 kV/cm. This upper limit was due to
sparking which occurred both inside and outside of the pres-
sure cell. The doping of the crystal by laser ablation pro-
duces atomic ions and charged clusters that lead to a leakage

copper cell
X rf-coils
circ. pol.

laser beam

fluorescence

+ to detection

FIG. 2. Top view of the setup for magnetic resonance experi-
ments with electric fields. The presence of two mirrors in the pres-
sure cell allows us to switch between the M, and M, configurations
with a simple translation of the laser beam.

current of a few uA (at 25 kV) between the electrodes which
locally melts the crystal and limits the maximum useful
voltage.

A top view of the pressure cell for magnetic resonance
experiments with electric fields is shown in Fig. 2. The use
of two suitably oriented mirrors allowed the easy switching

between the M, configuration (k=I) and the M, configura-

tion (kE=1/12) described below by a simple horizontal
translation of the laser beam.

C. The magnetic resonance technique

Optically detected magnetic resonance (ODMR) com-
bines magnetic resonance with optical preparation and detec-
tion. It is a powerful method for performing magnetic reso-
nance spectroscopy in dilute samples of paramagnetic atoms.
A high degree of spin polarization is an essential prerequisite
for observing magnetic resonance. In our experiments spin
polarized cesium atoms are prepared by optical pumping
[15] with circularly polarized laser light tuned to the D, line
(6S,,— 6P, transition). Due to the large homogeneous
linewidth of the optical absorption line of Cs in condensed
helium [12], the hyperfine structure of the transition is not
resolved. After a number of absorption-emission cycles the
majority of the atoms is pumped into the state |F=4,M=4)
which does not absorb circularly polarized light. The polar-
ized sample thus does not fluoresce and the sample is said to
be in a dark state. Any subsequent depolarizing interaction,
such as a magnetic resonance transition, leads to an increase
of the fluorescence rate. This constitutes the basis of the
optical detection of the magnetic resonance. Efficient optical
pumping of alkali atoms embedded in the isotropic bcc phase
of solid *He was demonstrated by Lang er al. [15].

The optical properties of the polarized sample depend on
the orientation of the spin polarization with respect to the
light beam. The magnetic resonance is driven by a weak
oscillating magnetic field (called rf field below) applied per-
pendicularly to the main static field. When the oscillation
frequency coincides with the Larmor precession frequency
depolarizing transitions between adjacent sublevels are in-
duced. This leads to a resonant change in the fluorescence
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FIG. 3. (Color online) Magnetic resonances of the Zeeman tran-
sitions within the F=4 (left) and F=3 (right) hyperfine multiplets
recorded with [£=0 in the M, geometry.

rate when the rf frequency is tuned across the Larmor fre-
quency. In practice the same laser beam that produces the
spin polarization also detects its alteration by the magnetic
resonance process. The laser-induced atomic fluorescence is
imaged onto an avalanche photodiode, whose photocurrent is
recorded by a digital oscilloscope. Background radiation
from scattered laser light is suppressed by an interference
filter.

IV. MEASUREMENTS
A. The tensor polarizability in the M, geometry

The M, geometry is characterized by the static magnetic

field B, being oriented parallel to the propagation direction k
of the pumping light and hence to the initially created spin
polarization. In this case the magnetic resonance manifests
itself as a resonant change of the dc level of the fluorescence
signal.

The optical pumping process produces population imbal-
ances between the magnetic sublevels in both hyperfine lev-
els of the ground state. Because of the finite nuclear mag-
netic moment, the gyromagnetic ratios y(F) of these two
states differ slightly, besides having opposite signs. As a con-
sequence, the magnetic resonance transitions in the =3 and
F=4 states occur at slightly different frequencies and can be
resolved in a single scan of the rf field, as shown in Fig. 3. In
the low magnetic fields used here the Zeeman effect is linear
and all individual resonances in a multiplet of given F occur
at the same frequency. The dominating components in the
two lines of Fig. 3 correspond to the transitions |4,4)
4,3) and |3,3)—|3,2). The spectrum is fitted by two
Lorentzian lines superposed on a curved background bg(v).
This background is due to the slow disappearance of the
atomic signal as atoms recombine into dimers and clusters. It
was recorded in separate runs with no applied rf field and it
is well-fitted by the empirical function bg(v)=b, exp[-\,v]
+b, exp[—\,v]. When an electric field is applied the mag-
netic resonance lines are displaced due to the M>-dependent
(differential) Stark shift of the sublevels coupled by the rf
transition. This shift is proportional to a(;)]EZ. At each value
of the electric field we have recorded spectra with each field
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FIG. 4. Stark shift of the Cs ground state magnetic resonance
4,4)—14,3) in solid *He measured in the M, geometry. Some
points have an error bar smaller than the symbol size. The fit func-
tion is of the type Av,= 7,2 The different error bars are explained
in Sec. IV C. The inset shows magnetic resonance lines measured
with and without applied electric field used to infer the Stark shift.

