On the Role of Chloroplast Plastoglobule Lipoprotein Particles in Vitamin E Biosynthesis

A dissertation submitted to the UNIVERSITY OF NEUCHATEL for the degree of Doctor of Natural Sciences

Presented by PIERRE-ALEXANDRE VIDI from the Institute of Botany, Laboratory of Plant Physiology

Accepted on the recommendation of
Prof. Felix Kessler, thesis director
 Prof. Jean-Marc Neuhaus
 Prof. Samuel Zeeman
 Prof. Danny Schmell
the 10 July 2006
Keywords: Chloroplasts, plastoglobules, lipid bodies, plastoglobulins, tocopherol cyclase, vitamin E.

Mots-clés: Chloroplastes, plastoglobules, corps lipidiques, plastoglobulines, tocophérol cyclase, vitamin E.
IMPRIMATUR POUR LA THESE

On the Role of the Chloroplast Plastoglobules Lipoprotein Particles Vitamin E Biosynthesis

Pierre-Alexandre VIDI

UNIVERSITE DE NEUCHATEL
FACULTE DES SCIENCES
La Faculté des sciences de l'Université de Neuchâtel,
sur le rapport des membres du jury

MM. F. Kessler (directeur de thèse),
J.-M. Neuhaus,
S. Zeeman (ETH Zürich)
et D. Schnell (Uni. of Massachusetts USA)

autorise l'impression de la présente thèse.

Neuchâtel, le 11 septembre 2006

Le doyen :

J.-P. Derendinger
UNIVERSITE DE NEUCHATEL
FACULTE DES SCIENCES
Secrétariat-décanat de la faculté
Rue Emile-Argand 11 - CP 158
CH-2009 Neuchâtel
Contents

Abstract v
Résumé vii
List of abbreviations ix

1 Introduction 1
1.1 Plastids are highly versatile plant organelles 1
1.1.1 An overview of plastid types 1
1.1.2 Compartmentalisation of chloroplasts 2
1.2 Plastoglobules are ubiquitous plastid lipid bodies 2
1.2.1 Lipid composition of plastoglobules 3
1.2.2 Protein content of plastoglobules 3
1.2.3 Common features of lipid bodies and their associated proteins 4
1.2.4 Proposed functions of plastoglobules 4
1.3 PAP/fibrillins: proteins associated with plastid lipid bodies 5
1.3.1 Discovery of PAP/fibrillins 5
1.3.2 PAP/fibrillins are proteins of ancient origin 6
1.3.3 Structural functions of PAP/fibrillins 6
1.4 Plastoglobules may participate in adaptation to oxidative stress 6
1.4.1 A network of antioxidants protects chloroplast membranes 6
1.4.2 Tocopherols act as lipid antioxidants in plastids and accumulate in plastoglobules 7
1.4.3 Morphological studies have implicated plastoglobules in plant stress response 8
1.4.4 Several PAP/fibrillins are upregulated by oxidative stress 8
1.5 Aim of this work 9

2 Results 11
2.1 Characterisation of Arabidopsis plastoglobulins 11
2.1.1 Homology searches identify 13 plastoglobulin genes in the Arabidopsis genome 11
2.1.2 Arabidopsis plastoglobulins have overlapping but distinct expression patterns ... 14
2.1.3 Several Arabidopsis plastoglobulins are regulated by light ... 16
2.1.4 AtPGL35 as an Arabidopsis plastoglobule marker protein ... 17
2.1.5 Plastoglobulins may have diverse molecular functions ... 19
2.1.6 Using reverse genetics for the study of plastoglobulins ... 23
2.2 Plastoglobules in oxidative stress response 31
2.2.1 High light stress leads to enlargement of plastoglobules in Arabidopsis leaves 31
2.2.2 AtPGL transcripts accumulate under oxidative stress conditions .. 31
2.2.3 Drought and photooxidative stress lead to accumulation of AtPGL35 .. 33
2.2.4 AtPGL35 accumulates during ageing 33
2.3 Plastoglobules and tocopherol metabolism 37
2.3.1 Tocopherol cyclase (AtVTE1) localises to plastoglobules ... 37
2.3.2 γ-tocopherol methyl transferase (AtVTE4) localises at the chloroplast envelope 41
2.4 Protein targeting to plastoglobules 42
2.4.1 Plastoglobulins lack strongly hydrophobic domains ... 42
2.4.2 Most of AtPGL34 sequence may be required for targeting the protein to plastoglobules 45
2.4.3 Transgenic Arabidopsis plants expressing AtPGL34-YFP ... 49
2.4.4 AtPGL34g-YFP associates with low-density particles in vivo .. 50
2.4.5 Yield estimation of recombinant protein 53
2.4.6 Phenotype of AtPGL34g-YFP-expressing plants 53

3 Discussion .. 57
3.1 Towards understanding the functions of plastoglobulins 57
3.1.1 Arabidopsis plastoglobulins associate with plastoglobules ... 57
3.1.2 Distinct plastoglobule populations or molecular functions of plastoglobulins? .. 58
3.1.3 Plastoglobulin expression patterns highlight ubiquity of plastoglobules ... 58
3.1.4 Stress leads to the upregulation of AtPGL35 60
3.1.5 Functions of plastoglobulins are partially redundant 61
3.2 Plastoglobules as synthesis and storage sites for tocopherols ... 61
3.2.1 Localisation of the tocopherol cyclase to plastoglobules ... 61
3.2.2 A model for tocopherol biosynthesis ... 63
3.2.3 VTE1 provides a molecular link between plastoglobules and oxidative stress response 65
3.2.4 Why do tocopherols accumulate in plastoglobules? 65
3.2.5 Recycling of oxidised tocopherols 66
3.3 Signalling mechanisms involving plastoglobules 66
3.4 Plastoglobules as a potential protein destination for molecular farming 67
3.4.1 Targeting YFP to plastoglobules: a proof-of-concept .. 67
3.4.2 Preliminary experiments failed to identify a targeting determinant for plastoglobules 68
3.4.3 Viability of transgenic plants .. 69
3.4.4 Engineering fruit or leaf crops instead of A. thaliana .. 70

