Département de génie civil (Laboratoire de géologie de l'ingénieur et de l'environnement GEOLEP)

Typologie géochimique des eaux des aquifères carbonatés des chaînes alpines d'Europe centrale et méridionale

Dematteis, Antonio ; Parriaux, Aurèle (Dir.)

Thèse Ecole polytechnique fédérale de Lausanne EPFL : 1995 ; no 1419.

Ajouter à la liste personnelle
    Summary
    This study describes the spatial heterogeneousness of the chemical composition of underground waters, particularly the trace elements, and the carbon-13 isotope in several carbonate aquifers of the alpine belt in Europe. The research forms part of the AQUITYP project which have been worked on the last 14 years by the Geology laboratory of the Swiss Federal Institute of Technology in Lausanne (GEOLEP). The main aim of the project is to define the typology of the aquifers, based on the chemical characterisation of underground waters. The carbonate aquifers has been divided in several groups chosen after geological, geographical and hydrological criterias. The geological criterias are petrography and depositional environments of carbonates. The geographical criteria is the altitude of the catchment area. The criteria hydrology is the type of flow in karstic systems. The first stage of this research consisted of a selection of 87 carbonate aquifers divided in 13 regions of study in the alpine belt between France and Greece. Aquifers were selected in order to guarantee the absence of external contamination in groundwaters. Sampling were carried out in a period of base-flow, when groundwaters are equilibrated with rocks. The analyse of 112 samples of water provided the basis of the observations of the various chemical and isotopic composition of groundwaters of carbonate aquifers. Lixiviation of rocks forming aquifers provides information about geogenic origin of some trace elements. The geological and hydrogeological context of aquifers The aquifers studied are composed of platform and basin limestones, that form part of the paleogeographic domain of the Tethys. One example of Devonian limestone belongs to the complex of the Palaeozoic of Graz is also included. Each aquifer has homogenous petrographic composition, but from one aquifer to another the petrographic composition may differ. In this research are included pure limestones, marly limestones and dolomites. From a hydrogeological point of view the 87 aquifers show different degrees of karstification, they are placed either in regions of mountains (caracterised by an important hydraulic gradient), either in region of plateau. The surface of the catchment areas is variable between ten km2 (for example the karstic plateau in Slovenia) and a few km2 (for example the Parmelan massif from subalpine belt in France). Discharges of springs are also variable, between 1 and 1000 l/s. The chemical characterisation of water The study of the chemical typology of the waters of carbonate aquifers are carried out on non thermal water rich in oxygen (median values: temperature 8.8°C, dissolved oxygen 11.8 mg/l, Eh 0.4 V, pH 7.2). The total dissolved solids differs between 100 and 600 mg/l. Underground waters are calcium bicarbonate type. Within these facies in some cases, the Mg and S04 content can be superior, thus defining two sub-facies. The iodine content in the groundwaters of carbonate aquifers usually shows higher values than the other types of aquifers of the project AQUITYP. Concentration in the groundwaters of carbonate aquifers is variable between 10 and 60 µg/l. The origin of iodine is caused by the oxidation of fossil organic matter present in the carbonate rocks. Trace elements allows to distinguish groups of aquifers composed of pure limestones, dolomite or deep sea limestones : pure limestones. The aquifers composed of pure limestones are marked by a very small concentration of trace elements. This can be explained by the poorness of the detrital materials (clays, Fe-Mn oxides, heavy minerals) and the compact lithology that reduces the surface of water-rock interaction. dolomite. The typical elements of dolomite aquifers are Mg, U and Mo. The high primary porosity and the brittle deformation of this type of rock favorise a better water rock interaction compared to poor reef limestone aquifers. Examples of this group of aquifers have been selected in the Italian Dolomites and in the Zone of Karavanke in Slovenia deep sea limestones. The barium is a geogenic tracer in some aquifers composed of basin limestones. The aquifers of the Maiolica and of the Scaglia in the Apennine and the Malm