polarity, in between which a spectrum with no applied field
was recorded. The latter reference measurements were nec-
essary as we observed a slow drift of the zero electric field
magnetic resonance frequency (cf. Sec. IV C), which repre-
sented the main limitation of the sensitivity of our apparatus.

The dependence of the line center of the F=4 resonance
on the electric field strength is shown in Fig. 4. According to
Eq. (3) the Stark shift of the line is given by

3
Aw=mw=_§@W®W, (5)
under the assumption that the line consists only of the

4,4)—|4,3) transition. A quadratic fit to the data, shown as
a solid line in Fig. 4, then yields the tensor polarizability

a$)(4) = - 4.07(20) X 1072 (6)

Hz
(kV/ecm)?’
This value is shown as point (d) in Fig. 11. The figure also
shows previous experimental values of a(;) (4) obtained on
free Cs atoms in atomic beam experiments together with the
corresponding theoretical value [8]. Equation (6) assumes
that the F=4 line consists only of the |4,4)—|4,3) transi-
tion, i.e., a 100% polarized sample. Because of the finite
degree of spin polarization the recorded line contains a small
admixture of the |4,3)—|4,2) transition. Based on the rate
equation calculations described in Sec. V we find that this
effect leads to an underestimation of a(23) by less than 1%.

We have recently extended our calculations of the Cs ten-
sor polarizability of free Cs atoms [8] to include the effect of
the helium matrix [9]. This effect increases a(23) by approxi-
mately 10%, as shown in Fig. 11. The experimental result
[Eq. (6)] of the measurement in the M, geometry is in good
agreement with that theoretical calculation.
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FIG. 5. The differential shift AV43EAV‘4’4>4)‘43>—AV‘3y3>H|3yz>.
The dotted line represents the prediction of Sandars’ work while the
solid line is the prediction of our calculations, as explained in the
text.

B. The relative sign of a,(F=4) and a,(F=3)

In order to determine the relative sign of the polarizabil-
ities in the F=3 and F=4 states we measured the splitting
Av,; (introduced in Fig. 3) of the corresponding resonance
frequencies, defined by Avys=Av) 4y 4 3y—AV|33)_.32)- For
this measurement we use the fact that both resonances can be
observed in a single scan (cf. Fig. 3). This reduces the mea-
surement time and thus systematic effects due, e.g., to line
drifts as discussed below. The line centers are inferred from
Lorentzian line fits. Figure 5 shows the electric field depen-
dence of the splitting Aw,; between the resonances in F=3
and F=4. If one assumes a, )(4) )(3), as given in San-
dars’ work [7], one expects the dependence

1
Avgz=— 9 a (4)E2, (7)

28
shown as a dotted line in Fig 5. On the other hand, our
recent calculation [8] predicts a; )(4)— a(23)(3), which yields

3
Avgy=-— 5% G (4)E2, (8)

a dependence shown as a solid line in Fig. 5. The good
agreement of the experimental data with the latter depen-
dence proves that the tensor polarizabilities of the two hy-
perfine levels have indeed opposite signs as predicted by our
calculation.

C. Line drifts

The sensitivity of the M, configuration is limited by small
instabilities of the magnetic resonance frequency (with and
without applied electric field). We have made long-time re-
cordings of the magnetic resonance signals under identical
conditions and we can distinguish two distinct effects. First,
on a scale of 45 min the resonance frequency shows a slow
drift at a rate of 1.5-2.5 mHz/s which is equivalent to a
magnetic field drift rate of about 500 fT/s. This frequency
drift may also be associated with a slow motion of the center
of gravity of the atomic sample due to atoms drifting in the
He crystal, in combination with a magnetic field gradient.
Our field has indeed a small gradient of =3 nT/mm [16],

20534
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FIG. 6. Zero-electric-field resonance drift. The solid line is a
linear fit which gives a drift rate of 1.7 mHz/s corresponding to a
magnetic field drift of =500 fT/s.

corresponding to a relative inhomogeneity of 2 X 10~#/mm.
In this case the resonance drift could be explained by an
atomic drift velocity of 0.2 wm/s.

