rac-(Z)-Ethyl 2-bromo-2-[(3R,5R)-3-bromo-5-methyltetrahydrofuran-2-ylidine]acetate

François Loiseau, Reinhard Neier, Gaël Labat and Helen Stockli-Evans

1 Institut de Chimie, Université de Neuchâtel, Rue Emile Argand 11, CH-2009 Neuchâtel, Switzerland, and 2 Institut de Microtechnique, Université de Neuchâtel, Rue Emile Argand 11, CH-2009 Neuchâtel, Switzerland

Correspondence e-mail: francois.loiseau@unine.ch

In the title compound, C₉H₆Br₂O₂, a (tetrahydrofuran-2-ylidine) acetate, the double bond has the Z form. In the tetrahydrofuran group, the relative configuration of the Br atom in the 3-position and the methyl group in the 5-position is anti. The compound crystallizes with two independent molecules per asymmetric unit and, in the crystal structure, the individual molecules are linked to their symmetry-equivalent molecules by C–H ⋯ O hydrogen bonds, so forming centrosymmetric hydrogen-bonded dimers.

Comment

For the synthesis of bioactive molecules, reduced derivatives of substituted furans have been studied intensively as synthetic building blocks. α-(Tetrahydrofuran-2-ylidine)-acetates have been synthesized using widely different strategies (Bryson, 1973). They are the most common intermediates in many of the reported syntheses of nonacetic acid (Ferraz & Payret-Arrua, 1998), which is the degradation product of the ionophore nonactin (Keller-Schierlein & Gerlach, 1968).

Nonactin, the lowest homologue of the nactin family, is used in analytical chemistry as an ammonia sensor (Bühlmann et al., 1998) and has shown antibiotic and insecticidal properties (Meyers et al., 1965; Oishi et al., 1970). In the context of our research programme on the preparation of nonactin derivatives that are more hydrophobic (Loiseau, 2006), we decided to study the functionalization of models of nonacetic acid, for example, compound (III) (see scheme). Hydrophobic nonactin derivatives should have a longer lifetime in the semi-permeable membrane of ammonia sensors (Pretsch et al., 1988). The lifespan of these electrodes is limited owing to the loss of nonactin into the aqueous solution. The synthetic strategy to prepare racemic (III) involves two steps. Firstly, compound (II) was synthesized by the radical coupling (Baciocchi et al., 1992) of 2-methylfuran, (I), with ethyl iodoacetate. The furan ring was then hydrogenated (Schmidt & Werner, 1986) to give racemic (III).

One of our approaches to modify compound (III) was based on the introduction of a Br atom as a functional group. Bromine can be replaced using well known reactions, such as radical or nucleophilic substitution reactions, Grignard reactions, or Reformatsky enolate chemistry. We needed to develop a method to introduce selectively the Br atom in the α-position of the ester function. On bromination (Schultz et al., 1983) of (III), however, the unexpected polybrominated racemic compound (IV) was isolated. We report here the structure of this totally new, highly functionalized (tetrahydrofuran-2-ylidine)acetate.

The molecular structures of the two independent molecules (A and B) of (IV) are illustrated in Fig. 1. Selected bond distances and angles for molecule A are given in Table 1. It can

![Figure 1](https://example.com/figure1.png)

The molecular structure of the two independent molecules (A above and B below) of the racemic compound (IV), showing the crystallographic atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
be seen that the relative configuration of the Br atom in the 3-
position (C2) and the methyl group in the 5-position (C4) of
the tetrahydrofuran (THF) group is anti. The THF ring in each
molecule has an envelope conformation, with atom C3 as the
flap atom in molecule A and atom C13 as the flap atom in
molecule B. The Cremer & Pople (1975) puckering parameters
are \(Q(2) = 0.318 \pm 4 \) Å and \(\varphi(2) = 106.6 \pm 7 \)° for molecule A,
and \(Q(2) = 0.339 \pm 4 \) Å and \(\varphi(2) = 107.4 \pm 7 \)° for molecule B.
The two molecules differ only in the orientation of the
ethoxycarbonyl group with respect to the plane through the
bromotetrahydrofuranylidene group. The relevant torsion
angles about the C5–C6 (molecule A) and C15–C16 bonds
(molecule B) are given in Table 1, and it can be seen that the
difference is of the order of \(\sigma \) 4°.