4 Materials and Methods .. 71
4.1 Materials .. 71
4.1.1 Biological material .. 71
4.1.2 Oligonucleotides .. 71
4.1.3 cDNA clones .. 71
4.1.4 Plasmids ... 71
4.1.5 Chemicals ... 72
4.1.6 Antibodies ... 72
4.2 Methods .. 73
4.2.1 Physiological methods ... 73
4.2.2 Methods for molecular cloning .. 73
4.2.3 Plasmid isolation and purification 74
4.2.4 Transient transformation of A. thaliana protoplasts 74
4.2.5 Transient transformation of A. thaliana leaves by particle bombardment 75
4.2.6 Stable transformation of Arabidopsis 75
4.2.7 Diagnostic PCR on plants ... 76
4.2.8 Fluorescence imaging in transgenic plants 77
4.2.9 Southern and Northern analysis .. 77
4.2.10 RT-PCR ... 79
4.2.11 Purification of plastoglobules from A. thaliana 79
4.2.12 Preparation of anti-AtPGL35 antibody 80
4.2.13 Protein extraction and Western blot analysis 80
4.2.14 Immunolocalization in protoplasts 81
4.2.15 Electron microscopy and immunocytochemistry 81
4.2.16 Fluorometry .. 82
4.2.17 Bioinformatics ... 82

Appendix: The Arabidopsis plastoglobule proteome ... 85

Bibliography ... 87

Acknowledgments .. 105
Abstract

Chloroplasts contain lipoprotein particles termed plastoglobules. Plastoglobules are generally believed to have little function beyond lipid storage. However, increased plastoglobule size and number has been correlated with oxidative stress conditions indicating dynamic behaviour. Structural proteins from the PAP/fibrillin family are associated with plastoglobules and are upregulated under various environmental stresses. We have identified AtPGL35 as an Arabidopsis thaliana plastoglobule marker protein, and shown that its upregulation under oxidative stress conditions parallels increase of plastoglobule size in chloroplasts.

In order to discover new components and functions of plastoglobules, proteins from purified Arabidopsis plastoglobules have been identified by tandem mass spectrometry. The identified peptides belonged to PAP/fibrillins and to known metabolic enzymes including the tocopherol cyclase (AtVTE1), catalysing the penultimate step of α-tocopherol (Vitamin E) biosynthesis. In addition, plastoglobules were shown to be a major site of α-tocopherol accumulation. The data presented suggest that the cyclase reaction is the only step of the α-tocopherol biosynthesis pathway occurring in plastoglobules. Association of AtVTE1 with plastoglobules indicates that these lipid-bodies are not mere storage sites for tocopherols but that they are involved in their synthesis.

Plants are emerging as cost-effective alternatives for the production of recombinant proteins. Extraction and purification of transgene products are however obstacles for so-called molecular farming. We propose to take advantage of the low-density of plastoglobules for efficient recovery of recombinant proteins. As a proof-of-concept, the yellow fluorescent protein (YFP), fused to an Arabidopsis PAP/fibrillin, was targeted to plastoglobules and purified by a simple gradient flotation centrifugation procedure. Accumulation of the recombinant protein had no apparent effect on plant viability. These results identify plastoglobules as a promising sub-organelar compartment for molecular farming.
Résumé

Les chloroplastes contiennent des corps protéo-lipidiques connus sous le nom de plastoglobules. Les plastoglobules ont longtemps été considérés comme des sites de stockage de lipides. Cependant, des études ont montré que leur nombre et leur volume augmentent dans des situations de stress oxydatif. Ces structures ont donc un comportement dynamique. Des protéines structurelles appartenant à la famille des PAP/fibrillines, sont associées aux plastoglobules et leur expression est positivement régulée par plusieurs types de stress environnementaux. Nous avons identifié AtPGL35, une protéine marqueur pour les plastoglobules dans la plante Arabidopsis thaliana, et montré que la synthèse de cette protéine est induite par divers stress oxydatifs. En parallèle, des observations microscopiques ont montré une augmentation de la taille des plastoglobules dans des chloroplastes exposés à un stress oxydatif.

Dans le but de découvrir de nouveaux composants et de nouvelles fonctions des plastoglobules, un extrait protéique issu de plastoglobules purifiés a été analysé par spectrométrie de masse. Les peptides identifiés appartenaient à des PAP/fibrillines ainsi qu’à des enzymes dont la tocopherol cyclase (AtVTE1), catalysant la pénultième étape de la biosynthèse de l’α-tocopherol (la vitamine E). De plus, un fort enrichissement en tocophérols a été mesuré dans les plastoglobules. Des résultats suggérant que AtVTE1 est la seule enzyme de la voie de synthèse des tocophérols à être localisée dans les plastoglobules sont présentés. La présence de AtVTE1 en association avec les plastoglobules indique que ces corps lipidiques ne sont pas uniquement des sites de stockage, mais qu’ils participent à la synthèse de la vitamine E.