A second effect occurs on a much shorter time scale. The
Nd:YAG pulses, sent into the crystal every 30 s between
sweeps of the rf frequency in order to dissociate clusters and
to recover the optical fluorescence signal, can locally melt
the crystal and occasionally provoke sudden drifts of the at-
oms which appear as steep jumps of their Larmor frequency
(shown in Fig. 6). The error bars of Figs. 4 and 5 are related
to such jumps. We determined the average of the line posi-
tions in zero field, measured before and after the actual Stark
shift measurement. This average position was then subtracted
from the line position measured with the field applied. In this
way we could infer the Stark shift corrected for linear drifts
of the baseline. The error bar reflects the drift-induced varia-
tions of the two reference measurements. The relative impor-
tance of both effects was found to vary substantially from
crystal to crystal, or in a given crystal after different atomic
implantations. In order to reduce such effects we have per-
formed a second series of measurements using an alternative
magnetic resonance technique described in the next section.

D. The tensor polarizability in the M, geometry
The M, geometry is characterized by the static magnetlc

field BO being oriented at an angle 8 with respect to k. In this
case the magnetic resonance leads to a modulation of the
transmitted laser power at the rf frequency with an amplitude
varying as sin 2. The largest signal is thus obtained for
=/4 (Fig. 2). In practice the modulation amplitude, which
is resonant when the rf frequency matches the Larmor fre-
quency, is measured using a phase sensitive (lock-in) ampli-
fier referenced to the rf frequency [14]. The in-phase and
quadrature components of the demodulated signals have ab-
sorptive and dispersive Lorentzian line shapes and the phase
¢ of the signal modulation is given by

o)
tan @ = A—V )

where dv=v,,— v, is the detuning of the f frequency v, with
respect to the Larmor frequency v;, and where Av is the
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FIG. 7. Stark shift of the Larmor frequency in the M, configu-

ration, measured using the M, (self-oscillating) magnetometer con-

figuration discussed in the text. The solid line is a fit function of the
type Avy =7, F2

linewidth. The linear dependence of the phase signal ¢(v,,)
near resonance (Sv=0) was used in a feedback system gen-
erating the rf frequency: the phase signal, amplified by a
proportional-integral-derivative (PID) controller, was used to
drive a voltage controlled oscillator which generated the os-
cillating voltage driving the rf coils. In this way the rf fre-
quency was phase-locked to the Larmor frequency. Any
changes of the resonance condition, induced, e.g., by a drift
of the magnetic field or by a displacement of the resonance
frequency induced through the Stark effect can then be de-
tected by a real-time monitoring of v,, with a frequency
counter.

This operation of the system as a phase-locked magneto-
meter [17] has allowed us a faster measurement of the elec-
tric field induced changes of the Larmor frequency. Com-
pared to the experiments in the M, geometry it has the
advantage of being less sensitive to systematic effects com-
ing from slow drifts of system parameters. It has the draw-
back that the resonance frequencies in the F=3 and F=4
states cannot be measured simultaneously. We have used this
method to record the quadratic electric field dependence of
the resonance frequency in the F=4 state. The results are
shown in Fig. 7. A quadratic fit of the type Av,=7,[? yields

7, =0.469(30) X 107> Hz/(kV/cm)?. (10)

In the M, geometry, in which the pumping direction is along
the magnetic field (quantization axis) the field stabilizes the
polarization created by optical pumping and for a 100% po-
larized sample the tensor polarizability a(;) is related to 7,
by Eq. (5). In the M, geometry, on the other hand, for which
the pumping direction and the magnetic field direction, i.e.,
the axis of quantization, are no longer parallel this simple
relation no longer holds. As a consequence oscillating steady
state populations appear in all 2F+1|F=4,M) states. This is
illustrated in Figs. 8(a) and 8(b) where we compare the
steady state populations produced by optical pumping of the
sublevels in the =4 manifold in the M, and in the M, ge-
ometries, respectively. These results were obtained from a
rate equation calculation described earlier [15]. The param-
eters of that calculation are the optical pumping rate, 7,
proportional to the laser intensity, and the longitudinal spin
relaxation rate, 7.

