Faculté des sciences et techniques de l'ingénieur STI, Section de microtechnique, Institut d'imagerie et optique appliquée IOA (Laboratoire d'optique appliquée LOA)

Electron beam induced deposition of rhodium nanostructures

Cicoira, Fabio ; Hoffmann, Patrik (Dir.)

Thèse sciences Ecole polytechnique fédérale de Lausanne EPFL : 2002 ; no 2528.

Ajouter à la liste personnelle
    Summary
    Electron Beam Induced Deposition (EBID) allows deposition of three-dimensional micro- and nano-structures of conductive and insulating materials on a wide range of substrates. The process is based on the decomposition of molecules of a pre-selected precursor by a focused electron beam. In recent decades EBID of several metals, namely Au, W, Cu and Pt, from different families of precursors, has been achieved and the technique has found some application for small-scale production of laboratory devices and for repair of masks and micro-optoelectronic devices. The weak point of the technique is at present the low purity of the deposited material, caused by metal-organic precursors and by the lack of selectivity of the electron-induced decomposition process. This work is dedicated to EBID of Rh nanostructures from the precursor [RhCl(PF3)2]2. High metal content deposits are expected because the precursor does not contain C atoms and because Rh is one of the less reactive metals. [RhCl(PF3)2]2 as EBID precursor has been characterized by vapor pressure, mass spectrometry and surface residence time measurements. The vapor pressure of 7.5 Pa at room temperature reveals that the precursor is sufficiently volatile for room temperature EBID. The knowledge of the vapor pressure allows also to estimate the number of precursor molecules delivered to the reaction area per unit time. Mass spectrometry measurements allow to know the decomposition path of the precursor under electron impact in the gas phase. The measured spectrum indicates that the molecule decomposes by successive loss of PF3 groups, as confirmed by density functional theory calculations. This is compatible with a high metal content deposit. Residence time measurements show that [RhCl(PF3)2]2 does not decompose on stainless steel surfaces. The measured residence time of 2 ms allows to estimate that the activation energy for desorption of [RhCl(PF3)2]2 on stainless steel is about 0.6 eV and that precursor molecules can travel distances in the micrometer range before being desorbed. EBID structures obtained from [RhCl(PF3)2]2 have been characterized with a wide range of techniques for a better knowledge of the material properties and the deposition process. The deposit morphology has been studied by Transmisssion Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) to characterize the different steps of the deposition process. Crystallographic analysis is carried out by TEM in diffraction mode. Chemical analysis is carried out by Auger Electron Spectroscopy (AES) and Electron Energy Loss Spectroscopy (EELS). Morphological analysis of deposits carried out at different exposure times reveals that the first phase of the growth process, in close proximity to the substrate, is characterized by an increase of the deposit height and the deposit diameter. On the other hand the second phase of the growth process is characterized by increasing height and constant diameter. TEM contrast profiles of dots and Atomic Force Microscopy (AFM) sections of lines have clearly shown that the EBID rate is highest in the center of the beam and decreases in the peripheral regions. Deposition at variable distances from the precursor source allowed to obtain hollow structures, whose morphology reveals that the precursor reaches the reaction area mainly by direct gas phase transport. Structural analysis and TEM revealed that, independently of the deposition conditions, the deposited material is made up of Rh nanocrystals immersed in a lighter amorphous matrix. Chemical analysis by Auger Electron Spectroscopy revealed that, after removal of the C rich contamination layer by Ar ion sputtering, the average composition of the deposits is about: 60 at.% Rh, 20 at.% P, 5 at.% Cl, 7 at.% N, 8 at.% O. The absence of C and the presence of N and O in the deposit bulk have been confirmed by Electron Energy Loss Spectroscopy. This technique allowed also to prove that Rh is dominant also in deposits of sub-micrometer size (not analyzable with AES) and to determine the elemental distribution in the deposit with nanometer resolution. Comparison of the deposit composition and the positive ions detected by mass spectrometry revealed that EBID, compared to low pressure gas phase ionization, involves a higher number of events, i.e. multi-electron decomposition and rearrangements of partially decomposed species.