aquifer (spring of Grandchamp) in the Prealpes in Switzerland have a high level of Ba in groundwater (between 60 and 220 µg/l). The limiting factor of Ba mobility in this carbonate environment is the concentration of SO42- in the water. The SO42- makes the Ba precipitate in shape of barytes. This process explains the presence of barytes in fractures found in the aquifer of the Calcare Massiccio in the Apennines. The content of carbonate-13 in groundwaters allows to make a distinction between waters infiltrated in catchment areas with or without vegetation and soils. This isotope is also interpreted as a tracer of the type of underground flow in Karstic system (rapid flow in Karstic channels or slow flow in little fractures of the rock). For the project an example has been taken in Tanneben karst, in Austria. This karst shows that water with a slow flow from blocks has a higher 13C content in comparison with fast flow channel water. Finally some analysis of waters from the bottom of soils on the Jura belt in Switzerland showed that during little rain periods the content of isotope is comparable to the one of slow flow waters of the unsaturated zone in the karst. This demonstrate that the isotopic exchange with rock is completed at low horizon in the soil. The vanadium is a geogenic tracer in the Malm aquifer of the Jura belt in Switzerland and in the Cretaceous aquifer in the region of Trieste, in Italy. The origin of vanadium differs in these two examples. In the Jura belt the vanadium comes probably from marly layers of limestones of the low Portlandien. In the region of Trieste the element vanadium is present in bituminous carbonate sediments from inner platform (Calcari bituminosi from Paleocene). In conclusion the importance and the limits of the chemical criterion for the typology of aquifers are shown. This method of distinction of groups of limestone aquifers is one of the tools which permit the determination of the origin of water sources, particularly in underground and borehole construction projects.
    Résumé
    Cette étude décrit l'hétérogénéité spatiale de la composition chimique des eaux souterraines - particulièrement des éléments traces - ainsi que celle de l'isotope carbone 13 dans de nombreux aquifères carbonatés des chaînes montagneuses européennes. Elle s'inscrit dans le cadre du projet AQUITYP, mené depuis 14 ans au Laboratoire de géologie de l'École Polytechnique Fédérale de Lausanne (GEOLEP). L'objectif principal du projet est de définir une typologie des aquifères, basée sur les caractéristiques chimiques des eaux souterraines. La typologie des aquifères carbonatés a été définie pour des groupes d'aquifères constitués sur la base de critères géologiques (pétrographie et milieu de dépôt), géographiques (type de bassin versant) et hydrogéologiques (type d'écoulement). La première étape de cette recherche a consisté en la sélection de 87 aquifères carbonatés, répartis dans la chaîne alpine et son pourtour en 13 régions d'étude situées entre la France et la Grèce. Les aquifères retenus ont été choisis en minimisant les contaminations dues à d'autres aquifères et à des influences anthropiques trop importantes. Les prélèvements ont été effectués en période de basses eaux pour s'intéresser aux composantes de l'écoulement bien équilibré avec les roches. L'analyse de 112 échantillons d'eau a fourni la base d'observations de la variabilité de composition chimique et isotopique des eaux souterraines des aquifères carbonatés. Des tests de mise en solution de roches constituant les aquifères ont également fourni des indications précieuses sur l'origine géogène de certains éléments. Contexte géologique et hydrogéologique des aquifères Les aquifères étudiés sont composés de calcaires de plate-forme et de bassin, appartenant au domaine paléogéographique de la Téthys. Un exemple de calcaires dévoniens appartenant au Complexe Paléozoïque de Graz est égaiement inclus. La composition pétrographique des aquifères est relativement homogène dans un seul aquifère et variable d'un aquifère à l'autre. Elle comprend des calcaires récifaux purs, des calcaires marneux et des dolomies. Du point de vue hydrogéologique, les 87 aquifères montrent différents degrés de karstification. Ils sont situés soit en régions de montagne (forte dénivellation entre l'altitude moyenne du bassin versant et la cote altimétrique de la source), soit en régions de plateaux de basse altitude. La surface des bassins versants est varie entre des dizaines de km2 (par exemple le plateau karstique slovène) et quelques km2 (par exemple