In the crystal structure of (IV), the individual molecules (A
and B) are linked to their symmetry-equivalent molecules by
C–H···O hydrogen bonds, so forming centrosymmetric
hydrogen-bonded dimers (details are given in Table 2). There
are also two short Br···Br contacts (Table 1). A search of the
Cambridge Structural Database (CSD; Version 1.8, last update
May 2006; Allen, 2002) indicates that such short inter-
molecular Br···Br distances are not unusual. These
centrosymmetric dimers are further linked by a Br···O interaction
(see Table 1 and Fig. 2 for details). This interaction is also
associated with the C13–H13A···O5° interaction, leading to
a Br···O–H13A angle of ca 139°. A search of the CSD
indicates that O···Br interactions involving carbonyl O atoms
are not uncommon; more than 600 such interactions in the
range 2.80–3.37 Å have been observed previously.

The two Br atoms introduced are vinylic [the average bond
distance is 1.894 (2) Å] and allylic [the average bond distance
is 1.974 (2) Å]. Effectively, only aryl, vinylic and allylic
halogen atoms can prevent α-elimination and can therefore be
involved in modern palladium-catalyzed organometallic
couplings such as the Heck or Suzuki reactions. It is highly
probable that (IV) was the synthetic result of three radical
eliminations followed by an elimination of HBr. The X-ray
diffraction analysis of (IV) has proven the possible synthetic
mechanism of formation, where the Br atom in the 3-position
of the THF ring is inserted on the less hindered face, i.e. \(\text{anti} \)
with respect to the methyl group in the 5-position of the THF
ring.

A search of the CSD reveals only three structures
containing the tetrahydrofuran-2-ylidenacetate group
(Brussani et al., 1986; Scheffler et al., 2002; Bellur et al., 2005),
none of which are substituted in the \(\alpha \)-position of the ester
function. To the best of our knowledge, this is also the first
crystal structure analysis of a tetrahydrofuran-2-ylidene
compound in which a halogen substituent is present on the
THF ring.

Experimental

Compound (II), namely ethyl 2-(5-methylfuran-2-yl)acetate,
was prepared by stirring freshly distilled 2-methylfuran (100 g,
1218 mmol), ethyl iodoacetate (7.66 ml, 64.1 mmol) and FeSO\(_4\)-7H\(_2\)O
(8.20 g, 29.5 mmol) in dimethyl sulfoxide (DMSO, 550 ml) in a three-
necked 1 l flask. H\(_2\)O\(_2\) (35% in water–brine, 10.4 ml, 121.8 mmol)
was then added dropwise at 288–303 K and the temperature was
maintained with a water bath. After 5 h, brine (550 ml) was added
portionwise. The product was extracted four times with diethyl ether
(200 ml). The combined organic layers were washed with brine
(500 ml) and then dried over MgSO\(_4\). Filtration and evaporation in
vacuo afforded 12.7 g of a brown oil. This oil was purified by chro-
matography on a silica-gel column using \(\text{n-hexane/AcOEt} \) (95:5) to
afford the desired product, (II), as a yellow oil (6.40 g, 38 mmol, yield
60%). Compound (III), namely racemic ethyl 2-(5-methyltetra-
hydrofuran-2-yl)acetate, was prepared by placing compound (II)
(400 mg, 2.38 mmol) and 5% rhodium over alumina (50 mg,
0.024 mmol) in MeOH (15 ml) under 3.8 atm pressure of hydrogen in
a Parr apparatus (1 atm = 101.325 Pa). After 16 h, the mixture was
filtered on a Celite/silica 2.1 mixture. Evaporation in vacuo afforded
compound (III) (316 mg, 1.83 mmol, 77%). According to NMR and
GC analyses, the cis/trans ratio was 85:15. Compound (IV) was
prepared by magnetically stirring compound (III) (0.5 g, 2.9 mmol) in
dried benzene (15 ml) in a three-necked 25 ml flask fitted with a
reflux condenser and under an atmosphere of argon. N-Bromosuc-
cinimide (NBS; 1.86 g, 10.5 mmol) was added slowly and the mixture
was refluxed for 2 h under the illumination of a 200 W lamp.
The mixture was cooled to 283 K and the solid obtained was filtered
off. Benzene was removed by evaporation in vacuo. The oil obtained
was purified by chromatography on a silica-gel column using
\(\text{n-hexane/AcOEt} \) (9:1) as eluant, giving finally the brominated product
(IV) as a yellow oil (yield 250 mg, 0.7 mmol, 26%). As the oil
contained a small amount of impurities, ca 100 mg were recrystallized
from hexane. Colourless crystals suitable for X-ray diffraction were
obtained.