Rel.population

432101234 432101234
M M

FIG. 8. (Color online) Steady state populations after optical
pumping in the ground state level F=4 in the M, configuration (a)
and in the M, configuration (b). The parameters (defined in [15]) of
the calculation are the pumping rate y,=2500 s~! and the longitu-

dinal spin relaxation time y,=1 s~

V. ANALYSIS OF THE M, DATA

Because of the tilted quantization axis the extraction of
the tensor polarizability a23) from the data of Fig. 7 recorded
in the M, geometry requires a more detailed analysis. We
base this analysis on the three step approach, discussed in
[18], which is well-suited for the quantitative description of
optically detected magnetic resonance signals. In that model
the double resonance process is treated as three time sequen-
tial processes, viz., the creation of steady state spin orienta-
tion by optical pumping, the evolution of that initial orienta-
tion under the influence of the external fields, and finally the
optical detection of the steady state oscillation reached in the
second step. The validity of this approach is discussed in the
quoted reference.

A. The optical pumping process (step 1)

In the first step spin polarization (orientation) is created in
the sample by optical pumping with circularly polarized
resonance radiation. The interaction with the magnetic field
and relaxation processes then lead to a steady state redistri-
bution of the sublevel populations p,,, as shown in Fig. 8 for
a given set of the parameters 7y, and ;. For the calculation

one sets the quantization axis along the static field B, and
the populations produced in the first step are expressed in
this coordinate system.

B. The magnetic resonance process (step 2)
In the magnetic resonance process the initial spin orienta-
tion evolves to a steady state precession under the joint ac-

tion of the external fields B, and B, cos w,q# and of relax-
ation. This evolution is described by the Liouville equation
for the density matrix p

pz_é[H(t)’p]"'Hrelaw (11)

After applying the rotating wave (rw) approximation (coor-

dinate system rotating at the frequency w,; around éo) the
Hamiltonian becomes time independent and reads

H= wLFZ_QRFX’ (12)

where w;=7yB, and Qg=ypB/2 are the Larmor and Rabi
frequencies, respectively (yy is the Landé g-factor of the
level F).
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By considering the hyperfine level F=4 only and after
introducing longitudinal and transverse relaxation rates 7;
and vy,, one obtains nine equations for the time evolution of
the populations

Py =Pum == Vs met (Parer vt = Py 1)

- iVM,M—l(pM—l,M - PM,M—l) N (pM,M - P24,M) >
(13)

where V0 =(4,M|QgF |4,M") and pﬁ,,:pﬁ,LM are the
steady state populations produced by the optical pumping in
step 1, and eight additional equations for the coherences

P -1 == 100Py p—1 = IV(Py—1 -1 = Pramt) = V2Pm M1
(14)

where M=-3,...,4 and dw=w, - w,; is the detuning. With
the complex conjugates of Eq. (14), the dynamics are then
described by a system of 25 differential equations, which
allow us to calculate numerically the steady state populations
py and coherences pyy .. When transforming back from
the rw system to the laboratory frame the AM==+1 coher-
ences py v Will oscillate like exp[+iw,].

C. The optical detection (step 3)

In the third step one calculates the fluorescence rate pro-
duced by absorption of the circularly polarized laser beam by
the medium described by the steady state density matrix ob-
tained in step 2. The time dependent signals oscillating at w,;
are determined by the AM==1 coherences py ;. Their
contribution to the absorption signal is given by

Su.m-1 < Re 2 (m|d - e|M>pM,M—1<M_ 1/(d - e)T|m>],
fom

(15)

where d is the electric dipole operator and e the optical field
vector. The state vectors |M) and |m) denote the states
|6S,,,,F,M) and |6P,,,f,m), respectively.

The effect of the tensor polarizability is taken into account
by adding the differential Stark shift of the levels |M) and
|[M~—1) to the detuning via

3
8= w,— w+ %(ZM—I)a(23)E2. (16)

In this way one can calculate the absorptive and dispersive
resonance signals in the M, geometry by adding the contri-
butions of all the individual transitions

