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Abstract

We analyze the empirical predictions arising from settings of ambiguity aversion in intertemporal heteroge-
nous agents economies. We study equilibria for two tractable wealth-homothetic settings of ambiguity
aversion in continuous time. Such settings are motivated by a different robust control optimization prob-
lem. We show that ambiguity aversion affects optimal portfolio exposures in a way that is similar to an
increase in risk aversion. A distinct property of the second of our settings of ambiguity aversion is that
such increase is state-dependent and highly pronounced at moderate portfolio exposures. This feature
causes quite prudent levels of equity market participation over a nontrivial set of states of the economy.
In general equilibrium, ambiguity aversion tends to induce a higher equilibrium equity premium and lower
interest rates. A distinct feature of the second of our settings of ambiguity aversion is that the equity
premium part due to ambiguity aversion dominates when the exogenous random factors in the economy
have low volatility. Thus, such setting can account for some distinct empirical predictions — like a limited
equity market participation and ambiguity equity premia that dominate equity premia for small equity
volatilities — which are unavailable under the first of our settings of ambiguity aversion.
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1 Introduction

This paper studies the empirical predictions of aversion to ambiguity (model uncertainty) in

continuous-time economies with a stochastic investment opportunity set and heterogenous in-

vestors. Ambiguity refers to situations where investors do not trust in a single probability law

to describe the distribution of the relevant random variables. Ambiguity aversion means that

investors dislike ambiguity about the probability law of asset returns. In other words, investors

prefer bets with a known probability law of future pay-offs, when compared with a situation where

such a probability law is not known.

Distinguishing between ambiguity aversion and risk aversion is both economically and behav-

iorally important, because investors behavior under ambiguity aversion or under standard risk

aversion is inherently different, as the Ellsberg (1961) paradox illustrates. Therefore, theoretical

settings of ambiguity aversion should provide distinct empirical predictions with respect to set-

tings without ambiguity. We study and compare in general equilibrium such empirical predictions

for a few intertemporal settings of ambiguity aversion in heterogenous agents economies. The

general equilibrium analysis allows us to study the distinct effects of ambiguity aversion on the

functional form of key equilibrium quantities like equity premia and interest rates. The hetero-

geneity structure allows us to incorporate trading and to highlight the specific implications of

ambiguity aversion for equilibrium portfolio holdings.

Ambiguity aversion has been axiomatized first in an atemporal context. Gilboa (1987) pro-

posed an axiomatic setting of ambiguity aversion where preferences can be represented by means

of expected utilities with non additive probabilities. Gilboa and Schmeidler (1989) suggested a

related axiomatic framework where preferences can be represented by Max-Min expected utility

over a set of multiple (prior) distributions. Applications of these axiomatic settings to simple

models already highlighted a few specific empirical predictions of ambiguity aversion. For in-

stance, Dow and Werlang (1992) showed how ambiguity aversion can naturally generate limited
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equity market participation effects in investor’s optimal portfolio behavior, even in the absence

of transaction costs or other market frictions. Liu (2002) highlighted how such limited participa-

tion effects arise from a prudent and peculiar portfolio behavior under ambiguity aversion. Such

behaviour is particularly pronounced at moderate portfolio exposures.

More recently, some authors have attempted to incorporate ambiguity aversion also in an

intertemporal context. These approaches have been largely motivated or inspired by the Gilboa

and Schmeidler (1989) static Max-Min expected utility setting of ambiguity aversion.1 Epstein

and Wang (1994) studied some asset pricing implications of Max-Min expected utility in a discrete-

time infinite horizon setting. They did not, however, provide an axiomatic foundation for their

model. A discrete-time axiomatic intertemporal setting of ambiguity aversion has been provided in

Epstein and Schneider (2003), showing that a dynamically consistent conditional version of Gilboa

and Schmeidler (1989) preferences can be represented by means of a recursive Max-Min expected

utility criterion over a set of multiple (prior) distributions. Because the prevailing intertemporal

utility is also recursive, they refer to it as Recursive Multiple Priors Utility (RMPU). In Chen and

Epstein (2002), the RMPU setting of intertemporal ambiguity aversion was extended to continuous

time. A second non axiomatic setting of intertemporal ambiguity aversion based on an alternative

form of Max-Min expected utility preferences has been proposed by Hansen, Sargent and Tallarini

(1999, in discrete time) and Anderson, Hansen and Sargent (AHS, 2003, in continuous time). Such

a setting is based on an extension of robust control theory to an economic context.

This paper studies the empirical predictions of an aversion to ambiguity for two recent tractable

settings of ambiguity aversion in continuous time. Both settings are motivated by a robust control

optimization. One of them also admits a RMPU interpretation. Since investors behavior under

ambiguity aversion or under standard risk aversion is inherently different, one would expect that

1 More general settings of preferences under ambiguity were proposed recently in Ghirardato et al. (2002) and
Klibanoff et al. (2003), in an atemporal context. These settings permit a clearer distinction between the subjective
perception of ambiguity (or, more generally, beliefs) and attitude towards ambiguity (tastes) than under Max-Min
expected utility preferences. To our knowledge, no extension of these settings to an intertemporal context has been
studied so far.
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intertemporal settings of ambiguity aversion should provide distinct empirical predictions with

respect to settings without ambiguity. We analyze two tractable continuous time settings of

ambiguity aversion and study which setting delivers distinct empirical predictions of ambiguity

aversion, such as limited equity market participation and very prudent portfolio behaviors at

moderate exposures. We first highlight the conceptual distinction between RMPU settings of

ambiguity aversion and settings derived from a robust control approach. In a second step, we

introduce in more detail the two specific settings of ambiguity aversion studied in the paper.

Apart from the axiomatic foundation available in RMPU theory, the conceptual distinction

between the RMPU settings and the RMPU-unrelated settings is essentially one about the struc-

ture and the motivation of the set of multiple prior distributions with which expected utility is

evaluated. In addition to the standard regularity conditions for set of priors in the atemporal

context, RMPU yields a representation of preferences where the relevant set of priors satisfies a

property called rectangularity. Rectangularity is implied by a dynamic consistency axiom imposed

on conditional preferences with respect to the conditioning flow of information generated by asset

prices. Rectangularity is the key feature that allows to update every prior in RMPU by means

of Bayes rule and implies the strong recursive structure of the representation of preferences in

RMPU. RMPU theory does not provide additional dynamic restrictions on the set of multiple

priors that support its representation of preferences. Robust control theory has the goal of de-

livering dynamic optimal policies that are robust with respect to a slight but otherwise arbitrary

misspecification of the relevant state variable dynamics. In other words, the utility performance

of a robust control policy should not be too sensitive under a slight but otherwise arbitrary mis-

specification.2 In AHS and related robust control settings the relevant prior distributions against

2 The naive argument that small misspecifications should not significantly affect the quantitative implications
of an optimal behaviour under some particular state dynamics is generically wrong. Unfortunately, such vague
statement assumes implicitly some form of ”smoothness” of the performance of an optimal strategy with respect to
small (local) misspecifications of the assumed state dynamics. Such smoothness cannot be granted without taking
explicitly into account model misspecification in the definition and the construction of the relevant optimal policies.
The importance of this point has been early recognized for instance by Huber (1981) in his influential introduction
to the theory of robust statistics and has been further developed for example in econometrics to motivate several
robust procedures for time series models. See Krishnakumar and Ronchetti (1997), Sakata and White (1999),
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which robustness is called for are described by a whole neighborhood of possible misspecifications

around some fixed state dynamics. Such misspecifications are arbitrary but slight in the sense

that they are constrained to have a small discrepancy from the given state dynamics. Therefore,

the set of priors in the robust control approach has to deliver robustness of the prevailing optimal

policies with respect to any slight misspecification of the given state dynamics. In contrast to

RMPU, rectangularity - and hence the possibility of applying Bayes rule prior by prior - is not

per se a crucial property of a set of multiple priors defining a robust control model. In fact, a

more relevant property from a robust control perspective is the ability of a set of multiple priors to

encompass a whole proximity of possible misspecifications of the assumed state dynamics. Only

in such a case, a Max-Min expected utility optimization delivers optimal consumption/investment

policies that are robust to any possible local misspecification of the given state dynamics. Since

in the real world small misspecifications are by definition statistically hardly detectable, a useful

approach is to develop robust optimal procedures that imply a satisfactory minimal utility over a

whole proximity of realistic misspecifications of the assumed state dynamics. When such a robust

control setting happens to be based on a rectangular set of multiple priors then it also admits

a recursive representation of preferences in the form of the one supported by axiomatic RMPU

theory.

This paper studies analytically the distinct asset pricing predictions of two wealth-homothetic

Max-Min settings of ambiguity aversion implied by two robust control problems related to AHS’s

approach. The first Max-Min setting has been proposed in Maenhout (2001) who considered

a homothetic version of AHS’s robust control problem in order to obtain a higher analytical

tractability of the arising robust Hamilton Jacobi Bellman (HJB) equations. The second Max-

Min setting considered in this paper has been suggested originally in AHS (1998) and delivers a

rectangular set of priors. Therefore, it can be interpreted as a continuous time version of Epstein

and Schneider (2003) RMPU theory. Moreover, it implies a smooth and homothetic structure

Ronchetti and Trojani (2001), Mancini et al. (2003), Gagliardini et al. (2004) and Ortelli and Trojani (2004) for
some recent work in the field.
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of the relevant robust control problems, which enhances its analytical tractability relatively to

competing continuous time versions of RMPU. Chen and Epstein (2002) proposed a continuous

time version of RMPU that defines constraints on the set of multiple priors which are not smooth.

Therefore, such setting delivers a less tractable set of optimality conditions.

Despite our focus on homothetic settings of ambiguity aversion the class of economies ana-

lyzed in this paper includes a quite broad choice of portfolio selection and asset pricing models

that were recently applied to study ambiguity aversion in intertemporal asset pricing. Some ex-

amples of applications include portfolio selection (Maenhout (2001), Lei (2001) and Trojani and

Vanini (2002a), among others), option pricing with rare events (Liu et al. (2002)), models with

heterogenous aversions to ambiguity (Uppal and Wang (2003)), models with time varying am-

biguity (Sbuelz and Trojani (2002)) and yield curve models (Gagliardini et al. (2002)). Thus,

studying equilibria in our context provides insightful characterizations of the asset pricing pre-

dictions of ambiguity aversion for a quite large class of applied models. Non homothetic robust

control settings of ambiguity aversion motivated for instance by a H∞ or a risk sensitive control

approach (see also Tornell (2000) and again AHS (2003)) do not deliver the sufficient tractability

to study analytically ambiguity aversion in such generality.

