Faculté des sciences

Activation of the Potato Tuber ADP-glucose Pyrophosphorylase by Thioredoxin

Ballicora, Miguel A. ; Frueauf, Jeremiah B. ; Fu, Yingbin ; Schürmann, Peter ; Preiss, Jack

In: The Journal of Biological Chemistry, 2000, vol. 275, no. 2, p. 1315-1320

The potato tuber (Solanum tuberosum L.) ADP-glucose pyrophosphorylase (ADP-GlcPPase) catalyzes the first committed step in starch biosynthesis. The main type of regulation of this enzyme is allosteric, and its activity is controlled by the ratio of activator, 3-phosphoglycerate to inhibitor, Pi. It was reported (Fu, Y., Ballicora, M. A., Leykam, J. F., and Preiss, J. (1998)... More

Add to personal list
    Summary
    The potato tuber (Solanum tuberosum L.) ADP-glucose pyrophosphorylase (ADP-GlcPPase) catalyzes the first committed step in starch biosynthesis. The main type of regulation of this enzyme is allosteric, and its activity is controlled by the ratio of activator, 3-phosphoglycerate to inhibitor, Pi. It was reported (Fu, Y., Ballicora, M. A., Leykam, J. F., and Preiss, J. (1998) J. Biol. Chem. 273, 25045-25052) that the enzyme was activated by reduction of the Cys12 disulfide linkage present in the catalytic subunits. In this study, both reduced thioredoxin f and m from spinach (Spinacia oleracea) leaves reduced and activated the enzyme at low concentrations (10 µM) of activator (3-phosphoglycerate). Fifty percent activation was at 4.5 and 8.7 µM for reduced thioredoxin f and m, respectively, and 2 orders of magnitude lower than for dithiothreitol. The activation was reversed by oxidized thioredoxin. Cys12 is conserved in the ADP-GlcPPases from plant leaves and other tissues except for the monocot endosperm enzymes. We postulate that in photosynthetic tissues, reduction could play a role in the fine regulation of the ADP-GlcPPase mediated by the ferredoxin-thioredoxin system. This is the first time that a covalent mechanism of regulation is postulated in the synthesis of starch.