le massif de Parmelan, dans les chaînes subalpines françaises). Les débits d'étiage des sources sont également très variables, compris entre 1 et 1000 l/s. Caractéristiques chimiques des eaux L'étude de la typologie chimique des eaux des aquifères carbonatés porte sur des eaux sans anomalies géothermales, généralement riches en oxygène (valeurs médianes : température 8.8°C, oxygène dissous 11.8 mg/l, Eh 0.4 V, pH 7.2). La minéralisation totale de ces eaux varie entre 100 et 600 mg/l. Les eaux sont bicarbonatées calciques. A l'intérieur de ce faciès, dans certains cas, le contenu en Mg et SO42- peut augmenter, définissant ainsi des sous-faciès. En général, dans les eaux des aquifères carbonatés, l'iode montre des valeurs plus élevées que dans les autres types d'aquifères considérés dans le projet AQUITYP, variant entre 10 et 60 µg/l. L'origine de l'iode est à attribuer à l'oxydation de la matière organique fossile présente dans les roches carbonatées. Les éléments en trace ont permis de faire la distinction entre des groupes d'aquifères constitués de calcaires purs, de dolomies, ou de calcaires de bassin : Calcaires purs. Les aquifères constitués de calcaires purs sont marqués par des concentrations très basses en éléments traces. Ceci s'explique par la pauvreté de matériel détritique (argiles, oxydes de Fe et Mn, minéraux lourds) et par la lithologie compacte qui réduit la surface de contact de l'eau avec la roche et défavorise leur interaction. Dolomies. Les éléments Mg, U et Mo proviennent typiquement des aquifères des roches dolomitiques. Ces éléments sont généralement associés et montrent des concentrations élevées dans les eaux de ces aquifères. La porosité primaire élevée de ces roches, combinée avec leur forte densité de fracturation, favorise une meilleure interaction eau-roche par rapport aux calcaires massifs purs. Les exemples d'aquifères dolomitiques inclus dans ce travail se trouvent dans les Dolomites en Italie et dans la Zone de Karavanke en Slovénie. Calcaires de bassin. Le baryum s'est révélé un marqueur géogène intéressant dans certains aquifères composés de carbonates déposés en milieu de bassin. Dans les aquifères de la Maiolica et de la Scaglia dans l'Apennin, ainsi que dans celui du Malm dans les Préalpes romandes (source de Grandchamp), existent des anomalies positives élevées de la teneur en Ba (entre 60 et 220 µg/l). Le facteur limitant la mobilité de cet élément en milieu carbonaté est la concentration de SO42-. Pour des concentrations plus élevées que 100 mg/l de SO42- le Ba précipite sous forme de barytine. Ce comportement explique par ailleurs la présence de barytine comme précipité secondaire dans les diaclases, comme cela a été observé dans l'aquifère du Calcare Massiccio dans les Apennins. La teneur en carbone 13 dans les eaux souterraines permet de distinguer entre des eaux infiltrées dans un bassin versant couvert de végétation et des eaux infiltrées dans un bassin versant dépourvu de sols. Cet isotope est également interprété comme étant marqueur du type d'écoulement dans un système karstique (écoulement rapide dans les drains ou lent dans les petites fissures de la roche). L'exemple du karst de Tanneben, en Styrie (Autriche), montre que l'eau de vidange des blocs provenant du réservoir à écoulement lent a une teneur plus riche en 13C que les eaux des drains à circuit rapide. Enfin, des analyses d'eaux prélevées à la base de sols dans le Jura suisse ont montré que dans des périodes peu pluvieuses de l'année le contenu isotopique est comparable aux eaux à écoulement lent de la zone non saturée. Ceci démontre que l'équilibration avec la roche se fait déjà à la base du sol, grâce aux fragments de calcaire qui constituent le sol. Le vanadium s'est révélé être un marqueur géogène de l'aquifère du Malm dans le Jura vaudois et de celui du Crétacé dans la région de Trieste. L'origine du vanadium est différente dans les deux cas. Dans le Jura vaudois le vanadium est vraisemblablement lié aux niveaux marneux des calcaires du Portlandien inférieur. Dans la région de Trieste l'élément est plutôt lié à des sédiments carbonatés déposés en milieu réducteur de plate-forme interne (Calcari bituminosi du Paléocène). En conclusion sont discutées l'importance et les limites du critère chimique pour l'établissement d'une typologie des aquifères carbonatés. La méthode de distinction des groupes d'aquifères carbonatés constitue un outil qui, associé aux autres méthodes, contribue à déterminer l'origine des venues d'eau, en particulier dans le cadre de travaux souterrains ou de forages.