Actuellement, les protéines recombinantes destinées à la médecine et à l’industrie sont principalement produites par des microorganismes ou des cultures de cellules animales. Dans l’optique de limiter les coûts de production et les risques liés aux pathogènes dans les systèmes animaux, les plantes (“l’agriculture moléculaire”) représentent une alternative intéressante. Si la production de matériel végétal est peu coûteuse, les étapes de purifications sont un obstacle pour cette technologie. Afin de simplifier les procédures de purification, nous proposons de tirer parti de la faible densité des plastoglobules pour une première étape d’enrichissement. Comme preuve de principe, nous avons généré des plantes exprimant la protéine fluorescente jaune (YFP) fusionnée une PAP/fibrilline. La protéine chimérique a été localisée dans les plastoglobules des plantes transgéniques et a pu être fortement enrichie par une simple cen-
trifugation sur gradient. L’accumulation de la protéine recombinante n’a pas eu de conséquence néfaste apparente pour les plantes. Ces résultats démontrent que les plastoglobules représentent un site d’adressage prometteur pour l’agriculture moléculaire.
List of abbreviations

α-TTP α-tocopherol transport protein
γ-TMT γ-tocopherol methyl transferase
% (v/v) ml/100ml
% (w/v) g/100ml
E. coli *Escherichia coli*
ABA abscissic acid
ABC ATP-binding cassette
ADRP adipocyte differentiation-related protein
AOS allene oxide synthase
ARC accumulation and replication of chloroplasts
At *Arabidopsis thaliana*
ATP adenosine triphosphate
BCP32 *Brassica campestris* 32kDa polypeptide
bp base pairs
CAB chlorophyll a/b binding protein
CAD2 CADMIUM-SENSITIVE2
CaMV cauliflower mosaic virus
CCD carotenoid cleavage dioxygenase
cDNA complementary DNA
CDSP34 chloroplastic drought-induced protein of 34kDa
CFP cyan fluorescent protein
ChrB, C chromoplast protein B, C
CLA1 CLOROPLASTOS ALTERADOS 1
CTAB cetyltrimethylammonium bromide
DEPC diethyl pyrocarbonate
DGAT diacylglycerol acyltransferase
DMPQ 2,3-dimethyl-6-phytyl-1,4-benzoquinone
DNA desoxyribonucleic acid
dNTP desoxy nucleotide triphosphate
DTT 1,4-dithio-DL-threitol
EDTA ethylenediamine-N,N,N’,N’-tetraacetic acid
EST expressed sequence tag
FBA fructose-bis-phosphate aldolase
FDH formate dehydrogenase
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FR</td>
<td>far red</td>
</tr>
<tr>
<td>gDNA</td>
<td>genomic DNA</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GGDP</td>
<td>geranylgeranyldiphosphate</td>
</tr>
<tr>
<td>GS</td>
<td>goat serum</td>
</tr>
<tr>
<td>HGA</td>
<td>homogentisic acid</td>
</tr>
<tr>
<td>His$_6$</td>
<td>hexahistidinyl-tag</td>
</tr>
<tr>
<td>HPPD</td>
<td>4-hydroxyphenylpyruvate dioxygenase</td>
</tr>
<tr>
<td>HPT</td>
<td>HGA phytyltransferase</td>
</tr>
<tr>
<td>ihpRNA</td>
<td>intron-containing self-complementary hairpin RNA</td>
</tr>
<tr>
<td>JA</td>
<td>jasmonic acid</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base pairs</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>LB</td>
<td>T-DNA left boarder or Luria-Bertani</td>
</tr>
<tr>
<td>LR-white</td>
<td>London Resin-white</td>
</tr>
<tr>
<td>MES</td>
<td>2(N-Morpholino)ethanesulfonic acid</td>
</tr>
<tr>
<td>MPQ</td>
<td>2-methyl-6-phytyl-1,4-benzoquinone</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MS</td>
<td>Murashige and Skoog</td>
</tr>
<tr>
<td>Ni-NTA</td>
<td>nickel-nitritolriacetic acid</td>
</tr>
<tr>
<td>NP-40</td>
<td>Nonidet P-40</td>
</tr>
<tr>
<td>NPQ</td>
<td>non-photochemical quenching</td>
</tr>
<tr>
<td>OCS</td>
<td>octopin synthase gene (from A. tumefaciens)</td>
</tr>
<tr>
<td>PAP</td>
<td>plastid lipid associated protein</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PG1</td>
<td>plastoglobulin 1</td>
</tr>
<tr>
<td>PGL</td>
<td>plastoglobulin</td>
</tr>
<tr>
<td>phytyl-PP</td>
<td>phytyldiphosphate</td>
</tr>
<tr>
<td>pptR</td>
<td>phosphinothricin-resistant</td>
</tr>
<tr>
<td>pptS</td>
<td>phosphinothricin-sensitive</td>
</tr>
<tr>
<td>PQH2</td>
<td>plastoquinone</td>
</tr>
<tr>
<td>PSIi</td>
<td>photosystem II</td>
</tr>
<tr>
<td>pSSU</td>
<td>precursor of the RSSU</td>
</tr>
<tr>
<td>RB</td>
<td>T-DNA right boarder</td>
</tr>
<tr>
<td>RGD</td>
<td>arginin - glycin - aspartic acid</td>
</tr>
<tr>
<td>RLSU</td>
<td>RuBisCO large subunit</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomal RNA</td>
</tr>
<tr>
<td>RSSU</td>
<td>RuBisCO small subunit</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcription-PCR</td>
</tr>
<tr>
<td>RuBisCO</td>
<td>ribulose-1,5-bisphosphate carboxylase oxygenase</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Plastids are highly versatile plant organelles