The only explicit characterization of equilibrium for continuous time heterogenous economies

under ambiguity aversion we are aware of is Epstein and Miao (2003). Such a paper adopts

a geometric Brownian motion dynamics for the exogenous endowment process in an exchange

economy where log utility investors differ only in their subjective degrees of ambiguity aversion. In

this paper we study the empirical predictions of ambiguity aversion under a stochastic investment

opportunity set, in complete and incomplete markets, and in the presence of heterogeneities also in

risk aversions. Therefore, we provide a broader analysis of the empirical predictions of ambiguity

aversion in general heterogeneous economies. Obtaining closed form solutions in the presence

of a stochastic investment opportunity set is difficult and so we rely on perturbation theory to

describe our equilibria. This approach allows us to study analytically the asset pricing predictions
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of ambiguity aversion and in particular to investigate the specific functional forms implied for

some key equilibrium variables like equity premia and interest rates.3 To this end, we perturb

the equilibria of a benchmark economy with homogeneous log utility investors with respect to

the risk aversion and the ambiguity aversion parameters in our economies. This perturbation

approach extends the asymptotic analysis in Kogan and Uppal (2000) from models based on

standard expected utility to models including ambiguity aversion. The homothetic structure of

the two settings of ambiguity aversion studied in this paper is crucial in order to develop such a

perturbative analysis.

We show that for the two robust control settings studied in the paper ambiguity aversion

alters optimal portfolio exposures in a way that is similar to an increase in risk aversion. Under

the RMPU setting such increase is state dependent and highly pronounced at moderate portfolio

exposures, causing quite prudent equity market participations over a nontrivial set of states of

the economy. In general equilibrium, ambiguity aversion induces higher equilibrium equity premia

and lower interest rates. Under the RMPU setting the equity premium part due to ambiguity

dominates when the exogenous random factors in the economy have low volatilities. Thus, the

RMPU setting accounts for some distinct asset pricing predictions of ambiguity aversion — like

limited equity market participation and ambiguity equity premia that dominate equity premia for

small equity volatilities — which are unavailable under the RMPU-unrelated robust control setting.

The paper is organized as follows. Section 2 introduces two general Max-Min optimization

problems that model in two different ways investor’s intertemporal preferences under ambiguity

aversion. In Section 3, analytical solutions to the relevant partial equilibrium optimal policies

are derived. These results are the necessary building blocks for the subsequent general equilib-

rium analysis. Section 4 develops asymptotic expressions for the relevant variables in general

3 There are basically no alternatives to perturbation methods in order to solve complicated non linear equations,
as in our settings, analytically. This is particularly true for the heterogenous agents equilibria we have to consider.
A non analytic in principle competing approach could use numerical procedures. Although such approach is very
powerful for many problems, in our setting it is not easily applicable because of the complexity of the arising non
linear equations. Moreover, by means of numerical methods alone we would get little insight into the structure and
the distinct functional forms of equilibria under the different settings of ambiguity aversion studied in the paper.
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equilibrium, while Section 5 concludes with some summarizing remarks.

2 The Basic Model

This section introduces the two wealth-homothetic Max-Min robust control problems studied in

the paper. Such Max-Min problems are defined by means of two different sets of multiple priors

that imply different predictions of ambiguity aversion for optimal choices and asset prices. In both

cases, the relevant set of multiple priors are defined by a whole proximity of slight misspecifica-

tions around a fixed state dynamics. Such fixed state dynamics is a mathematically convenient

rationalization of a ”fuzzy” knowledge on asset returns. We call such state dynamics for brevity

the ”reference model” of our investors. This terminology highlights that the reference model is

an imperfect but realistic description of the true state dynamics for the economy. This viewpoint

considers explicitly the fact that in real life any model is an imperfect description of the main

characteristics of some observed phenomena. Therefore, models are always subject to a (possibly

small) misspecification.4 Model misspecification arises when the ”true” probability law of asset

prices is different from the one implied by the assumed model. In our Max-Min robust control

problems the relevant set of multiple prior distributions consists of a family of misspecifications of

the given reference model dynamics. Such misspecifications are likely because they are constrained

to be small and hardly statistically detectable. In order to constrain the relevant misspecifications

to be actually small they are required to imply a moderate discrepancy relatively to the distribu-

tions under the reference model. Discrepancy is quantified by an appropriate, statistically sound,

measure of diversity between distributions. We first introduce in Section 2.1 the reference model

for our investors. In a second step, we outline in Section 2.2 a general class of misspecifications

of the reference model that are used to define the Max-Min robust control models studied in the

paper.

4 For instance, the possibility of a misspecification is naturally motivated when a preferred model emerged from
an empirical (formal or informal) specification analysis where alternative realistic specifications close to it where
rejected.
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2.1 Opportunity Set and Risk Aversions

There are two assets, a locally risk free asset with price Bt at time t and a risky asset with price

Pt at time t whose dynamics are given by

dBt = rtBtdt ,

dPt = αtPtdt+ σtPt

³
ρdZX

t +
p
1− ρ2dZP

t

´
. (1)

The drift and volatility αt = α (Xt) and σt = σ (Xt) of the risky asset, as well as the short rate

rt = r (Xt), define a stochastic investment opportunity set adapted to a state variable Xt with

dynamics

dXt = ζ (Xt) dt+ ξ (Xt) dZ
X
t . (2)

Z :=
¡
ZX
t , ZP

t

¢
is a standard two dimensional Brownian motion. The parameter ρ is the correla-

tion between the P− and X−dynamics. For brevity, we also write ζt = ζ (Xt), ξt = ξ (Xt).

We consider agents with time preference rate δ and power utility u (·) of current consumption

Ct given by

u (C) =
Cγ − 1

γ
, γ < 1 .

For γ → 0 the log utility case follows. Agents allocate at each date t fractions wt and 1 − wt of

current individual wealth Wt to the risky asset and the riskless asset, yielding the current wealth

dynamics

dWt = [wtWt (αt − rt) + rtWt − Ct] dt+ wtWtσt

³
ρdZX

t +
p
1− ρ2dZP

t

´
. (3)

2.2 Two Settings of Intertemporal Ambiguity Aversion

We start analyzing equilibria under ambiguity aversion and identify in the sequel model (1), (2)

as the ”reference model” of our investors. Let ν := (νt)t≥0 be a change of measure density process

from the probability law under the reference model to a second probability law indexed for brevity

by ν. Without loss of generality we define

νt = exp

µZ t

0

hs · dZs − 1
2

Z t

0

|hs|2 ds
¶

,
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for a suitable process (hs) =
¡
hXs , h

P
s

¢0
, where |hs|2 = h0shs. ν identifies an absolutely continuous

probability law that models a potential misspecification of the reference model distribution. Under

a probability law ν, the Girsanov Theorem gives the following for the joint X− andW−dynamics:

dXt =
£
ζt + ξth

X
t

¤
dt+ ξtdZ

X
t , (4)

dWt =
h
wtWt

³
αt − rt + σt

³
ρhXt +

p
1− ρ2hPt

´´
+ rtWt − Ct

i
dt

+wtWtσt

³
ρdZX

t +
p
1− ρ2dZP

t

´
. (5)

If ν varies, a whole spectrum of absolutely continuous misspecifications of the reference model

distribution can be obtained. Any such misspecification ν can be uniquely identified with a

corresponding process h. The unique correspondence between ν and h allows us to interpret any

distributional misspecification ν as a dynamic misspecification of the reference model dynamics

(1), (2). Such dynamic misspecification is implied by a corresponding process h that affects the

drift dynamics in (4), (5). Consequently, we can also naturally think of a misspecification ν as

a dynamic drift misspecification relatively to the drift process implied by the reference model

dynamics (1), (2).

We now introduce the two robust control settings of ambiguity aversion studied in the paper.

They are defined by two distinct forms of intertemporal Max-Min expected utility preferences.

The crucial distinction between the two settings arises because of the different sets of multiple

prior distributions used to evaluate expected utilities. In both settings the set of multiple priors

encompasses a whole neighborhood of slight misspecifications around the reference model probabil-

ity law. This is achieved by constraining the maximal discrepancy between any misspecification’s

probability laws and the reference model probability distributions, where discrepancy between

probability laws is quantified by means of an appropriate statistical discrepancy measure. This,

in turn, amounts to constraining appropriately the size of any process h associated with a mis-

specification ν (see again (4), (5)). Thus, in both settings investors consider a set of multiple

priors consisting of small misspecifications of the given reference dynamics. Important differences
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between the sets of multiple priors studied in this paper arise because of their different intertem-

poral structure. Our goal is to study the distinct empirical predictions of ambiguity aversion in

intertemporal Max-Min expected utility contexts based on such different sets of multiple priors.

The first setting of ambiguity aversion which we consider is characterized by a Max-Min opti-

mization with a value function J given by:

(P1) : J (W,X) =


supC,w infhE

h
hR∞
0

e−δt
³
Cγ
t −1
γ + 1

2ψ(Wt,Xt)
· |ht|2

´
dt
i

s.t. (4), (5)
, (6)

where ψ (Wt,Xt) > 0 is a (possibly state dependent) weighting function. Different choices of

the weighting function ψ have been considered in the literature. For instance, a constant weight

ψ (Wt,Xt) = ϑ > 0 in (6) yields AHS’s setting of ambiguity aversion and a robust value function

given by:

J (W,X) =


supC,w infhE

h
hR∞
0

e−δt
³
Cγ
t −1
γ + 1

2ϑ · |ht|2
´
dt
i

s.t. (4), (5)
. (7)

In AHS’s setting agents select optimal policies that maximize expected utility under a worst case

probability law selected from the class of admissible misspecifications h. The selection of the worst

case probability law is constrained by the penalization factor

I (ν) = Eh

"Z ∞
0

e−δt
|ht|
2

2

dt

#
≥ 0 . (8)

Such penalization constrains the size of a misspecification ν in the infimization part of (7). I (ν)

is a measure of model discrepancy between a misspecification and the reference model probability

law.5 Larger misspecifications ν of the reference model distribution, or equivalently larger

drift misspecifications implied by a process h, imply a larger penalization factor (8). Because

of such penalization, the worst case probability law arising from the infimization part of (7)

5 In fact, I (ν) can be shown to be a measure of the relative entropy between a misspecification ν and the
reference model probability law; see for instance Hansen et al. (2001), p. 5-6. Relative entropy is a measure of
distributional discrepancy that is broadly used in information theory and statistics. In statistical discrimination
theory the relative entropy of two probability models can be related to the probability of a classification error in the
statistical selection of one of two models based on a given amount of data. Therefore, considering misspecifications
with moderate relative entropy can be interpreted as looking only at misspecifications that are statistically hardly
detectable; see also AHS (2003), Section 5.
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cannot be arbitrarily selected: misspecifications with larger discrepancy are heavier penalized

than misspecifications with small discrepancy. Furthermore, since I (ν) is weighted by 1/ϑ in (7)

the constraint on the selection of the worst case probability law is more stringent for low values of

ϑ. The extreme case arises for ϑ→ 0. In this case the penalization of any misspecification ν such

that I (ν) > 0 becomes arbitrarily large and the only worst case probability law selection implying

a finite penalization is one where I (ν) = 0. But (8) implies that this can be the case only for

a process h that is identical to 0 for any time t ≥ 0. Therefore, for ϑ → 0 the solution of (7)

reduces to the one of a standard expected utility problem with no ambiguity aversion. For ϑ > 0,

however, investors select optimal consumption/investment policies according to the probability law

of a worst case misspecification selected by the first minimization in (7). The larger ϑ, the larger

such worst case misspecification and the set of misspecifications against which robustness has been

called for. All such admissible misspecifications are characterized by a discrepancy measure I (ν) in

(8) that is lower than the one of the worst case misspecification selected according to a parameter

ϑ. This remark highlights the specific intertemporal structure of the implicit constraints put on

the set of multiple priors in the robust control optimizations (7) and (6).