Crystal data

\[\text{C}_9\text{H}_9\text{Br}_2\text{O}_3 \]
\[M_r = 328.01 \]

Triclinic, \(\text{P} \)
\[a = 9.0779 \text{ (8) Å} \]
\[b = 9.1402 \text{ (9) Å} \]
\[c = 15.3942 \text{ (13) Å} \]
\[\alpha = 85.740 (7)° \]
\[\beta = 82.209 (7)° \]
\[\gamma = 64.386 (7)° \]
\[V = 1140.98 \text{ (18) Å}^3 \]
\[Z = 4 \]
\[D_r = 1.909 \text{ Mg m}^{-3} \]
\[\text{Mo Kα radiation} \]
\[\mu = 7.10 \text{ mm}^{-1} \]
\[T = 173 (2) \text{ K} \]
\[\text{Block, colourless} \]
\[0.30 \times 0.23 \times 0.20 \text{ mm} \]

Figure 2

A segment of the crystal packing of compound (IV), viewed down the a
axis. The Br···O interactions and C–H···O hydrogen bonds are shown
as dashed lines [symmetry codes: (i) \(-x, -y+1, -z+1\); (iv) \(-x, -y+2, z\)].
Data collection

Stoe IPDS-II diffractometer
\(\psi \) and \(\omega \) scans
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2003)
\(T_{\text{min}} = 0.126, T_{\text{max}} = 0.245 \)

Refinement

Refinement on \(F^2 \)
\(R(F^2) = 0.040 \)
\(wR(F^2) = 0.088 \)
\(S = 0.90 \)
6151 reflections
257 parameters

\(\Delta \rho_{\text{max}} = 0.83 \ \text{e} \ \text{Å}^{-3} \)
\(\Delta \rho_{\text{min}} = -1.19 \ \text{e} \ \text{Å}^{-3} \)

The H atoms could all be located from difference Fourier maps. They were included in calculated positions and treated as riding atoms, with C–H distances of 0.98–1.00 Å and \(U_{	ext{iso}}(\text{H}) \) values of 1.2 or 1.5 times \(U_{	ext{eq}}(\text{C}) \).

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELX97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Financial support from the Swiss National Science Foundation is gratefully acknowledged.

Table 1

<table>
<thead>
<tr>
<th>Selected geometric parameters (Å, (^\circ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br1–C2</td>
</tr>
<tr>
<td>Br2–C5</td>
</tr>
<tr>
<td>O1–C1</td>
</tr>
<tr>
<td>O2–C6</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Hydrogen-bond geometry (Å, (^\circ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D-H \cdots A)</td>
</tr>
<tr>
<td>C3–H3A⋅⋅⋅O2w</td>
</tr>
<tr>
<td>C13–H13A⋅⋅⋅O5w</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) \(-x, -y+1, -z+1\); (ii) \(x, y-1, z\); (iii) \(-x, -y+1, -z\).

References
