Faculté des sciences

Synaptic influences of pontine nuclei on cochlear nucleus cells

Babalian, Alexander L.

In: Experimental Brain Research, 2006, vol. 167, no. 3, p. 451-457

Using the in vitro isolated whole brain preparation of the guinea pig, we tested the synaptic effects induced by the stimulation of pontine nuclei (PN) in intracellularly recorded and stained principal cells of the cochlear nucleus (CN). Twenty percent of the recorded cells in all CN subdivisions responded to stimulation of either ipsilateral or contralateral PN, and 12% of the cells exhibited... More

Add to personal list
    Summary
    Using the in vitro isolated whole brain preparation of the guinea pig, we tested the synaptic effects induced by the stimulation of pontine nuclei (PN) in intracellularly recorded and stained principal cells of the cochlear nucleus (CN). Twenty percent of the recorded cells in all CN subdivisions responded to stimulation of either ipsilateral or contralateral PN, and 12% of the cells exhibited convergence of inputs from both sides. The responses were recorded only in stellate cells of the ventral CN and in the pyramidal cells of the dorsal CN, whereas no responses were observed in bushy, octopus, and giant cells. PN stimulation produced excitatory and inhibitory postsynaptic potentials as well as mixed responses. The heterogeneous nature and the wide latency range (3.2–18 ms) of observed responses suggest significant variability in the underlying synaptic mechanisms and the implicated pathways. We propose that PN projections to the CN, terminating mainly in the granule cell domain (GCD), together with other non-auditory and auditory inputs contribute to multimodal convergence in the GCD leading ultimately to modulatory actions on the output activity of CN principal cells.