AHS’s choice of a constant weighting function ψ in (6) implies consumption and investment

policies that are typically non-homogenous functions of current wealth. In this case, (7) is typically

an analytically quite intractable optimization problem.6 To avoid such intrinsic non homogeneity

of AHS’s robust control setting, Maenhout (2001) proposed to apply in (6) a state dependent

weighting function given by

ψ (Wt,Xt) =
ϑ

γJ (Wt,Xt) +
1
δ

, ϑ > 0 . (9)

Hence, in this setting the penalization for the discrepancy of a misspecification depends on the

indirect utility continuation value J itself. Such choice of ψ implies consumption/investment

robust optimal policies that are homogenous functions of current wealth and robust HJB equations

6 Infinite order asymptotic solutions for AHS’s robust control problem under a constant investment opportunity
set have been obtained by Trojani and Vanini (2001).
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that are analytically tractable in some economically interesting dynamic settings. This paper

makes use of problem (P1) with the specification (9) as a first setting of ambiguity aversion and

studies its general equilibrium empirical predictions.

The second setting of ambiguity aversion we address is based on a robust control problem with

a value function given by:

(P2) : J (W,X) =


supC,w infhE

h
hR∞
0

e−δt C
γ
t −1
γ dt

i
s.t. (4), (5) and 1

2h
0h ≤ η

. (10)

As in problem (P1), the optimization (10) is a Max-Min expected utility optimization over a

constrained set of admissible misspecifications ν. Such set is defined by a constraint on the

squared norm of any process h defining an admissible drift misspecification (4), (5). The constraint

1
2h

0h ≤ η in (10) implies that for any time t ≥ 0 the squared Euclidean norm h0tht of the process

h at that time is bounded by 2η. More specifically, the set of admissible misspecifications in the

constrained optimization (10) can be written as

{h : h0tht ∈ [0, 2η] for any t ≥ 0} (11)

and defines a rectangular set of priors, in Chen and Epstein (2002, p. 8) terminology.7 Con-

sequently, the preferences implied by problem (P2) are a continuous time version of axiomatic

RMPU theory. The key property of rectangular sets of multiple priors is that they can be con-

structed by arbitrary selections from primitive sets of transition densities between t and t + dt,

t ≥ 0. The set (11) is rectangular because any process h (and hence any density process ν) in (11)

corresponds to a selection of transition densities from t to t+ dt, t ≥ 0, such that h0tht ∈ [0, 2η].8

7 It can be shown that such constraint is equivalent to imposing for any t ≥ 0 a bound η on the statistical
discrepancy between all transition probabilities from t to t + dt under an admissible misspecification and those
under the reference model. More precisely, such constraint limits the growth rate of the relative entropy of a
misspecification over time. Indeed:

Eh

"Z ∞
t+∆t

|hs|
2

2

ds

#
−Eh

"Z ∞
t

|hs|
2

2

ds

#
= Eh

·Z ∞
t+∆t

ln (νs) ds

¸
− Eh

·Z ∞
t

ln (νs) ds

¸
.

Since the RHS of this equation is the variation in the relative entropy of a misspecification over the period t, t+∆t,
the claim follows. See also AHS (1998) and Hansen et al. (2001) for more details.

8 The distinction from Chen and Epstein (2002) ”k−ignorance” continuous time version of RMPU arises by the
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For η → 0, problem (P2) coincides with a standard expected utility maximization. For η >

0 agents select optimal policies that maximize expected utility under a worst case probability

law selected from the class (11) of admissible misspecifications. This is a Max-Min pessimistic

optimization that depicts ambiguity aversion. The larger η, the larger is the set (11) of relevant

misspecifications in problem (P2) and the more ambiguity averse agents preferences are.

The set of multiple prior distributions implicit in the penalized formulation of a robust opti-

mization of the form (6) is not as easily identifiable as the set (11). To highlight a more direct link

with Max-Min expected utility theory, Hansen et al. (2001) showed by means of the Lagrange

multiplier theorem that under a constant weight function ψ = ϑ a local relation9 between the

preferences behind the penalized problem (6) and those of a constrained Max-Min expected utility

optimization can be established. In such a constrained optimization, the relevant constrained set

of multiple (prior) distributions is given as:(
h : Eh

"Z ∞
0

e−δt
|ht|
2

2

dt

#
≤ k (ϑ)

)
, (12)

for some positive constant k (ϑ) depending on ϑ. Such a set of multiple priors is clearly not

rectangular.10 Therefore, the implied constrained Max-Min expected utility optimization does

not admit a RMPU representation, in contrast to the optimization problem (10).

To further highlight the structural differences between the penalized problem (6), (9) and

the constrained problem (10), one can apply the Lagrange multiplier theorem in order to relate

locally the preferences of problem (10) to those of an associated penalized problem (6) with

a corresponding stochastic weight function ψ. In fact, when comparing the worst case model

specific way of defining such rectangular sets of multiple priors. In our context, a rectangular set of priors defined
by a ”k−ignorance” metric would be:n

h :
¯̄̄
hPt

¯̄̄
≤ kP ,

¯̄̄
hXt

¯̄̄
≤ kX for any t ≥ 0

o
,

for some non negative constants kX , kP . Such metric constrains in a nonsmooth way every component of the
process h. This is the reason why it implies a less tractable intertemporal optimization problem under ambiguity
aversion than problem (P2).

9 Such relation is local in the sense that it says nothing about preferences orderings off the optimal solution
path.

10 A simple proof is given for completeness in the Appendix.
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solutions under the setting (P1) and (P2) — which are given in equation (56) and (61) of the

Appendix, respectively — it appears that the weighting function in a penalized form of problem

(10) has to be:

ψ (Wt,Xt) =

√
2η¡

W 2J2Wσ2 + ξ2J2X + 2σXPWJXJW
¢ 1
2

, (13)

and depends on the square root of the quadratic variation in the prevailing continuation utility,

as opposed to the level of continuation utility that is present in (9). The weight function ψ in

(13) will be therefore particularly high when the quadratic variation in continuation utilities is

low. The weight function (9), instead, will be particularly high when continuation utilities are

low. These are structurally huge differences between the optimization (6), (9) and problem (10).

Moreover, problem (10) admits a simple direct interpretation as axiomatic RMPU theory, as we

have discussed above.

3 Optimal Consumption and Investment Policies

This section studies the optimal consumption-investment policies to problems (6) and (10). We

provide asymptotic solutions that characterize analytically the optimal behavior arising under such

settings of ambiguity aversion. These results are necessary for the general equilibrium analysis in

Section 4. The basic idea of asymptotic methods is to formulate a general problem, find a particular

relevant case that has a known solution, and use this as a starting point for computing the

solution to nearby problems. Since in our general equilibrium analysis we will focus for tractability

on perturbations of a representative agent log utility economy, in this section perturbations are

performed around an expected log utility investor’s problem. Perturbations are with respect to

two parameters: the risk aversion parameter γ and the ambiguity aversion parameters (ϑ or η).

Hence, our asymptotic solutions hold for neighborhoods of a model with log utility of consumption

and no ambiguity aversion. The homotheticity of the robust control problems (6) and (10) allows

us to extend in a quite natural way the analysis in Kogan and Uppal (2000) from economies with
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no ambiguity to settings of ambiguity aversion.11

3.1 Ambiguity Aversion: Problem (P1)

The homogeneity of the Max-Min problem (6) under the specification (9) implies a value function

J given by

J (W,X) =
1

δ
·
¡
eg(X)W

¢γ − 1
γ

, (14)

for some unknown function g (X). Since in general the function g cannot be computed in closed

form, the key idea is to approximate it. To this end, we expand g to first order in (γ, ϑ):12

g = g0 + γg1 + ϑg2 +O2 (γ, ϑ) .

By construction, g0 solves (6) for γ,ϑ → 0, i.e. the expected utility problem of an investor with

logarithmic utility of consumption . Writing Jlog (X,W ) for this solution, (14) implies for γ,ϑ→ 0:

Jlog (X,W ) =
1

δ
(ln (W ) + g0 (X)) . (15)

Hence, g0 is given in closed form for problems were Jlog can be computed explicitly. It turns out

that g0 is all what we need to approximate the optimal policies to problem (6) up to first order

in (γ, ϑ). This is the next proposition.

Proposition 1 The first order asymptotics for the optimal policies of problem (6) under the
specification (9) are

c (X) = δ (1− γ (g0 (X)− ln (δ))) +O2 (γ, ϑ) , (16)

w (X) =
1

1− (γ − ϑ)

µ
α− r

σ2
+ (γ − ϑ)

∂g0 (X)

∂X
· σXP

σ2

¶
+O2 (γ, ϑ) , (17)

where σXP = ρξσ and c = C/W is the optimal consumption to wealth ratio.

We observe from Proposition 1 that optimal consumption is not altered by ambiguity aversion

because the parameter ϑ is absent in the consumption policy (16). Thus, the impact of ambiguity

aversion on optimal consumption is of higher order in (γ, ϑ). On the contrary, optimal invest-

ment in (17) is affected by ambiguity aversion. The first order consumption policy (16) can be

11 The analysis of non-homothetic robust control settings by means of asymptotic methods is more difficult; see
for instance Trojani and Vanini (2001) and Trojani and Vanini (2002b).

12 Hereafter O2 (γ, ϑ) is the Landau symbol that we use to denote terms of second order in (γ, ϑ).
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interpreted as the optimal consumption policy of an expected utility investor with elasticity of

intertemporal substitution 1/ (1− γ). The first order investment policy (17) can be interpreted as

the optimal investment policy of an expected utility investor with relative risk aversion 1−(γ − ϑ).

Hence, to first order ambiguity aversion in problem (6), (9) yields optimal policies that are ob-

servationally equivalent to those of a setting with an increased ”effective” risk aversion parameter

1− (γ − ϑ) and an elasticity of intertemporal substitution 1/ (1− γ).