Stot(5) = 2 SM,M—1(5)- (17)
M

The equivalent signals obtained in the M, geometry can be
calculated in an analogous way by assuming all of the initial
population to be concentrated in the |4, 4) state. In Fig. 9 we
compare the effect of an electric field of 40 kV/cm on the
magnetic resonance spectra recorded in the M, and in the M,
geometries for a particular set of the parameters, y,=1 s/,
=457, 5,=2500s7" [13,15], and Qx=50s"" (corre-

a

— Av=19.2 Hz
[2]
=
C
> L L
5 200 100 0 100 200
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1
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FIG. 9. (Color online) Calculated resonance signal produced by
(a) the single magnetic transition |4,4)—|4,3) in the case 8=0,
and (b) the sum of all magnetic transitions |M)—|M—1) for the
case B=m/4. Filled squares represent the E=0 case, while empty
squares give the magnetic resonance line shape in an electric field
of 40 kV/cm. For the numerical calculations we have assumed
a(23)=—3.49>< 1072 Hz/(kV/cm)?, which is a weighted average of
previous measurements. The other parameters are 7,=2500 s7!,
vi=157", y,=4 57!, and Qz=50 s~'. Note that the different widths
of (a) and (b) are consequences of different power broadenings of
the single magnetic resonances.

sponding to B;=4.5 nT). One sees that in this case the Stark
shift obtained in the M, geometry is reduced by a factor e,
which, for the set of parameters 7,=2500 s7! and Qp
=50 s~! has the value €=19.2 Hz/5.5 Hz=3.49. We take this
reduced sensitivity into account by writing the electric field
dependence of the Stark shift in the M, geometry, in analogy
to Eq. (5), as

31
Avy=plr=- ——a(zs)(4)E2, (18)
8 e
or, equivalently
) 8
a; (4)=—§€7lx~ (19)
In this way we obtain from Eq. (10)

at(4) = (- 436+ 0.28) X 1072 (20)

(kV/em)?’

This value is shown in Fig. 11 as point (e). It is in good
agreement with the experimental result obtained in the M,
geometry (point d). The error bar of point (e) takes a slight
uncertainty of the correction factor € into account. The value
of € used above was obtained using our best possible estima-
tion of the experimental parameters 7y, and (). In order to
check the sensitivity of € to the uncertainties of these param-
eters we have varied the parameters in the simulation calcu-
lation. The results shown in Fig. 10 indicate that € is rather
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FIG. 10. (Color online) Correction factor € as a function of the
relevant parameters 7y, and {g. The circle shows the parameters
used to produce Fig. 9.

insensitive to parameter variations. A change of the Rabi
frequency by +50% changes € by approximately 3%, while a
change of the pumping rate 7y, by +50% changes € by 0.8%.
We have taken this uncertainty into account by assigning a
(conservative) uncertainty of 1% to €, a value which does not
affect the error given in Eq. (20).

VI. COMPARISON WITH THEORY

Recently we have shown [8] that the inclusion of off-
diagonal hyperfine matrix elements in the third order theory
of forbidden tensor polarizabilities leads to a good agreement
between experimental and theoretical values in the case of
free Cs atoms. The present experiments show that the modu-
lus of the tensor polarizability of Cs in solid He is approxi-
mately 10% larger than the corresponding vacuum value
(Fig. 11). This is due to the interaction of the Cs atom with
the He matrix which affects both the Cs energies and wave
functions entering the third order perturbation theory. We
have therefore extended our tensor polarizability calculations
by including the effect of the helium matrix [9] in the frame
of the so-called extended atomic bubble model [12]. The
result of that calculation (details of which will be presented
elsewhere [9]) is shown on the right side of Fig. 11 as a
dashed line and shows an excellent agreement with the ex-
perimental results presented above.

VII. SUMMARY

We have performed the first measurement of the Stark
effect in the ground state of Cs atoms implanted in a solid

x10]
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FIG. 11. The Cs tensor polarizability a(23)(F =4). Atomic beam
measurements of (a) Carrico et al. [4], (b) Gould et al. [5], and (c)
Ospelkaus et al. [6]. Points (d) and (e) represent the measurements
in solid helium, in the M, and M, geometries, respectively, reported
in this work. The dashed lines are the theoretical values for the free
atom [8] and for Cs in a solid helium matrix [9], together with their
uncertainties (shaded bands).

*He matrix [19]. Measurements performed in two different
experimental configurations have yielded consistent values
for the forbidden tensor polarizability. The experimental re-
sults are well-described by a bubble model calculation and
show that the helium matrix changes the tensor polarizability
by approximately 10%.

We have also measured the relative sign of the polariz-
abilities in the two hyperfine levels. The experimental result
agrees with our theoretical prediction and is in contradiction
with the sign predicted by a previous calculation. This con-
firms the need [8] for a reevaluation of the dynamic Stark
shift of primary frequency standards induced by the black-
body radiation field [20], when this effect is inferred from
static Stark shift measurements as done, e.g., by Simon et al.

[21].
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