1.1.1 An overview of plastid types

Plastids form a group of plant-specific organelles. They are seen as the result of an ancient endosymbiotic event where a cyanobacterial ancestor invaded a primitive eukaryotic cell (McFadden, 1999). All plastid types initially derive from proplastids, which are small undifferentiated organelles abundant in meristematic tissues. As suggested by the etymology of their name, plastids (from plassein, the Greek for 'to mould' or 'shape') are highly plastic organelles, both in structure and function. The fate of plastids is not definitive and interconversions of plastid types occur during plant development or in response to environmental constrains (Thomson and Whatley, 1980). The best studied plastid differentiation process is the biogenesis of chloroplasts in greening tissues. Upon illumination, thylakoid grana and stroma lamellae are rapidly assembled and the synthesis of photosynthetical proteins is upregulated (Bauer et al., 2001). Conversely, prolonged darkness periods induce the formation of etioplasts which are characterised by tubular membrane arrays known as prolamellar bodies (Amrani et al., 1994). In roots, seeds or tubers, plastids differentiate into storage compartments and accumulate starch (amyloplasts) lipids (elaioplasts) or proteins (Whatley, 1983; Thomson and Whatley, 1980; Newcomb, 1967). Elaioplasts also accumulate in the tapetum, a cell layer facing the anther’s locules. In the late stages of pollen maturation, tapetum cells undergo lysis, releasing their lipid content which-participates in the formation of the pollen coat (Piffanelli et al., 1998). In maturing fruits and petals, chloroplasts differentiate into chromoplasts. During this process, thylakoid membranes disintegrate, and carotenoid pigments massively accumulate in fibrillar or globular structures, conferring the colourful appearance to the tissues (Lichtenthaler, 1969; Vishnevetsky et al., 1999). Similarly, leucoplasts in white petals originate from chloroplast redifferentiation (Pyke and Page, 1998).

Differentiation of plastids into specialised plastid types is essential for con-
ferring to tissues their functions in metabolism, storage or pollinator attraction. Plastid interconversions require: i) Important changes in the protein assortment achieved through de novo protein synthesis in the organelle as well as import of cytosolic precursors (Marano et al., 1993; Bauer et al., 2001) and ii) remodelling of plastid architecture, notably of lipidic structures including internal thylakoid membranes and lipid bodies (Sprey and Lichtenthaler, 1966; Lichtenthaler, 1969).

1.1.2 Compartmentalisation of chloroplasts

The chloroplast is the hallmark organelle in green tissues. It is the site of photosynthesis which allows plants to grow photoautrophically, i.e. harvest solar energy and use CO$_2$ as a source of carbon. The structure of chloroplasts has been extensively studied by electron microscopy (Staehelin, 1986). The boundary of the organelle is delimited by a double membrane, termed the envelope. The inside of chloroplasts is composed of an aqueous matrix, the stroma, and of an extended membrane system, the thylakoids. Thylakoid membranes are arranged in stacks, the grana, interconnected by stromal lamellae. Starch granules and lipid bodies, referred to as osmiophilic bodies or plastoglobules, are also structures commonly observed in the stroma. The latter are presented in the next section.

Distinct metabolic processes are associated with the different chloroplast compartments. A number of enzymatic reactions, notably involved in lipid biosynthesis, are localised to the inner membrane of the envelope (Joyard et al., 1998). Transporters, regulating influx and efflux of metabolites, also mostly localise to the inner membrane, the outer membrane being largely permeable to small molecular weight compounds. The stroma encompasses a large number of hydrophilic proteins (e.g. the highly abundant enzymes from the Calvin cycle), multiple copies of plastidic DNA, as well as complete transcription and translation machineries. The photosystems, which consist of photosynthetic pigments and proteins, are embedded in the thylakoid membranes. Similar to mitochondria cristae, thylakoid lamellae allow the formation of a proton gradient utilised by the F$_1$F$_0$ ATPase to drive ATP synthesis.

1.2 Plastoglobules are ubiquitous plastid lipid bodies

Analysis of chloroplast ultrastructure by electron microscopy has revealed the presence of lipid bodies (‘osmiophilic globuli’) in the stroma (Greenwood et al., 1963; Lichtenthaler and Sprey, 1966; Thomson and Platt, 1973). The diameter of these bodies, hereafter termed plastoglobules, ranges from 30 nm to 5 µm and varies in different species and plastid types (Lichtenthaler, 1968).
1.2.1 Lipid composition of plastoglobules

The main components of chloroplast plastoglobules are triacylglycerols (TAG) and prenylquinones. Plastohydroquinone and tocopherols (vitamin E) are the major prenylquinone constituents while phylloquinone (vitamin K) is present in slight amounts. (Legget Bailey and Whyborn, 1963; Greenwood et al., 1963; Lichtenhaler and Sprey, 1966; Steinmüller and Tevini, 1985; Tevini and Steinmüller, 1985). Traces of chlorophylls and carotenoids (β-carotene, lutein) have also been detected in plastoglobule fractions (Greenwood et al., 1963; Lichtenhaler and Sprey, 1966) but have been considered as thylakoid contamination by Steinmüller and Tevini (1985). Similarly, glyco- and phospholipids have been identified in plastoglobule preparations but their genuine association with plastoglobules has been questioned (Steinmüller and Tevini, 1985).

The lipid composition of plastoglobules from non-green plastids is markedly different from that of chloroplasts. Plastoglobules from gerontoplasts in senescing leaves, e.g., accumulate carotenoid esters, oxidised prenylquinones and free fatty acids (Tevini and Steinmüller, 1985). Carotenoid esters are also the major constituents of chromoplast plastoglobules and fibrils (Deruère et al., 1994).

Variations in lipid composition suggest that plastoglobules are highly dynamic structures and that their functions evolve during plastid differentiation.

1.2.2 Protein content of plastoglobules

Early biochemical studies identified nitrogen in purified chloroplast lipid bodies, suggesting the presence of associated proteins (Legget Bailey and Whyborn, 1963). Steinmüller and Tevini (1985) also detected proteins in purified plastoglobules but considered them as thylakoid contamination. This view changed since several groups demonstrated the presence of proteins in carotenoid fibrils of bell pepper fruit chromoplasts and in chloroplast plastoglobules (Deruère et al., 1994; Pozueta-Romero et al., 1997; Wu et al., 1997; Ting et al., 1998; Kessler et al., 1999). These proteins range in size from 30 to 38 kDa and belong to the so-called PAP/fibrillin family. PAP/fibrillins are seen as structural proteins and the corresponding literature is reviewed in section 1.3.