The fact that the functional form of the optimal investment policy (17) is the same as the one of

an expected utility model with a suitable risk aversion parameter implies an investment behavior

that is observationally equivalent to one without ambiguity. To study the impact of ambiguity

aversion on optimal investment we split the optimal policy (17) in a myopic and a hedging part:

w =
1

1− (γ − ϑ)
· α− r

σ2| {z }
Myopic demand

+
γ − ϑ

1− (γ − ϑ)

∂g0
∂X

· σXP

σ2| {z }
Hedging demand

+O2 (γ, ϑ) . (18)

To be more specific, we write the myopic demand wM (ϑ) and the demand for intertemporal

hedging wH (ϑ) as

wM (ϑ) =
φ

σ (1− γ)
· 1− γ

1− (γ − ϑ)
= wM (0)

1− γ

1− (γ − ϑ)
, (19)

and

wH (ϑ) =
ρψγ

σ (1− γ)
· 1− γ

1− (γ − ϑ)
· γ − ϑ

γ
= wH (0)

1− γ

1− (γ − ϑ)| {z }
A

· γ − ϑ

γ| {z }
B

. (20)

It follows from (19) that ambiguity aversion always reduces myopic risky exposures. Intuitively,

this is due to the increased effective risk aversion parameter 1 − (γ − ϑ). The relative portfolio

wM (ϑ) /wM (0) is precisely the ratio of the effective risk aversion parameters 1−γ and 1−(γ − ϑ)

when ϑ = 0 (no ambiguity) and when ϑ > 0 (ambiguity), respectively. From (20) the intertemporal

hedging relative portfolio wH (ϑ) /wH (0) is the product of two terms A and B. The term A derives

again from an increase in effective risk aversion, which tends to decrease the absolute demand for

hedging when ϑ > 0. The term B arises because under the worst case probability law selected

in (6) the relevant X− dynamics is different from the reference model dynamics (1), (2). Hence,
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optimal intertemporal hedging is modified accordingly, in order to hedge intertemporal changes

in worst case opportunity sets and the associated marginal utilities.

Finally, we remark that in the present setting of ambiguity aversion the optimal policies wM (ϑ)

and wH (ϑ) are linear functions of φ = α−r
σ and ψ = ξ ∂g0∂X . The same holds for the optimal policies

wM (0) and wH (0) in the absence of ambiguity. Since in the absence of ambiguity aversion optimal

portfolios are well known to reflect risk aversion with respect to second order in volatility risk,

we conclude that the present setting of ambiguity aversion implies this same type of portfolio

behaviour.

3.2 Ambiguity Aversion: Problem (P2)

The homogeneity of the Max-Min problem (10) implies again a value function J of the form

J (W,X) =
1

δ
·
¡
eg(X)W

¢γ − 1
γ

, (21)

for some unknown function g (X). We expand g in
¡
γ,
√
2η
¢
to first order:13

g = g0 + γg1 +
p
2ηg2 +O2 (γ,

√
η) .

By construction, g0 solves (10) for γ,η → 0. Therefore, the zeroth order solution to problem

(10) is again the value function Jlog (X,W ) in (15). Although (6) and (10) are very different

optimization problems, it turns out that also in the present setting the first order optimal policies

under ambiguity aversion can be fully characterized by means of only the zeroth order function

g0.

Proposition 2 The asymptotic expansions for the optimal policies of problem (10) are

c (X) = δ (1− γ (g0 (X)− ln (δ))) +O2 (γ,
√
η) , (22)

w (X) =
1

1−
³
γ −

q
2η

G0(X)

´ Ãα− r

σ2
+

Ã
γ −

s
2η

G0 (X)

!
∂g0
∂X

σXP

σ2

!
, (23)

where

G0 (X) =

µ
α− r

σ

¶2
+

µ
ξ
∂g0
∂X

¶2
+ 2

µ
α− r

σ

¶
ρξ

∂g0
∂X

,

σXP = ρξσ and c = C/W is the optimal consumption to wealth ratio.

13 Hereafter O2
¡
γ,
√
η
¢
is a symbol that we use to denote terms of second order in

¡
γ,
√
η
¢
.
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Just as for the ambiguity setting of the last section, first order optimal consumption (22) is not

affected by ambiguity aversion. In fact, the consumption asymptotics (16) and (22) are identical.

Ambiguity aversion influences the optimal investment policy (23), which can be reinterpreted as

the optimal portfolio strategy of an investor with an effective risk aversion 1 −
³
γ −p2η/G0´.

In contrast to the previous setting, such effective risk aversion is state dependent via the function

G0 (X). G0 (X) depends on the state X only through a positive definite form in φ = α−r
σ and

ψ = ξ ∂g0∂X . The myopic and hedging portfolios w
M (η) and wH (η) under ambiguity aversion can

be now written as

wM (η) = wM (0)
1− γ

1−
³
γ −

q
2η
G0

´ , (24)

and

wH (η) = wH (0)
1− γ

1−
³
γ −

q
2η
G0

´ · γ −
q

2η
G0

γ
. (25)

For any given state level X, the structure of the portfolio components (24) and (25) is similar to

the one in (19) and (20). However, when we consider the portfolio functional forms (24) and (25)

in dependence of the underlying state X we remark that the relative portfolios wM (η) /wM (0)

and wH (η) /wH (0) are now state dependent functions of G0 (X). That is, ambiguity aversion

now affects optimal portfolios in a non uniform way over the relevant support of X. This is a

striking difference with the setting of ambiguity aversion discussed in the last section.

The relative portfolios wM (η) /wM (0) and wH (η) /wH (0) are now nonlinear functions of φ

and ψ. The smallest relative portfolios arise for G0 (X) → ∞, i.e. for φ → ±∞ or ±ψ → ∞. In

this case wM (η) /wM (0) and wH (η) /wH (0) converge to 1. For G0 (X)→ 0, i.e. for φ → 0 and

ψ → 0, wM (η) /wM (0) converges to 0 while wH (η) /wH (0) converges to (1− γ) /γ. Hence, the

largest relative portfolios now arise precisely when φ, ψ → 0, i.e. when portfolio exposures in the

absence of ambiguity aversion are small. This is a striking difference with the last section where

such relative portfolios were constant as functions of the state X. Thus, the current setting of

ambiguity aversion induces some very distinct predictions on optimal portfolio behaviour.
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An interesting special case of Proposition 2 arises in the perfect correlation case ρ = ±1. In

this case, G0 is a perfect square and
√
G0 collapses to an absolute value expression. This gives

the next result.

Proposition 3 Assume a perfect correlation setting such that ρ = ±1 and let

w± (X) =
1

σ2 (1− γ)

µ
α− r + γ

∂g0
∂X

ξσ ±
p
2ησ

¶
.

The asymptotics of the optimal investment policy w (X) are:

1. If w− (X) > − ξ
σ
∂g0
∂X (X):

w (X) = w− (X) +O2 (γ,
√
η) . (26)

2. If w+ (X) < − ξ
σ
∂g0
∂X (X)

w (X) = w+ (X) +O2 (γ,
√
η) . (27)

3. If neither 1. nor 2. are satisfied

w (X) = − ξ

σ

∂g0
∂X

(X) +O2 (γ,
√
η) . (28)

We can reinterpret the optimal investment rules w− (X) and w+ (X) under 1. and 2. as the

optimal portfolios of a precautionary investor who modifies excess returns α − r by a correction

factor ∓√2ησ. Such correction factor penalizes the ambiguity about the underlying reference

model for asset prices. The third type of portfolio profile arises in states of the world where

investors are able to avoid completely the conditional ambiguity about the underlying reference

model dynamics. It arises if and only if w− ≤ − ξ
σ∂g0/∂X and w+ ≥ − ξ

σ∂g0/∂X. Under

the portfolio profiles w− (X) and w+ (X) in 1. and 2. investors are exposed to ambiguity and

the selected worst case misspecifications are non zero. This is taken into account by correcting

excess returns α − r by the correction factor ±√2ησ. Such adjustment yields portfolios with a

performances that is less exposed to a misspecification of the reference model dynamics for excess

equity returns. For states where investors are able to fully avoid ambiguity, the optimal portfolios

imply a zero conditional model discrepancy between the reference model and any misspecification.

The conditional impact of a reference model misspecification on the resulting continuation utility

is then completely absent. This is possible because the underlying wealth and state dynamics are
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perfectly correlated. In particular, we remark that under the portfolio profile 3. in Proposition 3

investors will typically have a zero myopic exposure to equity. Moreover, as soon as intertemporal

hedging motives are moderate for such states of the economy, i.e. ∂g0/∂X ≈ 0, equity portfolio

exposures will be virtually zero and investors will avoid investing in the equity market. In general

equilibrium, such features will imply some very prudent equity market participations under the

present setting of ambiguity aversion.

Finally, it is important to remark that also in the above case ρ = ±1 the portfolio policies

implied by problem (P2) and (P1) in Proposition 3 and 1, respectively, are economically and

behaviorally different. First, in Proposition 3 the optimal portfolio policy has a different func-

tional form for different values of the underlying state variable, while in Proposition 1 one single

functional form holds for the optimal policy over the whole relevant support of X. Second, even

if we focus exclusively one the portfolio profiles 1. and 2. in Proposition 3, differences with the

policy under problem (P1) do generally arise. To see this more explicitly consider for brevity the

profile 2. in Proposition 3:

w+ (X) =
1

σ2 (1− γ)

µ
α− r + γ

∂g0
∂X

ξσ −
p
2ησ

¶
,

and compare it to the optimal policy for problem (P1) implied by Proposition 1:

w (X) =
1

σ2 (1− γ + ϑ)

µ
α− r + (γ − ϑ)

∂g0
∂X

ξσ

¶
.

These two optimal policies can be of the same functional form only in the very specific case that

∂g0
∂X ξ is a constant. Such a case arises for instance when the opportunity set is not stochastic; see

also Maenhout (2001), Trojani and Vanini (2002) and Uppal and Wang (2003).

3.3 Some Explicit Partial Equilibrium Computations

A more explicit discussion of the formulas derived in the last sections can be developed for models

where g0 can be computed explicitly. We illustrate the above findings for a version of Kim and
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Omberg’s (1996) model with dynamics given by:

dBt = rBtdt , (29)

dPt = αtPtdt+ σPtdZ
P
t , (30)

dXt = λ
¡
X −Xt

¢
dt+ ξdZX

t , (31)

where r, σ, ξ, λ, X > 0, and αt = r + σXt. In this setting X represents the reference model

market price of risk on equity. The function g0 is a quadratic polynomial a0+a1X+
1
2a2X

2, with

coefficients a0, a1, a2 defined in the footnote.14 This implies two perfectly correlated processes

φ = α−r
σ and ψ = ξ ∂g0∂X which are both linear functions of X. The function G0 (X) is a non-

negative second order polynomial of X. Therefore, to first order optimal portfolios under the

setting (P1) of ambiguity aversion are a linear function of X, precisely as in the setting with no

ambiguity aversion (ϑ = 0); see again (17). Optimal portfolios under the setting (P2) of ambiguity

aversion are non linear functions of X. Moreover, since G0 → 0 (G0 →∞) if and only if X → 0

(X → ±∞) the largest (smallest) relative portfolio effects under ambiguity aversion arise for

moderate (extreme) absolute values of the reference model risk premium αt − r ; see again (23).

Figure 1 illustrates such differences in optimal portfolio behavior for some choices of the model

parameters.

Insert Figure 1 about here

The left panel of Figure 1 compares the portfolio policies in the absence of ambiguity aversion (the

black straight line) with those under the settings (P1) (the dash dotted and dashed straight lines)

of ambiguity aversion. The classical policy in the absence of ambiguity aversion is an increasing

14 We have:

a0 = ln (δ)− 1 + r

δ
+

ξ2

2δ (δ + 2λ)
+

¡
λX

¢2
δ (δ + λ) (δ + 2λ)

,

a1 =
λX

(δ + λ) (δ + 2λ)
> 0 ,

a2 =
1

δ + 2λ
> 0 .

