Faculté des sciences de la vie SV, Programme doctoral Biotechnologie et Génie biologique, Institut de biosciences intégratives IBI

Development of a novel drug delivery system based on polymeric, thermoresponsive, hydrogel nanoparticles

Misirlis, Dimitrios ; Hubbell, Jeffrey A. (Dir.)

Thèse sciences Ecole polytechnique fédérale de Lausanne EPFL : 2005 ; no 3362.

Ajouter à la liste personnelle
    Summary
    Carrier-mediated drug delivery has emerged as a powerful methodology for the treatment of various pathologies. The therapeutic index of traditional and novel drugs is enhanced via the increase of specificity due to targeting of drugs to a particular tissue, cell or intracellular compartment, the control over release kinetics, the protection of the active agent or a combination of the above. Nanoparticles (NPs) were proposed as drug carriers over 30 years ago and have received growing attention since, mainly due to their stability, enhanced loading capabilities and control over physicochemical properties. The unique pathophysiology of solid tumors allows passive accumulation of NPs at these sites upon intravenous injection. Furthermore, stealth NPs with long circulation times are more efficient in reaching tumor tissue. In addition to systemic administration, localized drug release may be achieved using macroscopic drug depots close to the target site. Among various systems considered for this approach, in situ-forming biomaterials in response to environmental stimuli have gained considerable attention, due to the non-invasive character, reduction of side effects associated with systemic administration and better control over biodistribution. This thesis focuses on the design, preparation and in vitro characterization of polymeric, hydrogel nanoparticles with thermoresponsive properties. Inverse emulsion polymerization was selected for their fabrication via cross-linking of acrylate derivatives of poly(ethylene glycol) (PEG) and poly(ethylene glycol)-bl-poly(propylene glycol)-blpoly( ethylene glycol) (PEG-PPG-PEG) copolymers, also known as Pluronics®. This polymerization technique allows for control over size, is versatile in respect to initiation and composition, and proceeds to full double-bond conversion in relatively short times. Incorporation of functional comonomers in the polymeric network additionally offers the possibility of further modifications, as is demonstrated by fluorescent labeling of the colloids. Moreover, hydrogel NPs of 100-500 nm are stable against aggregation as aqueous dispersions and as freeze-dried solid powders. The particles we discuss here, may be visualized as nanoscale, three-dimensional, polymeric networks consisting of PPG-rich, hydrophobic domains surrounded by a hydrophilic, PEG-rich matrix. The permanence of domains similar in hydrophobicity to Pluronic micellar cores, but insensitive to dilution under the critical micellar concentration, allows the accomodation of poorly water-soluble drugs through hydrophobic interactions, as was experimentally shown using the anticancer agent doxorubicin. A fast and efficient solvent evaporation technique was developed in order to physically encapsulate the drug. Doxorubicin is thus partially protected from degradation and diffuses out of the NPs without a burst, over one week under sink conditions in vitro. Thermosensitivity of nanoparticles is manifested as a size reduction of non-interacting colloids in dilute dispersions and as a macroscopic, fluid-to-solid, physical transition of concentrated samples. The driving force of these phenomena is an entropically-driven deswelling of the hydrogel NPs with increasing temperature, which leads to their hardening. At concentrations above which there is physical contact of neighboring particles, this intraparticulate event results in the dynamic arrest of particles within a 'cage' formed by their neighbors. This mild and reversible transition occurs at a clinically-relevant temperature range (25-30°C), with no syneresis or by-product formation, and is compatible with living cells. Upon dissolution in body fluids, the colloidal macroscopic drug depot will give rise to a colloidal dispersion; however, it is notable that the processes of encapsulated drug release and dissolution are independent and may be tailored on a case-to-case basis. In vitro cell culture studies revealed that nanoparticle cytotoxicity was negligible even at high concentrations. Interactions with macrophage-like cells, intended to model cells of the mononuclear phagocyte system, showed limited colloidal uptake which is not influenced by the presence of serum, but is energy dependent to a considerable extent (approx. 30%). We believe this low association stems from the hydrophilic, protein-repellent nature of the materials employed and suggests a stealth character. In conclusion, the nanoparticles presented here are well suited for certain drug delivery applications, including cancer therapy and in the prevention of post-operative adhesions, both in the form of injectable dilute dispersions or as in situ gelling thermoresponsive biomaterials.
    Riassunto