Although PAP/fibrillins are the most abundant peptides in fibrils and plastoglobules, SDS-PAGE analysis indicated that at least a dozen different proteins associate with plastid oil-bodies (Wu et al., 1997; Kessler et al., 1999). Recently, the proteome of Arabidopsis plastoglobules has been unravelled independently by Ytterberg et al. (2006) and by our group (Vidi et al., 2006; see Table 4.2 on page 85). In addition to proteins from the PAP/fibrillin family, enzymes belonging to various biochemical pathways were detected. Fructose-bis-phosphate aldolase (FBA) isoforms, an epoxycarotenoid dioxygenase (CCD4), the allene oxide synthase (AOS), the tocopherol cyclase (VTE1), putative lipid-modifying enzymes, as well as proteins with ATP-binding cassette (ABC) domains were identified in both studies.
1.2.3 Common features of lipid bodies and their associated proteins

In plants, animals and microorganisms, lipid bodies have functions as diverse as energy storage, structural lipid storage, lipid transport and lipid metabolism (Murphy, 2001). Common themes exist between lipid bodies. They consist of a hydrophobic core surrounded by a monolayer of amphiphatic lipids. Peripherally associated proteins are found in most types of lipid bodies and are more or less tightly bound to their surface. Such an architecture was proposed for chromoplast fibrils (Knoth et al., 1986; Deruère et al., 1994), and chloroplast plastoglobules (Kessler et al., 1999).

Proteins associated with lipid bodies have highly diverse physicochemical properties and topologies, reflecting various modes of association with the lipidic structures. In desiccation tolerant seeds, oil bodies are coated with oleosins. A central hydrophobic domain in the proteins, often referred to as "proline knot motif" is essential for their association with oil bodies (Hsieh and Huang, 2004). Interestingly, association of the hepatitis C virus core protein with cytosolic lipid droplets in mammalian cells requires a proline-containing domain similar to that of oleosins (Hope et al., 2002). In mammalian cells, and in certain conditions, caveolins accumulate on the surface of cytoplasmic lipid droplets. Using deletion constructs, Ostermeyer et al. (2004) demonstrated requirement of a hydrophobic domain for lipid droplet targeting. Hydrophobic domains were also shown to play important roles in targeting and anchoring perilipin to lipid droplets in adipocytes (Subramanian et al., 2004). Apolipoproteins which associate with lipoproteins contain amphipathic α-helices and β-strands, the apolar surfaces interacting with acyl chains of surface lipids and polar surfaces facing the aqueous environment (Segrest et al., 2001). Although hydrophobic sequences are essential for targeting and anchoring a variety of lipid body proteins, no obvious consensus sequence could be defined, suggesting different modes of protein-lipid association.

If several lipid body proteins are characterised by hydrophobic domains, others lack large apolar regions. Adipophilin (also termed Adipocyte Differentiation-related Protein, ADRP), which localises at the periphery of cytosolic lipid bodies in mammalian cells, has no obvious lipid-binding motif (hydrophobic domains or amphiphatic α-helices; Murphy, 2001) and discontinuous stretches of the protein are necessary for targeting to lipid bodies (Targett-Adams et al., 2003).

Lipid body proteins with highly diverse structures and properties have similar functions. They are generally thought to prevent coalescence of lipid bodies with neighbouring lipophilic structures. In addition, certain lipid body proteins including ADRP induce the formation and regulate the size of the lipid bodies (Imamura et al., 2002; Fukushima et al., 2005).

1.2.4 Proposed functions of plastoglobules

In chloroplasts, plastoglobules are associated with thylakoid membranes (Kessler et al., 1999; Austin et al., 2006), suggesting that they play a role in thylakoid
membrane function, possibly as a reservoir for certain lipids (Lichtenthaler, 1968). Indeed, plastoglobules enlarge during thylakoid disassembly in senescing chloroplasts (Lichtenthaler, 1968; Tuquet and Newman, 1980; Ghosh et al., 2001; Keskitalo et al., 2005). Their accumulation in senescing rosette leaves of Arabidopsis correlates temporally with the activation of diacylglycerol acyltransferase 1 (AtDGAT1) and with enhanced synthesis of TAGs (Kaup et al., 2002). Dismantling of thylakoid membranes during senescence allows remobilisation of energy for seed production. TAG accumulating in plastoglobules must therefore leave plastids in order to be converted into sugars through \(\beta \)-oxidation and the glyoxylate cycle. Evidence gained from ultrastructural analysis of senescing plastids indicated that plastoglobules are released from gerontoplasts through a blebbing process (Guiamet et al., 1999; Keskitalo et al., 2005).

Plastoglobules may also be involved in the formation of thylakoid membranes in de-etiolating plastids. After exposure to light, the number of plastoglobules was shown to decrease in barley etioplasts while prolamellar bodies were converted into thylakoid lamellae (Sprey and Lichtenthaler, 1966). Plastoglobules in etioplasts may therefore represent a lipid reservoir allowing the rapid formation of thylakoids in greening tissues.

Plastoglobules have also been implicated in chloroplast to chromoplast transition. During chromoplast differentiation, plastoglobules enlarge (Lichtenthaler, 1968) and accumulate esterified isoprenoids (Steinmüller and Tevini, 1985). In certain species, plastoglobules elongate to form fibrillar structures (Thomson and Whatley, 1980; Vishnevetsky et al., 1999).

Although roles of plastoglobules in chromoplast differentiation and in thylakoid formation and dismantling have been defined, their functions in mature chloroplasts remain largely unknown.