A proof is given in the Appendix for completeness.
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straight line as a function of the reference model market price of risk X. The policies under the

setting (P1) of ambiguity aversion have the same functional form but their slope is smaller. The

larger ϑ, the smaller the slope. The policies under the setting (P2) of ambiguity aversion are

presented in the right panel of Figure 1. They have a different functional form and present an

S−shaped behavior around the point X = 0. In this region, portfolio exposures are about zero.

For instance, for values of X in the interval [−0.05, 0.05] they are between ±0.05. Over such an

interval of X values, the classical portfolio policy and the one under the setting (P1) of ambiguity

aversion already imply substantial portfolio exposures. To emphasize further this point, Figure

2 plots the differences between the portfolio policies in the setting (P1) and those in the setting

(P2) of ambiguity aversion for the same parameter choices as in Figure 1.

Insert Figure 2 about here

4 General Equilibrium

We consider heterogenous agents general equilibria. More specifically, we study economies where

there are two agents with utilities of current consumption given by

u (C) =
Cγ − 1

γ
, u

³
C(1)

´
= log

³
C(1)

´
, γ < 1 , (32)

and ambiguity aversion parameters given by

ϑ > 0 , ϑ(1) = 0 (η > 0 , η(1) = 0) . (33)

We assume the same time preference rate δ for all agents. In the sequel, we start by an example of a

complete production economy and analyze in a second step an example of an incomplete exchange

economy. Such economies have been studied in Kogan and Uppal (2000) for settings with no

ambiguity aversion. For the production economy we focus on ambiguity aversion in the setting

of problem (P2), because it is the setting that delivers the most interesting distinct empirical

predictions of ambiguity aversion, namely an endogenous dynamic equity market participation
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in the absence of transaction costs or other market frictions. Such participation is endogenous

because it depends on the degree of ambiguity aversion and on the prevailing cross-sectional

wealth distribution in the economy. In the production economy example, we explicitly characterize

conditions (see (35) below) under which limited equity market participation arises in equilibrium.

For the exchange economy, we discuss in a unified framework the predictions under the settings

(P1) and (P2) by focusing on the distinct equilibrium portfolio behaviors arising under ambiguity

aversion and the different predictions for the functional form of equity premia.

4.1 Production Economies

We consider an extended version of the production economy in Dumas (1989) where a single

constant returns to scale technology with dynamics

dSt =
³
αSt − Ct − C

(1)
t

´
dt+ σStdZt ,

for the aggregate capital stock, with α, σ > 0, is assumed. The risky asset is a stock on the

production technology with cumulative return process

dPt = αPtdt+ σPtdZt .

The number of shares in this economy is equal to the aggregate capital stock. The riskless asset

is a money account with price dynamics

dBt = rtBtdt ,

where rt is an interest rate that has to be determined in equilibrium. In such a setting markets

are complete since a single Brownian motion affects the production and stock price dynamics.

Definition 4 We call a process
³
St, rt, wt, w

(1)
t , ct, c

(1)
t

´
an asymptotic equilibrium under ambi-

guity aversion if:

• The individual portfolio and consumption rules wt, w
(1)
t , ct, c

(1)
t are asymptotically optimal,

i.e. they satisfy the consumption rule (22) and the investment rules in Proposition 3.

• The financial markets clear: wtWt + w
(1)
t W

(1)
t =Wt +W

(1)
t .
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In general equilibrium the relevant state variable is the cross-sectional wealth distribution ωt

in the economy: Xt = ωt := Wt/(Wt +W
(1)
t ). Furthermore, the function g0 in Propositions 1, 2

and 3 is now endogenous to the economy, i.e. it depends on γ and η. However, it can be expanded

in a neighborhood of the representative agent value function of an homogeneous economy with log

utility investors (γ = γ(1) = η = η(1) = 0). Denoting this value function by

Jlog,0 (X,W ) =
1

δ
(log (W ) + g00 (X)) ,

it turns out that to characterize the desired rules completely we only need to determine g00 and r as

a function of g00. Moreover, by definition g00 is completely determined by the representative-agent

log utility solution and it is a constant. For this benchmark economy, market clearing implies that

α− σ2 is the constant equilibrium interest rate. Using formula (41) in Kogan and Uppal (2000),

g00 is given by

g00 = log (δ)− 1 + α− σ2/2

δ
. (34)

To characterize the equilibrium under the setting (P2) of ambiguity aversion, we need to decompose

the state space of ωt. Such a decomposition is necessary because of the different portfolio profiles

for the complete markets case in Proposition 3. In general equilibrium only two portfolio profiles

can arise. They correspond to the portfolio policies (26) and (28) in Proposition 3. Moreover, since

the equilibrium function g00 in (34) is constant, the equilibrium portfolio policy (28) coincides to

first order with a zero investment strategy in the risky asset. To characterize the states of the

economy where the two different portfolio profiles arise in equilibrium we define a set A of possible

states of ω by

A =

½
ω | ω > 1− σ√

2η

¾
. (35)

On the set A the relevant portfolio profile under ambiguity is the portfolio policy (26). Hence, on

the set A all agents in the model will participate in the equity market and asset prices will reflect

the interaction of all market participants. On the complement Ac the relevant portfolio profile

under ambiguity is (28). This implies a very moderate exposure to equity. In fact, to first order
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such exposure is exactly zero. Hence, on this set asset prices will reflect primarily the portfolio

behavior of the only participant in the equity market: the log utility investor. As a consequence,

one agent in the economy will leave the equity market as soon as the endogenous state variable

ωt enters the set Ac. This implies a dynamic equity market participation in the model, which

arises endogenously in dependence of the relevant state ωt of the economy. We emphasize the

endogeneity of the condition in the set A. In particular, such condition can be also not binding,

for instance when volatility is very large relative to the amount of ambiguity (σ/
√
2η ≥ 1). The

characterization provided by the set A extends to a dynamic setting the findings in Dow and

Werlang (1992) that ambiguity aversion can imply naturally a limited equilibrium equity market

participation even in the absence of transaction costs or other market frictions. Such distinct

empirical prediction is supported by our setting (P2) of ambiguity aversion. Intuitively, the set

A is larger either when risk (measured by σ) is high, or when ambiguity (measured by η) is low.

Indeed, while risk and standard risk aversion incentivate investors to trade in order to diversify

risk, ambiguity reduces the incentives to trade because the output of the investment strategy

becomes ambiguous.

The characterization of the general equilibrium under ambiguity aversion is provided by the

next proposition.

Proposition 5 In the given production economy we have for the asymptotic equilibrium under
the setting (P2) of ambiguity aversion:

1. Equilibrium interest rate on A

rt = α− σ2
µ
1−

µ
γ −
√
2η

σ

¶
ωt

¶
+O2 (γ,

√
η) , (36)

and on Ac

rt = α− σ2

1− ωt
+O2 (γ,

√
η) . (37)

2. Optimal consumption asymptotics.

C
(1)
t = δ(1− ωt)St , Ct =

¡
δ − γ

¡
α− σ2/2− δ

¢¢
ωtSt +O2 (γ,

√
η) . (38)

25



3. Optimal portfolios on A

w
(1)
t = 1−

µ
γ −
√
2η

σ

¶
ωt +O2 (γ,

√
η) , (39)

wt = 1 +

µ
γ −
√
2η

σ

¶
(1− ωt) +O2 (γ,

√
η) , (40)

and on Ac

w
(1)
t =

1

1− ωt
+O2 (γ,

√
η) , wt = O2 (γ,

√
η) . (41)

4. Cross-sectional wealth dynamics on A

dωt = γωt (1− ωt)
¡
α− σ2/2− δ

¢
dt+

µ
γ −
√
2η

σ

¶
ωt (1− ωt)σdZt +O2 (γ,

√
η) , (42)

and on Ac

dωt = γωt (1− ωt)

"
α− σ2/2− δ − 1

γ

σ2ωt

(1− ωt)
2

#
dt− ωtσ

2dZt +O2 (γ,
√
η) . (43)

5. Capital stock dynamics.

dSt =
£
α− δ + γ

¡
α− σ2/2− δ

¢
ωt
¤
Stdt+ σStdZt +O2 (γ,

√
η) . (44)

The effect of ambiguity aversion on equilibrium consumption and capital stock dynamics is of

higher order since the parameter η does not affect the consumption policies (38). An indirect effect

of ambiguity aversion arises, however, because of the different cross sectional wealth dynamics

under ambiguity aversion. Equilibrium interest rates, optimal portfolios and cross-sectional wealth

dynamics are influenced on the set A directly by ambiguity aversion, since the parameter η enters

explicitly in (36), (39) and (42).

Compared to an economy without ambiguity (η → 0 and Ac → ∅), we see from (36) that

lower equilibrium interest rates are obtained on set A. On this set all agents hold a long position

in equity and the contribution of ambiguity aversion to the lower interest rate is proportional to

the volatility σ of the capital stock dynamics. On the set A the impact of ambiguity aversion

on optimal equity holdings is inversely related to the volatility parameter σ. This highlights

in a very simplified way the prudent equilibrium portfolio concern under ambiguity aversion in

the setting (P2). However, remark that in general equilibrium the higher effective risk aversion

1−(γ−√2η/σ) because of ambiguity aversion is state independent. An example of an equilibrium
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exchange economy where effective risk aversions under ambiguity aversion are state dependent to

first order is presented in the next section.

On the set Ac the log utility investor always borrows from the second agent her entire wealth,

which is invested in a leveraged position in the risky asset. Such pattern arises independently of

the coefficient of risk aversion 1−γ and the degree of ambiguity η of the second agent. Therefore,

on the set Ac the log utility investor will always be leveraged in the risky asset. This implies a

no risky asset investment zone, even in the absence of transaction costs or portfolio constraints,

and produces a dynamic endogenous equity market participation in equilibrium. The set A gives

precise conditions under which such a situation is compatible with general equilibrium in the

model: ambiguity parameterized by η must be sufficiently large with respect to first order risk, as

measured by volatility σ.