    Riassunto
    Riassunto La deposizione indotta da fascio di elettroni (Electron Beam Induced Deposition, EBID ) permette di depositare micro e nanostrutture tridimensionali di materiali conduttori ed isolanti su di una vasta gamma di substrati. La tecnica é basata sulla decomposizione di molecole di un opportuno precursore ad opera di un fascio di elettroni focalizzato. Nel corso degli ultimi decenni è stata realizzata la deposizione di diversi metalli, principalmente Au,W, Cu e Pt, da varie famiglie di precursori. EBID ha trovato applicazioni nella produzione di devices di laboratorio su piccola scala. Il punto debole di questa tecnica è senza dubbio la bassa purezza dei materiali depositati, causata dai precursori organo-metalici e dalla scarsa selettivita del processo. Questo lavoro è dedicato alla deposizione di nanostrutture in rodio dal precursore [RhCl(PF3)2]2potenzialmente adatto alla deposizione di strutture ad alto contenuto metallico in quanto non contenente carbonio. Il precursore[RhCl(PF3)2]2 è stato caratterizzato tramite misure di pressione di vapore, spettroscopia di massa e tempo di residenza in superficie. La pressione di vapore del precursore, 7.5 Pa a temperatura ambiente, lo rende adatto per deposizioni a temperatura ambiente. La conoscenza della pressione di vapore permette di stimare anche il numero di molecole di precursore che raggiungono la zona di reazione. Misure di spettrometria di massa permettono di conoscere la frammentazione della molecola indotta da impatto elettronico. Lo spettro di massa dimostra che la molecola viene decomposta per successiva perdita di gruppi PF3, come confermato anche da calcoli DFT (Density Funtional Theory). Le misure di tempo di residenza dimostrano che [RhCl(PF3)2]2 non reagisce chimicamente con superfici di acciaio inossidabile, ma viene reversibilmente adsorbito con un tempo di residenza di 2 ms. Tale valore corrisponde ad una energia di attivazione per il desorbimento di 0.6 eV. Le strutture EBID depositate da [RhCl(PF3)2]2 sono state caratterizzate con varie tecniche per conoscere le proprieta del materiale e per studiare le varie fasi del processo di deposizione. La morfologia dei depositi é stata studiata tramite microscopia elecronica a trasmissione (TEM) e microscopia elettronica a scansione (SEM). L'analisi cristallografica è stata effettuta tramite microscopia elecronica a trasmissione in modo di diffrazione. Per studiare La composizione Electron beam induced deposition of Rhodium nanostructures chimica dei depositi è stata studiata tramite le tecniche di spettroscopia per elettroni Auger e spettroscopia per perdita di energia di elettroni (EELS). L'analisi morfologica di strutture EBID depositate con un diverso tempo di esposizione al fascio di elettroni rivela che la prima fase del processo di deposizione è caratterizzata da un aumento dello spessore e del diametro del deposito. La seconda fase di crescita è invece caratterizzata da crescita tridimensionale con diametro costante. Curve di contrasto TEM dimostrano che la velocità di crescita del processo è più alta al centro del fascio di elettroni che nelle regioni periferiche. Deposizioni a distanza variabile dalla sorgente di precursore permettono di ottenere strutture cave e dimostrano che il precursore raggiunge la zona di reazione principalmente per trasporto dalla fase gas. L'analisi strutturale ha dimostrato che, indipendentemente dai parametri di deposizione, il materiale costituente le strutture EBID é costituitio da nanocristalli di rodio immersi in una matrice amorfa di piu basso Z. L' analisi chimica con AES ha dimostrato che, dopo rimozione dello strato di contaminazione per mezzo di sputtering ionico, la composizione media del materiale é 60 at.% Rh, 20 at.% P, 5 at.% Cl, 7 at.% N, 8 at.% O. L'assenza di C e la presenza di N e O nel volume del deposito è stata confermata anche dalla tecnica EELS. Quest'ultima tecnica ha permesso anche di provare la presenza di Rh in strutture sub-micrometriche. Un confronto tra i frammenti ottenuti dallo spettro di massa e la composizione del deposito dimostra che il processo EBID ha un meccanismo diverso dalla decomposizione per impatto di elettroni in fase gas.