1.3 PAP/fibrillins: proteins associated with plastid lipid bodies

1.3.1 Discovery of PAP/fibrillins

Studies on fruit ripening in bell pepper resulted in the identification of chromoplast proteins strongly upregulated during fruit maturation (Hadjeb et al., 1988; Newman et al., 1989). A major peptide of 35 kDa was identified independently by tree groups and designated ChrB (Newman et al., 1989), fibrillin (Deruère et al., 1994) or PAP (Pozueta-Romero et al., 1997). A homologous protein (ChrC) was subsequently identified in cucumber flowers (Vishnevetsky et al., 1996). Expression of fibrillin and ChrC was first proposed to be restricted to chromoplast-containing tissues such as fruits and corollas (Deruère et al., 1994; Vishnevetsky et al., 1996). However Pozueta-Romero and colleagues detected fibrillin in leaves and expression of a fibrillin homolog in citrus leaves was reported (Moriguchi et al., 1998). Moreover, homologous proteins were identified in leaves from pea (PG1; Kessler et al., 1999) and turnip (PAP1-3; Kim et al., 2001), as well as in anthers from rapeseed (BCP3; Ting et al., 1998), indicat-
ing that PAP/fibrillin proteins are not chromoplast-specific and associate with various types of lipid bodies.

1.3.2 PAP/fibrillins are proteins of ancient origin

PAP/fibrillin homologues from a large number of plant species including pea (PG1), bell pepper (fibrillin), potato (CDSP34), tobacco (PAP1-3), citrus (CitPAP), rice and maize are present in the database. Several cyanobacterial proteins contain a PAP/fibrillin motif. Related proteins are however absent from bacterial, animal and fungal genomes.

The broad distribution of PAP/fibrillins and their presence in cyanobacteria indicate an ancient origin of the protein family. Phylogenetic analysis further suggested that plant and cyanobacterial PAP/fibrillins evolved from a single cyanobacterial ancestor and that most of them diverged after the endosymbiotic event leading to chloroplasts (Laizet et al., 2004).

1.3.3 Structural functions of PAP/fibrillins

Immunogold-electron microscopy studies have shown that fibrillin and PG1 associate at the periphery of plastoglobules (Deruère et al., 1994; Pozueta-Romero et al., 1997; Kessler et al., 1999). The proteins do not share sequence homology with known enzymes. Moreover, Deruère and collaborators (1994) could reconstitute fibrils in vitro by adding purified fibrillin to chromoplast lipids. Overexpressing fibrillin in tobacco lead to an increase in plastoglobule number and to the formation of plastoglobule clusters (Rey et al., 2000). The role of PAP/fibrillins is therefore probably mainly structural, maintaining the shape of oil-bodies and preventing their coalescence. PAP/fibrillins may also be involved in the formation of plastoglobules and in the disassembly of photosynthetic membranes during senescence or chloroplast to chromoplast transition.

Several PAP/fibrillins were shown to associate with thylakoid membranes (Eymery and Rey, 1999; Monte et al., 1999; Rey et al., 2000) and a role in the modulation of photosynthetic activity was proposed (Monte et al., 1999).

1.4 Plastoglobules may participate in adaptation to oxidative stress

1.4.1 A network of antioxidants protects chloroplast membranes

Adverse conditions like drought, high salinity or high light intensity lead to the formation of reactive oxygen species, notably in chloroplasts. If they accumulate, ROS cause oxidative damage including lipid peroxidation, denaturation of proteins as well as damage to nucleic acids. Controlling the redox homeostasis is therefore essential for maintaining an active metabolism. Hydrophilic antioxidants (glutathione and ascorbate) and lipophilic antioxidants (xanthophylls and
tocopherols) are present in chloroplasts and effectively scavenge ROS (Foyer and Noctor, 2005). A number of studies have shown that their concentrations strongly increase during oxidative stress, improving the capacity to scavenge the radicals (e.g. Collakova and DellaPenna, 2003; Havaux et al., 2005; Munne-Bosch and Alegre, 2000, 2003).

Arabidopsis mutants with reduced levels of antioxidants are available. The npq1 mutant is deficient in violaxanthin deepoxidase and hence in zeaxanthin biosynthesis (Niyogi et al., 1998). vtc1 (Conklin et al., 1996) and cad2 (Howden et al., 1995; Cobbett et al., 1998) have reduced levels of ascorbate and glutathione, respectively, and vte1 plants lack tocopherols (Porfirova et al., 2002).

1.4.2 Tocopherols act as lipid antioxidants in plastids and accumulate in plastoglobules

Tocopherols are known to protect membrane lipids from oxidative damage by scavenging radicals and by quenching ROS (reviewed in Munne-Bosch, 2005; Schneider, 2005). Tocopherols were recently shown to prevent photoinactivation of the photosystem II (Havaux et al., 2005). They also protect seed storage lipids from oxidation (Sattler et al., 2004). Moreover, a strong increase in tocopherol synthesis accompanies chloroplast-to-chromoplast differentiation in pepper fruits (Lichtenthaler, 1969; Camara et al., 1982). During this process, chromoplasts acquire their colour by massively accumulating carotenoids. Tocopherol probably protects the pigments as well as lipids from envelope membranes against photo-oxidative degradation. In chloroplasts, absence of tocopherols is accompanied by an increased photoinhibition under conditions of photo-oxidative stress (Porfirova et al., 2002; Maeda et al., 2005). When reduction of tocopherols and glutathione (Kanwischer et al., 2005) or zeaxanthin (Havaux et al., 2005) contents were combined, stronger photoinhibition was observed, indicating that photoprotection is guaranteed by a network of antioxidants, including tocopherols.