For ωt ∈ A the basic structure of the effect of ambiguity aversion on the cross-sectional wealth

dynamics (43) implies for γ 6= 0 a long run distribution of ωt that is degenerated at ωt = 0 or

ωt = 1 on A. The degeneracy of such distributions arises because we are looking only at a first

order approximation of the relevant dynamics. In Dumas (1989), for a setting with no ambiguity

aversion, stationary cross sectional wealth distributions are obtained. On set Ac, the drift and

the volatility of the cross-sectional wealth dynamics (43) are altered in equilibrium. Moreover, for

γ < 0 the drift of ωt can be always negative, if for instance α−σ2/2−δ > 0, and the long run cross

sectional wealth distribution will degenerate to 0. However, if γ > 0 - that is, the ambiguity averse

investor is less risk averse than the log utility agent - the sign of the drift in the ωt’s dynamics

can change as ωt approaches the boundary of the set Ac. In such case the long run distribution

of ωt can be stationary to first order for parameter choices such that the support of ωt is in Ac,

and limited equity market participation effects will persist as t→∞.
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4.2 Exchange Economies

We consider a generally incomplete heterogenous exchange economy where the risky asset is a

claim on the aggregate endowment process et with dynamics given by:

det = Ytetdt+ σe
p
YtetdZ

e
t ,

dYt = λ
¡
Y − Yt

¢
dt+

p
YtσY dZ

Y
t ,

where σe, λ, Y , σY > 0, and (Ze
t ),
¡
ZY
t

¢
are both standard Brownian motions in R with covariation

E
¡
dZe

t dZ
Y
t

¢
= δeY dt. (Yt) is a mean reverting Bessel process that affects expected endowment

returns and endowment returns volatilities. The cumulative return process of the risky asset is

given by

dPt = αtPtdt+ Pt
¡
σPetdZ

e
t + σPY tdZ

Y
t

¢
,

where αt, σPet, σPY t are drift and diffusion parameters to be determined in equilibrium. The

locally riskless asset is a short term bond with price dynamics

dBt = rtBtdt ,

where rt is an interest rate that has to be determined in equilibrium. Since for |δeY | 6= 1 the

Brownian motions in the endowment and state dynamics are not perfectly correlated, we are in

the context of a generically incomplete market. Hence, the relevant optimal investment policies

for the setting (P2) of ambiguity aversion are those given in (23). In this case investors will never

be able to avoid ambiguity by means of a suitable portfolio policy. This is a sharp difference with

the complete market setting discussed in the previous section.

Definition 6 We call a process
³
Pt, rt, wt, w

(1)
t , ct, c

(1)
t

´
an asymptotic equilibrium under ambi-

guity aversion if

• The individual portfolio and consumption rules wt, w
(1)
t , ct, c

(1)
t are asymptotically optimal,

i.e. they satisfy (16) and (17) (they satisfy (22), (23)),

• The financial market and the good market clear: wtWt + w
(1)
t W

(1)
t = Wt +W

(1)
t and et =

Ct + C
(1)
t .
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The relevant state variables for investors’ decisions are expected endowment returns Yt and

the cross-sectional wealth distribution ωt. Therefore, the function g (Y, ω) now depends on two

arguments. Nevertheless, the same basic approximation methodology as in the above production

economy example applies. Specifically, we can work with a function g00 that depends only on the

state variable Xt := Yt, yielding

g0 (Y, ω, γ, ϑ) +O (γ, ϑ) = g0,0 (Y ) = g0 (Y, ω, γ,
√
η) +O (γ,

√
η) , (45)

where g0,0 is uniquely determined by the representative-agent equilibrium of an economy populated

by log utility agents. Such function g0,0 is given in closed form in the next result.

Proposition 7 Under the given conditions:

g0,0 (Y ) = a+ bY + ln (δ) , (46)

where

a =
λ
¡
1− 1

2σ
2
e

¢
Y

δ (δ + λ)
, b =

1− 1
2σ

2
e

δ + λ
. (47)

In particular, since b > 0 for realistic parameter choices in the model we have ∂g0,0/∂X > 0.

The asymptotics for the general equilibrium under the settings (P1) and (P2) of ambiguity aversion

are provided by the next proposition.

Proposition 8 Let
G (Y ) =

¡
σ2e + 2δeY σeσY b+ σ2Y b

2
¢
Y ,

where a and b are given in (47) and define

ς =

½
ϑ for (P1)p

η/G (Yt) for (P2)
, O2 =

½
O2 (γ, ϑ) for (P1)
O2
¡
γ,
√
η
¢
for (P2)

.

In the given exchange economy the following asymptotic expressions hold true:

1. Equilibrium stock prices process

Pt = p (Yt, ωt) et ,

p (Y, ω) =
1

δ
(1 + γω (a+ bY )) +O2 ,

dPt + etdt

Pt
= [δ + Yt (1− γbωt (λ+ δ − δeY σeσY ))] dt

+σe
p
YtdZ

e
t + γbωtσY

p
YtdZ

Y
t +O2 . (48)

2. Equilibrium interest rate

rt = (δ + (1− γbωt (λ+ δ − δeY σeσY ))Yt)−
¡
σ2e + 2σeγbωtσY δeY

¢
Yt

+(γ − ς)
¡
σ2e + bσeσY δeY

¢
Ytωt +O2 . (49)
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3. Optimal consumption and optimal portfolios

C
(1)
t = δ(1− ωt)St ,

Ct = δ (1− γ (a+ bYt))ωtSt +O2 ,

w
(1)
t = 1− (γ − ς)

µ
1 + b

σY δeY
σe

¶
ωt +O2 , (50)

wt = 1 + (γ − ς)

µ
1 + b

σY δeY
σe

¶
(1− ωt) +O2 . (51)

4. Cross-sectional wealth dynamics.

dωt = γωt (1− ωt) b

µ
λY

δ
+ Yt

¶
dt+ (γ − ς) (1− ωt)σe

p
Yt

µ
1 + b

δeY σY
σe

¶
dZt +O2 .

(52)

The marginal qualitative impact of ambiguity aversion on equilibrium portfolio holdings de-

pends on whether

(i) γ

µ
1 + b

σY δeY
σe

¶
> 0 , (ii) γ

µ
1 + b

σY δeY
σe

¶
< 0 .

For instance, in case (i) ambiguity aversion reduces equilibrium leverage positions in the risky

asset. This implies lower equilibrium interest rates (49) if and only if

1 + b
σY δeY
σe

> 0 . (53)

Thus, in the present economy interest rates can be in principle higher or lower under ambiguity

aversion. Condition (53) is the requirement that intertemporal hedging motives do not dominate

myopic demands in equilibrium portfolio holdings.15

The optimal portfolio behaviour (50) under the setting (P1) (i.e. ς = ϑ) is observationally

equivalent to the one implied by an increased constant relative risk aversion 1− (γ − ϑ). Hence,

to first order optimal portfolios under the setting (P1) are state dependent only via cross sec-

tional wealth ωt: they are independent on the level of endowment expected growth rates and

volatilities. The optimal portfolio behaviour (50) under the setting (P2) of ambiguity aversion

(i.e. ς =
p
η/G (Yt)) is similar to the one implied by a state dependent increased risk aversion

15 For typical model parameter values condition (53) can be expected to be satisfied and interest rates will be
lower under ambiguity aversion.

30



1 −
³
γ −pη/G (Yt)

´
. To first order, this makes optimal portfolios dependent also on the level

of endowment expected growth rates and volatilities. In particular, the largest state dependent

risk aversions 1− (γ − ς) arise for moderate values of the state variable Yt, i.e. when endowment

expected growth rates and volatilities are low. This highlights the very peculiar state dependent

portfolio concern under ambiguity aversion in the setting (P2). An illustration of the equilibrium

portfolio policy (51) is presented in Figure 3.

Insert Figure 3 about here

The panel on the left presents policies for η = 0.001. The one on the right presents policies for

η = 0.02. For any given level of Y optimal portfolios are linear in ω. The slope of such a linear

optimal policy increases dramatically as Y → 0, and leads to significant short positions in equity

for moderate levels of cross sectional wealth ω when Y → 0.

The equilibrium effect of such portfolio behaviors on interest rates is described by (49). In

particular, for ς = ϑ the impact of ambiguity aversion in the setting (P1) is proportional to the

variance Ytσ2Y of endowment returns. For ς =
p
η/G (Yt) the effect on interest rates is proportional

to Yt/
p
G (Yt), i.e. the volatility of endowment returns. Since to first order the equity dynamics

(48) is unaffected by ambiguity aversion, the impact on the arising equity premium is completely

determined by the effect on equilibrium interest rates. Therefore, the setting (P1) of ambiguity

aversion yields a contribution to equity premia that is linear in endowment variances, while setting

(P2) implies a contribution that is linear in endowment volatilities. These are observationally

distinct empirical predictions of our two settings of ambiguity aversion.

5 Conclusions

We explored analytically the empirical predictions of ambiguity aversion in heterogeneous agents

economies with intermediate consumption and stochastic investment opportunity set using first

order perturbation methods. To this end, we studied two intertemporal homothetic settings
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of ambiguity aversion motivated by two distinct robust control problems. One setting can be

interpreted as a continuous time version of Recursive Multiple Priors Utility (RMPU). Our findings

show that ambiguity aversion affects equilibria by acting more directly on equilibrium interest

rates and portfolio holdings, rather than on equilibrium asset returns and aggregate consumption.

The functional forms of optimal portfolios under the RMPU-unrelated robust control setting of

ambiguity aversion are identical to those of a setting with no ambiguity but a higher constant

relative risk aversion. Hence, such a setting of ambiguity aversion implies functional forms for

equilibrium quantities like equity premia that are observationally equivalent to those of a setting

with no ambiguity. In particular, the equity premium component due to ambiguity aversion is

a second order function of volatility, i.e. it is proportional to return variances as in a setting

with no ambiguity. The portfolio behavior under our RMPU setting of ambiguity aversion is

instead similar to the one of a setting with no ambiguity but a higher and state dependent risk

aversion, which is highly pronounced at moderate portfolio exposures. This feature causes quite

prudent levels of equity market participations over a nontrivial set of states of the economy and

an equity premium part due to ambiguity aversion that dominates when the exogenous random

factors in the economy have low volatility. This last effect arises because the equity premium part

due to ambiguity aversion in the RMPU setting is a first order function of volatility, i.e. it is

proportional to volatility. Thus, the RMPU setting of ambiguity aversion can account for some

distinct empirical predictions — like a limited equity market participation and ambiguity equity

premia that dominate equity premia for small equity volatilities — which are unavailable under the

RMPU-unrelated robust control setting. Such distinct empirical predictions of our more tractable

setting of ambiguity aversion are consistent with other less tractable intertemporal settings of

ambiguity aversion like the ”k−ignorance” setting proposed in Chen and Epstein (2002).16

16 See for instance Chen and Epstein (2002), Section 5.
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6 Appendix

Proof of the non rectangularity of the set (12). Let:

H :=

(
h : Eh

"Z ∞
0

e−δt
|ht|
2

2

dt

#
≤ k (ϑ)

)
, (54)

and assume that it is a rectangular set, i.e.:

H = {h : ht ∈ Θt, t ≥ 0} , (55)

where (Θt)t≥0 is a sequence of compact and convex subsets of R2 such that Θt ⊂ K, with K

a compact subset of R2; cf. Chen and Epstein (2002), Section 2.4. Consider now a simple

deterministic misspecification h∗ of the form

h∗t = δk (ϑ) exp

µ
δ

2
t

¶
.

Then, h∗ cannot belong to (55), since it is an unbounded function of t. However, h∗ belongs to

(54). Indeed,

Eh

"Z ∞
0

e−δt
|h∗t |
2

2

dt

#
=

Z ∞
0

e−δt
|h∗t |
2

2

dt =
δ

2
k (ϑ)

Z ∞
0

e−
δ
2 tdt = k (ϑ) .

Hence, we have found a misspecification h∗ that is in (54) but not in (55). This shows that H is

not a rectangular set.