    Riassunto Il trasporto mediato di farmaci è risultato una metodologia molto valida nel trattamento di varie patologie. L'indice terapeutico di farmaci tradizionali e moderni è migliorato grazie all' incremento di specificità dovuto al raggiungimento preciso di un particolare tessuto, cellula o compartimento intracellulare, al controllo della cinetica di rilascio, alla protezione del principio attivo o alla combinazione di queste. Le nanoparticelle (NP) sono state proposte come trasportatori di farmaci da ormai 30 anni e ricevono sempre più attenzione dal mondo scientifico, principalmente dovuto alla loro stabilità, a un efficiente inglobamento del farmaco e al controllo delle proprietà psico-chimiche. Unicamente la patologia fisica di tumori solidi permette l'accumulazione passiva delle NP per mezzo di un iniezione intravenosa. Inoltre alcune NP che possiedono lunghi tempi di circolazione sono più efficienti nel raggiungere il tessuto tumorale. Oltre alla somministrazione sistemica, il rilascio localizzato del farmaco potrebbe essere conseguito depositando il farmaco nelle vicinanze del sito target. Tra i vari sistemi considerati in tale contesto, i biomateriali originati in sito, in risposta a stimoli ambientali sono i più accreditati, in quanto la somministrazione non è invasiva, gli effetti secondari associati alla somministrazione sistemica, sono ridotti e c'è un maggiore controllo della biodistribuzione. Tale progetto di tesi è focalizzato alla progettazione, alla preparazione e alla caratterizzazione in vitro nanoparticelle polimeriche (hydrogel), con proprietà termo-sensibili. Per la fabbricazione via cross-linking di derivati acrilati di poly(ethylene glicol) (PEG) e copolimeri a base di poly(ethylene glycol)-bl-poly(propylene glycol)-bl-poly(ethylene glycol) (PEG-PPG-PEG), conosciuto anche come Pluronics, è stata utilizzata la polimerizzazione in emulsione inversa. Tale tecnica permette il controllo delle dimensioni delle NP, è versatile rispetto alla composizione di tali e all'iniziazione della polimerizzazione, e raggiunge la conversione totale relativamente in breve tempo. Tra l' altro la possibilità di incorporare comonomeri funzionali nella rete polimerica offre la possibilità di ulteriori modifiche, come è dimostrato dalla marcatura fluorescente dei colloidi. In aggiunta le nanoparticelle di hydrogel, di 100-500 nm, come le sospensioni acquose e le polveri solide liofilizzate, sono stabili contro l'aggregazione. Le particelle discusse fina ad ora possono essere considerate come reti polimeriche tridimensionali, costituite da domini idrofobici ricchi in PPG circondati da una matrice idrofilia ricca in PEG. La permanenza dei domini, con idrofobicità simile al cuore pluronico della micella, ma insensibile alla diluizione al di sotto della CMC, permette la collocazione di farmaci poco idrosolubili via interazioni idrofobiche. Questo è stato sperimentalmente dimostrato con la Doxorubicina, l'agente antitumorale. Una tecnica di evaporazione del solvente veloce ed efficiente è stata sviluppata con lo scopo di incapsulare il farmaco. Doxoru... è quindi parzialmente protetta dalla degradazione e diffonde dalla NP in modo graduale e controllato per più di una settimana in vitro. La termosensibilità delle NP è espressa come riduzione delle dimensioni dei colloidi non-interattivi in sospensioni diluite e come una transizione macroscopica liquida-solida in un mezzo concentrato. La forza motore di tali fenomeni è il rilascio di acqua dalle NP indotto dall'aumento dell'entropia associato all'aumento di temperatura, che porta alla loro solidificazione. Inoltre tale evento intra-particellare, in presenza di contatto fra le particelle adiacenti dovuto a concentrazioni abbastanza elevate, porta ad un dinamico arresto delle particelle in una "gabbia" formata dalle stesse particelle vicine. Questa transizione reversibile e non brusca avviene in un intervallo di temperatura (25-30°C) di applicabilità in campo clinico, senza degradazione del biomateriale e formazione di sottoprodotti, ed è compatibile con cellule viventi. Dopo la diluizione nei fluidi corporali, il deposito colloidale solido del farmaco si trasformerà in sospensione colloidale. Quindi è evidente che i processi di dissoluzione del farmaco incapsulato e di dissoluzione sono indipendenti e possono essere ingegnerizzati caso per caso. Studi in vitro hanno rivelato che la citotossicità delle nanoparticelle è trascurabile anche ad alte concentrazioni. Le interazioni con cellule di tipo macrofago, intese come modello cellulare del sistema mononucleare fagocitico, mostrano limitata fagocitosi, la quale non viene influenzata dalla presenza del siero, ma risulta notevolmente dipendente dall'energia (appros. 30%). Noi crediamo che questa debole associazione sia dovuta alla natura idrofilica, protein-repellente del materiale utilizzato e suggerisce un carattere di autooccultamento. In conclusione, le nanoparticelle presentate in tale progetto sono un efficiente strumento nel campo del trasporto di farmaci, soprattutto nelle terapie tumorali e nella prevenzione delle adesioni post-operatorie, utilizzandole in forma di sospensione iniettabile diluita o di biomateriali creati in situ.