Tocopherols have been detected in all chloroplast membranes and notably in plastoglobules (Lichtenthaler and Sprey, 1966; Lichtenthaler and Peveling, 1967; Munne-Bosch and Alegre, 2002). In these studies, a strong enrichment in prenylquinones was observed in plastoglobules compared to total chloroplast extracts. Moreover, comparison of various plastid types revealed a positive correlation between plastoglobule abundance and prenylquinone contents. Recently, tocopherol measurements in Arabidopsis chloroplast membrane fractions showed that around 50% of the tocopherol pool is localised in plastoglobules, representing a 25 fold enrichment with regard to thylakoids (Vidi et al., 2006). To date, however, the function of tocopherols in chloroplast plastoglobules is not known.
1.4.3 Morphological studies have implicated plastoglobules in plant stress response

Enlarged plastoglobules have been described in chloroplasts under conditions resulting in oxidative stress such as drought (Eymery and Rey, 1999; Rey et al., 2000), hypersalinity (Locy et al., 1996), nitrogen starvation (Bondada and Syvertsen, 2003), and growth in presence of heavy metals (e.g. Duret et al., 1986; Panou-Filotheou et al., 2001). In aloe plants exposed to strong sunlight and drought stress, accumulation in leaves of the red carotenoid rhodoxanthin paralleled transformation of chloroplasts into plastoglobule-rich chromoplasts (Merzlyak et al., 2005). Studies on spruce and aspen trees have also identified swelling of plastoglobules as part of the physiological response to elevated ozone concentrations (e.g. Oksanen et al., 2001; Ebel et al., 1990).

Ageing also seems to affect plastoglobule morphology. Older broad bean leaves had significantly larger plastoglobules than younger ones (Greenwood et al., 1963). The same observation was made in rhododendron leaves (Nilsen et al., 1988). Since levels of reactive oxygen species are known to raise with time in plastids (Munne-Bosch and Alegre, 2002), swelling of plastoglobules in older chloroplasts may represent a response to the increase of ROS concentration.

1.4.4 Several PAP/fibrillins are upregulated by oxidative stress

Upregulation of several PAP/fibrillins has been observed as a consequence of various treatments generating reactive oxygen species (see Table 1.1). These include drought, cold, salt and high light stresses. Based on the localisation of potato CDSP34 to thylakoid membranes (Pruvot et al., 1996a), Gillet and collaborators (1998) proposed a model in which the protein would associate with thylakoid lipids, hence stabilising the photosynthetic membranes and protecting them from oxidative damage.

Supporting a role of PAP/fibrillins in stress response, deregulation of these proteins was shown to affect plant growth and stress tolerance. Overexpression of pepper fibrillin in tobacco enhanced growth under high light intensities as well as drought tolerance (Rey et al., 2000). In contrast, antisense potato plants with reduced levels of C40.4 displayed stunted growth and reduced tuber yield (Monte et al., 1999). Interestingly, xanthophyll content was reduced in C40.4 antisense plants, indicating a possible link between plastoglobules and carotenoid synthesis. Recently, Yang et al. (2006) could show a correlation between maximal photochemical efficiency of photosystem II (Fv/Fm) and levels of an Arabidopsis fibrillin homologue in light stress conditions. Reduction of Fv/Fm values is regarded as photoinhibition of PSII (Bailey et al., 2002). These results therefore strengthen the view that PAP/fibrillins directly or indirectly protect the photosynthetic apparatus.

Taken together, these observations identify increases in plastoglobule size and number, as well as upregulation of PAP/fibrillins as responses to environmental stress. How plastoglobules mediate stress tolerance is however unknown.
and understanding of the molecular events underlying these physiological responses is lacking.

1.5 Aim of this work

Numerous studies on chloroplast ultrastructure (cited above) have shown that plastoglobules are involved in diverse physiological responses including senescence, chloroplast-to-chromoplast transition and adaptation to oxidative stress. With the exception of the well documented chromoplast differentiation in ripening fruits, the molecular basis of these processes are largely unknown. Due to the availability of its genome sequence \textit{(The Arabidopsis Genome Initiative, 2000)} and of large mutant populations \textit{(Bouche and Bouchez, 2001)}, \textit{Arabidopsis thaliana} has become the plant model organism of choice for molecular genetic studies. We therefore decided to use Arabidopsis leaves as a model system to study the function of plastoglobules.

As an entry point for the study of plastoglobules and their associated proteins, the first task of this thesis was to identify homologs of PG1 in Arabidopsis and to analyse their expression. To establish the model system and to further investigate the function of plastoglobules, a second aim was to identify a reliable Arabidopsis plastoglobule marker protein and to determine whether oxidative stress leads to changes in plastoglobule morphology in Arabidopsis, as observed for other species.

Analysis of low-density chloroplast membrane fractions recently suggested association of the tocopherol cyclase AtVTE1 with plastoglobules. The third goal of this work was to confirm localisation of AtVTE1 to plastoglobules.

Proteins associated with plastoglobules or related fibrils in pea chloroplasts and bell pepper chromoplasts have been documented. However, the mode of association of these proteins with plastid lipid bodies is unknown. An objective of this study was to address whether localisation of PAP/fibrillins to plastoglobule rely on targeting determinants in their amino acid sequences and to use this knowledge for targeting recombinant proteins to plastoglobules as a strategy for molecular farming.
Table 1.1: Induction of PAP/fibrillin expression by treatments generating oxidative stress.