Proof of Proposition 1. Define

Λt =

 ξt 0

ρwtWtσt
p
1− ρ2wtWtσt

 ,

so that the joint dynamics of Yt = (Xt,Wt)
0 can be written as

dYt = µtdt+ ΛtdZt , (56)
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where µt = (ζt, wtWt (αt − rt) + (rtWt − Ct))
0 and Z is a standard Brownian motion in R2. The

minimization with respect to h in (6) gives (see for instance AHS (1998), p. 14)

hHR = − ϑ

γJ + 1
δ

Λ0
µ
∂J

∂Y

¶
= − ϑ

γJ + 1
δ

 ξJX + ρwWσJWp
1− ρ2wWσJW

 , (57)

and the relevant single agent Hamilton Jacobi Bellman equation reads:17

0 = sup
c,w

½
(cW )

γ − 1
γ

− δJ + (wW (α− r) + (rW − cW )) JW

+
1

2
w2W 2σ2

µ
JWW − ϑ

γJ + 1
δ

· J2W
¶

+ζJX +
1

2
ξ2
µ
JXX − ϑ

γJ + 1
δ

J2X

¶
+ wWσXP

µ
JXW − ϑ

γJ + 1
δ

· JWJX

¶¾
. (58)

Homogeneity of J implies the functional form

J (W,X) =
1

δ
·
¡
eg(X)W

¢γ − 1
γ

, (59)

for some unknown function g (X). Setting σXP = ρξσ, for the optimal policies follows

c =
(JW )

1
γ−1

W
=

µ
eγg

δ

¶ 1
γ−1

, (60)

w = − 1

1− ϑ
γJ+ 1

δ

· J2W
JWW

· JW
WJWW

·
µ
α− r

σ2
+

JWX

JW

σXP

σ2
− ϑ

JX

γJ + 1
δ

σXP

σ2

¶

=
1

1− (γ − ϑ)
·
µ
α− r

σ2
+ (γ − ϑ)

∂g

∂X
· σXP

σ2

¶
. (61)

Writing g = g0 + γg1 + ϑg2 +O2 (γ, ϑ) and expanding (60), (61) up to first order in (γ, ϑ) proves

the proposition.

Proof of Proposition 2 . The minimization with respect to h in (10) gives (see for instance

AHS (1998), p. 22)

hCR = −
√
2η³

∂J
∂Y

0
ΛΛ0 ∂J∂Y

´ 1
2

Λ0
∂J

∂Y

= −
√
2η¡

W 2J2Wσ2 + ξ2J2X + 2σXPWJXJW
¢ 1
2

 ξJX + ρwWσJWp
1− ρ2wWσJW

 . (62)

17 We use subscripts to denote partial derivatives with respect to the relevant argument.
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Hence, the single agent HJB equation is

0 = sup
c,w

½
(cW )γ − 1

γ
− δJ + (wW (α− r) + (rW − cW )) JW +

1

2
w2W 2σ2JWW

+ζJX +
1

2
ξ2JXX + wWσXPJXW −

p
2η
£
w2W 2σ2J2W + ξ2J2X + 2wWσXPJWJX

¤ 1
2

¾
.

(63)

Homogeneity of J implies an homogeneous functional form of the type (14). Hence, the implied

optimal policies are given by

c =
(JW )

1
γ−1

W
=

µ
eγg

δ

¶ 1
γ−1

, (64)

w =
1

1−
q

2η
Γ(w)

J2W
JWW

· 1

1− γ

Ã
α− r

σ2
+ γ

∂g

∂X
· σXP

σ2
−
s

2η

Γ (w)
JX

σXP

σ2

!
, (65)

where

Γ (w) =W 2J2W

µ
σ2w2 +

ξ2J2X
W 2J2W

+ 2wσXP
JX

WJW

¶
=W 2J2WG (w) .

Using the last expression for Γ, the optimal policy (65) reads more compactly

w =
1

1−
³
γ −

q
2η

G(w)

´ ·Ãα− r

σ2
+

Ã
γ −

s
2η

G (w)

!
∂g

∂X

σXP

σ2

!
. (66)

Hence, the optimal investment policy is the solution of an implicit equation in w. To expand (64),

(66), up to first order, we first write

w (X) =
α− r

σ2
+ γw1 (X) +

p
2ηw2 (X) +O2 (γ,

√
η) , (67)

g (X) = g0 (X) + γg1 (X) +
p
2ηg2 (X) +O2 (γ,

√
η) . (68)

Expanding (64), (66) while making use of (67) and (68) concludes the proof of the Proposition.

Proof of Proposition 3. We discuss the case ρ = 1 since the case ρ = −1 can be treated

in the same way. In this case, the relevant HJB equation (63) for problem (10) becomes:

0 = sup
c,w

½
(cW )

γ − 1
γ

− δJ + (wW (α− r) + (rW − cW ))JW +
1

2
w2W 2σ2JWW

+ζJX +
1

2
ξ2JXX + wWσXPJXW −

p
2η |wWσJW + ξJX |

¾
. (69)
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Homogeneity of J implies an homogeneous functional form of the type (14). Hence, the optimal

consumption policy is given by:

c =

µ
eγg

δ

¶ 1
γ−1

.

A first order expansion of g then gives the first order consumption policy. To express the optimal

investment policies we distinguish two cases:

(i) wWσJW + ξJX ≥ 0 ; (ii) wWσJW + ξJX ≤ 0 . (70)

For case (i), the HJB equation reads

0 = sup
c,w

½
(cW )

γ − 1
γ

− δJ + (wW (α− r) + (rW − cW ))JW +
1

2
w2W 2σ2JWW

+ζJX +
1

2
ξ2JXX + wWσXPJXW −

p
2η (wWσJW + ξJX) + λ (wWσJW + ξJX)

¾
= sup

c,w

½
(cW )

γ − 1
γ

− δJ +
³
wW

³
α− r −

³p
2η − λ

´
σ
´
+ (rW − cW )

´
JW

+
1

2
w2W 2σ2JWW +

³
ζ − ξ

³p
2η − λ

´´
JX +

1

2
ξ2JXX + wWσXPJXW

¾
, (71)

where λ ≥ 0 is a Lagrange multiplier. The optimal investment policy is

w = − 1

σ2WJWW

h³
α− r −

³p
2η − λ

´
σ
´
JW + σXPJXW

i
=

1

σ2 (1− γ)

µ
α− r −

³p
2η − λ

´
σ + γξσ

∂g

∂X

¶
, (72)

using the functional form (14). Slackness implies:

0 = λ (wWσJW + ξJX) =
λ

δ

µ
wσ + ξ

∂g

∂X

¶
W γ . (73)

From (72) the Lagrange multiplier λ is given by

λσ = σ2 (1− γ)w − (α− r) +
p
2ησ − γξσ

∂g

∂X

= − (1− γ) ξσ
∂g

∂X
− (α− r) +

p
2ησ − γξσ

∂g

∂X

= −
µ
α− r −

p
2ησ + ξσ

∂g

∂X

¶
≥ 0 ,

using (73). Hence, the constraint is binding if

α− r + ξσ
∂g

∂X
≤
p
2ησ ,
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i.e. if

1

σ2 (1− γ)

µ
α− r −

p
2ησ + γξσ

∂g

∂X

¶
≤ − ξ

σ

∂g

∂X
.

In the opposite case λ = 0 and the optimal policy is given by (72). In the case of a binding

constraint, slackness implies an optimal policy given by

w = − ξ

σ

∂g

∂X
.

The optimal policy for the case (ii) follows analogously. To get a first order expression for the

optimal investment policy it is sufficient to note that

p
2η |wWσJW + ξJX | =

√
2η

δ

¯̄̄̄
wσ + ξ

∂g

∂X

¯̄̄̄
W γ =

√
2η

δ

¯̄̄̄
wσ + ξ

∂g0
∂X

¯̄̄̄
W γ +O2

³
γ,
p
2η
´

. (74)

By inserting the approximation (74) in the HJB equation (69) the implied optimality conditions

can be then obtained up to first order in γ,
√
2η, with the same approach used above to compute

the optimal portfolio policy. Solving such optimality condition for the investment policy gives the

result.

Proof of the result in Footnote 10. Using formula (19) in Kogan and Uppal (2000) it

follows

g0(X) = ln(δ)− 1 +E

"Z ∞
0

e−δt
Ã
r +

1

2

µ
αt − r

σ

¶2!
dt

¯̄̄̄
¯X0 = X

#

= ln(δ)− 1 +
·Z ∞

0

e−δt
µ
r +

1

2
E
¡
X2
t

¯̄
X0 = X

¢¶
dt

¸
.

Since

E
¡
X2
t

¯̄
X0 = X

¢
= V ar (Xt|X0 = X) + (E (Xt|X0 = X))

2

= ξ2 · 1− e−2λt

2λ
+
£
e−λt

¡
X +X

¡
eλt − 1¢¢¤2 ,
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a final integration gives

g0(X) = ln(δ)− 1 +
Z ∞
0

e−δt
µ
r +

ξ2

2
· 1− e−2λt

2λ
+
1

2

£
e−λt

¡
X +X

¡
eλt − 1¢¢¤2¶ dt

= ln(δ)− 1 +
Z ∞
0

e−δt
Ã
r +

ξ2

2
· 1− e−2λt

2λ
+

¡
e−λtX

¡
eλt − 1¢¢2
2

!
dt

+X ·X
Z ∞
0

¡
e−δt

¡
eλt − 1¢¢ dt+ X2

2
·
Z ∞
0

e−δte−2λtdt .

By computing these expectations explicitly, the claim of the proposition is obtained.

Notation: In the sequel we adopt the symbol .= to denote equality up to terms of order O2 (γ, ϑ)

and O2
¡
γ,
√
η
¢
.

Proof of Proposition 5. We have:

g0 (X, γ, η) +O (k(γ,√η)k) = g00 = log (δ)− 1 + α− σ2/2

δ
.

Aggregate market clearing implies

1
.
= w

(1)
t +

³
wt − w

(1)
t

´
ωt .

Since in the present setting ∂g00(X)
∂X = 0, the complete markets asymptotics for optimal investment

in Corollary 3 implies

wt
.
=



1
σ2(1−γ)

¡
α− rt −

√
2ησ

¢
, if α− rt −

√
2ησ ≥ 0

1
σ2(1−γ)

¡
α− rt +

√
2ησ

¢
, if α− rt +

√
2ησ ≤ 0

0 otherwise

.

In general equilibrium, the relevant cases are:

Case 1:
α− rt
σ

>
p
2η , Case 2: 0 <

α− rt
σ

≤
p
2η .

For Case 1 follows

1
.
= w

(1)
t +

³
wt − w

(1)
t

´
ωt

.
=
(α− rt) (1− γ (1− ωt))−

√
2ησωt

(1− γ)σ2
,
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implying

α− rt
σ

.
=
(1− γ)σ +

√
2ηωt

1− γ (1− ωt)
.

Hence, for Case 1

α− rt
σ

>
p
2η ⇐⇒ (1− γ)σ +

p
2ηωt > (1− γ)

p
2η + γ

p
2ηωt ⇐⇒ ωt > 1− σ√

2η
.

