Faculté des sciences

Tension wood formed in Fagus sylvatica and Alnus glutinosa after simulated mass movement events

Heinrich, Ingo ; Gärtner, Holger W. ; Monbaron, Michel

In: IAWA Journal, 2007, vol. 28, no. 1, p. 39–48

Due to the likelihood of global climate change, the frequency and magnitude of natural hazards such as mass movements may likewise change, thus favouring the refinement of methods to detect and quantify geomorphic events when precise records are not available. Geomorphic events typically have a significant effect on tree growth, e.g., reaction wood marked by changes in ring widths and wood... Plus

Ajouter à la liste personnelle
    Summary
    Due to the likelihood of global climate change, the frequency and magnitude of natural hazards such as mass movements may likewise change, thus favouring the refinement of methods to detect and quantify geomorphic events when precise records are not available. Geomorphic events typically have a significant effect on tree growth, e.g., reaction wood marked by changes in ring widths and wood density. To date, several dendroecological techniques have been developed to document the occurrence of these events but it rarely has been possible to retrieve additional information from reaction wood concerning the precise kind and intensity of geomorphic events. Additional qualitative information inferred from reaction wood of trees holds the potential to not only document but also estimate important characteristics of natural hazard events. To refine the methods already used in dendrogeomorpology, experiments simulating various geomorphic events were used to monitor subsequent wood anatomical responses of Fagus sylvatica and Alnus glutinosa. The preliminary results indicate that these two common broadleaf tree species show variations in their reactions to different experimental treatments.