Solving for rt, we get

rt
.
= α− σ

(1− γ)σ +
√
2ηωt

1− γ (1− ωt)
.
= α− σ2

µ
1−

µ
γ −
√
2η

σ

¶
ωt

¶
. (75)

Similarly, for Case 2

1
.
= w

(1)
t (1− ωt)

.
=

α− rt
σ2

(1− ωt) ,

which implies

rt = α− σ2

1− ωt
. (76)

This proves 1. of the proposition.

The consumption asymptotics in Proposition 2 (which are valid also for the complete markets

case) implies

c
(1)
t = δ , ct

.
= δ − γδ (g0 (X)− log (δ)) .

= δ − γ
¡
α− σ2/2− δ

¢
. (77)

Moreover, from (75) and (76)

w
(1)
t =

α− rt
σ2

.
= 1−

µ
γ −
√
2η

σ

¶
ωt ,

in Case 1, and

w
(1)
t =

1

1− ωt
,

in Case 2. In the same vain (again by (75),(76))

wt
.
=

1

σ2 (1− γ)

³
α− rt −

p
2ησ

´
.
= 1 +

µ
γ −
√
2η

σ

¶
(1− ωt) ,
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in Case 1, and wt
.
= 0 otherwise. This proves 2. of the proposition. To prove 3., we consider as in

the previous robustness setting, the Itô’s dynamics of ωt

dωt
.
= ωt (1− ωt)

h³
wt − w

(1)
t

´ h
(α− rt)−

³
ωtwt + (1− ωt)w

(1)
t

´
σ2t

i
−
³
ct − c

(1)
t

´i
dt+ ωt (1− ωt)

³
wt − w

(1)
t

´
σdZt .

and distinguish again the two Cases considered above. We have

−
³
ct − c

(1)
t

´
.
= γ

¡
α− σ2/2− δ

¢
,

and

³
wt − w

(1)
t

´
σ

.
= σγ −

p
2η , Case 1 ,³

wt − w
(1)
t

´
σ

.
= − σ

1− ωt
, Case 2 .

Using the financial markets clearing condition we have

(α− rt)−
³
ωtwt + (1− ωt)w

(1)
t

´
σ2

.
= (α− rt)− σ2 ,

implying ³
wt − w

(1)
t

´ h
(α− rt)−

³
ωtwt + (1− ωt)w

(1)
t

´
σ2
i
.
= 0 ,

for Case 1. On the other hand, for Case 2 it follows

³
wt − w

(1)
t

´ £
(α− rt)− σ2

¤ .
= − 1

1− ωt

µ
σ2

1− ωt
− σ2

¶
= − σ2ωt

(1− ωt)
2 .

Putting the results together we proved 3. We remark that this last equation also implies an

asymptotic contribution of order no less than 2 for the optimal portfolio policies to the drift of

the cross sectional wealth dynamics in the Cases 1. and 2.

To prove 4, we get from (77)

dSt
.
=

³
αSt −

³
Ct + C

(1)
t

´´
dt+ σStdZt

.
=

h
αSt −

³¡
δ − γ

¡
α− σ2/2− δ

¢¢
Wt + δW

(1)
t

´i
dt+ σStdZt

.
=

£
α− δ + γ

¡
α− σ2/2− δ

¢
ωt
¤
Stdt+ σStdZt .
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This proves 4 and the whole proposition.

Proof of Proposition 7. The value function of the representative log-utility agents is

1

δ
(log (W0) + g0,0 (Y0)) = E0

·Z ∞
0

e−δt log (et) dt
¸

. (78)

Computing the expectation on the RHS of (78) it follows

E0

·Z ∞
0

e−δt log (et) dt
¸

= E0

·Z ∞
0

e−δt
µ
log (e0) +

µ
1− 1

2
σ2e

¶Z t

0

Ysds

¶
dt

¸
= log (e0)

Z ∞
0

e−δtdt+
µ
1− 1

2
σ2e

¶Z ∞
0

e−δt
µZ t

0

E0 (Ys) ds

¶
dt .

Using the formula

E0 (Ys) = Y + (Y0 − Y )e−λs ,

we then have

E0

·Z ∞
0

e−δt log (et) dt
¸

=
1

δ
ln (e0) +

µ
1− 1

2
σ2e

¶Z ∞
0

e−δt
µ
Y t+ (Y0 − Y )

Z t

0

e−λsds
¶
dt

=
1

δ
ln (e0) +

1− 1
2σ

2
e

δ (δ + λ)

µ
Y0 +

λY

δ

¶
.

At the same time, W0 is the aggregate wealth of the economy, which is equal to the price of the

stock, δ−1e0. Thus, g0,0 (Y0) = a+ bY0 + ln (δ), where

a =
λ
¡
1− 1

2σ
2
e

¢
δ (δ + λ)

Y , b =
1− 1

2σ
2
e

δ + λ
.

Proof of Proposition 8. To prove 1, we note that in our economy Wt +W
(1)
t = Pt and

Wt = ωtPt , W
(1)
t = (1− ωt)Pt .

Using the consumption asymptotics (16), with g0 replaced by g00, aggregate good markets clearing

implies

et
δ

.
=

1

δ

³
ct + c

(1)
t

´
.
=
1

δ
(δ (1− ωt) + δ (1− γ (g0,0 (Xt)− log (δ)))ωt)Pt

.
= (1− γ (g0,0 (Xt)− log (δ))ωt)Pt ,
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that is:

Pt
.
=

et
δ
(1 + γ (a+ bYt)ωt) . (79)

Defining pt = p (Yt, ωt) =
1
δ (1 + γ (a+ bYt)ωt), it follows

dPt
Pt

.
= Ytdt+ γbωt

µ
dYt +

·
dYt,

det
et

¸¶
+ σe

p
YtdZ

e
t

=
¡
Yt + γbωt

¡
λ
¡
Y − Yt

¢
+ YtδeY σeσY

¢¢
dt+ σe

p
YtdZ

e
t + γbωtσY

p
YtdZ

Y
t .

The cumulative return then is

dPt + etdt

Pt

.
=

¡
Yt + γbωt

¡
λ
¡
Y − Yt

¢
+ YtδeY σeσY

¢¢
dt+ δ (1− γωt (a+ bYt)) dt

+σe
p
YtdZ

e
t + γbωtσY

p
YtdZ

Y
t

.
= (Yt + δ − γbωtYt (λ+ δ − δeY σeσY )) dt+ σe

p
YtdZ

e
t + γbωtσY

p
YtdZ

Y
t

= (δ + Yt (1− γbωt (λ+ δ − δeY σeσY ))) dt+ σe
p
YtdZ

e
t + γbωtσY

p
YtdZ

Y
t .

This proves 1. To prove 2 we first notice that the market price of risk φ under ambiguity is given

by:

φ (Y, ω) = φ00 (Y, ω) + γφ01 (Y, ω) +
p
2ηφ02 (Y, ω) +O2 (γ,

√
η) , (80)

where

φ00 (Y, ω) = σe
√
Y ,

is the market price of risk in a standard homogeneous economy populated by log-utility agents.

Hence: r
η

G0

.
=

r
η

G (Y )
,

where

G (Y ) = φ200 (Y ) + 2φ00 (Y ) δeY σY
√
Y b+

³
σY
√
Y b
´2
= Y

¡
σ2e + 2δeY σeσY b+ σ2Y b

2
¢

.

Defining

ς =


ϑ for robustnessp

η/G (Yt) for ambiguity
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financial markets clearing gives

rt
.
= αt + et − σ2t + (γ − ς)

µ
σ2t +

∂g0,0 (Yt)

∂X
σXP

¶
ωt

.
= αt + et − σ2t + (γ − ς)

¡
σ2t + bσXP

¢
ωt .

Using the above cumulative return dynamics this leads to

rt
.
= (δ + (1− γbωt (λ+ δ − δeY σeσY ))Yt)−

¡
σ2e + 2σeγbωtσY δeY

¢
Yt

+(γ − ς)
¡
σ2e + bσeσY δeY

¢
Ytωt .

which proves 2.

The first part of Claim 3 is based on the optimum consumption asymptotics under robustness

or ambiguity together with (46):

c
(1)
t = δ , ct

.
= δ (1− γ (g00 (Yt)− log (δ))) .

= δ (1− γ (a+ bYt)) .

Moreover,

w(1)
.
=

αt + et − rt
σ2t

.
= 1− (γ − ς)

µ
1 + b

σY δeY
σe

¶
ωt ,

and

w
.
= w(1) (1 + γ − ς) + (γ − ς)

∂g0,0 (Yt)

∂X

σXP

σ2t
.
= 1 + (1 + γ − ς)− (γ − ς)

µ
1 + b

σY δeY
σe

¶
ωt + (γ − ς) b

σY δeY
σe

.
= 1 + (γ − ς)

µ
1 + b

σY δeY
σe

¶
(1− ωt) .

This proves 3.

We next consider 4. The equilibrium cross-sectional wealth dynamics implied by Itô’s Lemma

for the given exchange economy are of the form

dωt = ωt (1− ωt)
h³
wt − w

(1)
t

´ £
(αt + et − rt)− σ2t

¤− ³ct − c
(1)
t

´i
dt

+ωt (1− ωt)
³
wt − w

(1)
t

´
σtdZt .

Moreover ³
w − w

(1)
t

´
σt

.
= (γ − ς)

µ
1 + b

σY δeY
σe

¶
σe
p
Yt ,
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and

−
³
ct − c

(1)
t

´
.
= δγ (a+ bYt) .

Finally, using the results in the proof of 2 we have

(αt + et − rt)− σ2t
.
= − (γ − ς)

µ
σ2t +

∂g0,0 (Yt)

∂X
σXP

¶
ωt

.
= − (γ − ς)

¡
σ2e + bσeσY δeY

¢
Ytωt ,

yielding ³
wt − w

(1)
t

´ h
(αt + et − rt)−

³
ωtwt + (1− ωt)w

(1)
t

´
σ2t

i
.
= 0 .

This proves 4.
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Figure 1: Optimal risky allocation w as a function of the state X for the parameter choices
r = 0.05, δ = 0.06, σ = 0.15, ξ = 0.037, λ = 0.0423, X = 0.0942, γ = 0.25, ρ = 0.90. In the
left panel we plot the portfolio policies in model (P1) for ϑ = 0, 0.1, 0.2 (straight, dash-dotted
and dash lines). The right panel gives the portfolio policies in model (P2) for η = 0, 0.005, 0.01
(straight, dash-dotted and dash curves).
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Figure 2: Differences in optimal risky allocations as a function of the state X for the parameter
choices r = 0.05, δ = 0.06, σ = 0.15, ξ = 0.037, λ = 0.0423, X = 0.0942, γ = 0.25, ρ = 0.90. We
plot the difference of the portfolio policies in model (P1) for ϑ = 0.1, 0.2 and the portfolio policies
in model (P2) for η = 0.005, 0.001 ( dash-dotted and dash lines).
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Figure 3: Optimal risky allocation w under ambiguity as a function of the state (ω, Y ) for the
parameter choices δ = 0.02, σe = 0.02, σY = 0.01, δeY = −0.05, γ = 0.25. The plot in the left
panel is for η = 0.001. The one in the right panel is for η = 0.002.
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