<table>
<thead>
<tr>
<th>PAP/fibrillin</th>
<th>Species</th>
<th>Treatment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIBRILLIN (FIB)</td>
<td>Bell pepper</td>
<td>Drought</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wounding</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Arabidopsis</td>
<td>High light</td>
<td>2, 3</td>
</tr>
<tr>
<td>FIB promoter</td>
<td>Tobacco</td>
<td>Drought</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wounding</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methyl viologen</td>
<td>1</td>
</tr>
<tr>
<td>Tomato</td>
<td></td>
<td>Drought</td>
<td>4, 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cold</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High light</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High salinity</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wounding</td>
<td>1, 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methyl viologen</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydrogen peroxide</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biotic stress</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ageing</td>
<td>6</td>
</tr>
<tr>
<td>CDSP34</td>
<td>Potato</td>
<td>Drought</td>
<td>6-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cold</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High light</td>
<td>6, 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High salinity</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methyl viologen</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydrogen peroxide</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ irradiation</td>
<td>6</td>
</tr>
<tr>
<td>CDSP34-related</td>
<td>Tomato</td>
<td>Drought</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Tobacco</td>
<td>Drought</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Arabidopsis</td>
<td>Drought</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Craterostigma</td>
<td>Drought</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Barley</td>
<td>Drought</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Tobacco</td>
<td>High light</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Tomato</td>
<td>Biotic stress</td>
<td>6</td>
</tr>
</tbody>
</table>

\[b \] Erwinia chrysanthemi, strain 3739
Chapter 2

Results

2.1 Characterisation of Arabidopsis plastoglobulins

2.1.1 Homology searches identify 13 plastoglobulin genes in the Arabidopsis genome

Previous work in pea and bell pepper led to the identification of highly conserved proteins associated with plastoglobules (Kessler et al., 1999; Pozueta-Romero et al., 1997). Pea PG1 and bell pepper fibrillin both represent major plastoglobule proteins and belong to the so-called PAP/fibrillin family. We have used sequence homology search to identify Arabidopsis homologues of PG1. Thirteen genes, coding for proteins ranging from 24 to 45 kDa, were identified (Fig. 2.1). The same set of genes was also identified by Laizet et al. (2004). Expressed sequence tags (ESTs) for all the corresponding genes are present in the database (The Arabidopsis Information Resource, http://www.arabidopsis.org/), ruling out the presence of pseudogenes in the family. All 13 proteins contain a PAP/Fibrillin Pfam motif (PF04755) and possess a predicted chloroplast transit peptide. Because PAP and FIB have already been defined by the International Arabidopsis Community as standing for phosphatidic acid phosphatase and fibrillarin respectively, we propose to abbreviate Arabidopsis PAP/fibrillins as PGL (plastoglobulin) and to differentiate between them using the predicted molecular weight of their precursors.

Multiple sequence alignment of AtPGL amino acid sequences (Fig. 2.1A) identified two conserved regions. The first domain (residues 116-151 of AtPGL35) is characterised by abundant prolines (NPTPxP) and a conserved glycine-leucine/arginine-tryptophan stretch. The second domain, located at the C-termini, includes a RGD cell adhesion motif (D’Souza et al., 1991).

Phylogenetic analysis of Arabidopsis plastoglobulins (Fig. 2.1B) revealed three pairs of closely related AtPGLs (AtPGL35 and -33; AtPGL30 and -34; AtPGL25 and -29). The corresponding genes are located on highly similar
Figure 2.1: The Arabidopsis plastoglobulin family (see caption on page 13).
Figure 2.1: The Arabidopsis plastoglobulin family (continued). A, Multiple sequence alignment of Arabidopsis plastoglobulins (PGLs). Amino acid sequences from AtPGLs identified in the proteome of plastoglobules (see section 1.2.2 on page 3) were aligned using ClustalW. Transit peptides were predicted using the TargetP software and removed from the protein sequences. The alignment was formatted with the BOXSHADE 3.21 software. Conserved regions (a and b), as well as RGD motifs (star) are highlighted. Residues identical in at least 6 sequences are shaded. Identical residues are in black and conserved substitutions are in grey. Consensus amino acid residues are shown below the alignment. B, Phylogenetic analysis of Arabidopsis plastoglobulins. A phylogenetic tree was generated using dendrograms generated by ClustalW and the Phyloendron software. AGI gene codes are indicated in bracket. Duplicated gene groups are indicated with roman numbers.
chromosome fragments, indicating recent gene duplication events (http://www.tigr.org/tdb/e2k1/ath1/Arabidopsis_genome_duplication.shtml).

Several Arabidopsis PGLs (AtPGL45, -40, -35, -33, -30.4 and -25) have been identified in proteomic studies of thylakoids (Friso et al., 2004; Kleffmann et al., 2004). This is not surprising since plastoglobules are often found in close contact with thylakoid membranes in electron microscopy studies (Kessler et al., 1999; Austin et al., 2006). With the exception of AtPGL45, these proteins were also identified by Ytterberg et al. (2006) and our group (Vidi et al., 2006; see Table 4.2) in the proteome of plastoglobules.

2.1.2 Arabidopsis plastoglobulins have overlapping but distinct expression patterns

In a first attempt to characterise Arabidopsis plastoglobulins, we analysed publicly available microarray data using the Genevestigator toolbox (Zimmermann et al. 2004; https://www.genevestigator.ethz.ch/at/). Microarray probesets were found for all Arabidopsis PGLs except AtPGL33 and AtPGL29. Probesets for AtPGL35 and -25 were non-unique, i.e. represented two (or more) closely related genes. Since AtPGL35 and -33 share a high degree of similarity (84%), transcripts from both genes probably hybridise to the same probeset. The same is true for AtPGL25 and -29 which share 76% similarity.

All AtPGL genes for which probesets were available were expressed above background levels, at least in leaves and cotyledons (data not shown). The different plastoglobulins showed overlapping but distinct patterns of expression (Fig. 2.2). AtPGL25 transcript, for example, was over-represented in siliques, AtPGL27, -30 and -45 were mostly expressed in pedicels and, unlike most plastoglobulins, AtPGL31 was expressed in pollen grains. Interestingly, a single plastoglobulin (AtPGL24) showed highest signals in senescing leaves. Comparing microarray data from three replicate experiments revealed a 1.9-fold higher expression of AtPGL24 in senescing compared to adult rosette leaves. With some exceptions, plastoglobin transcripts were present predominantly in green tissues. Most Arabidopsis plastoglobulins were expressed in leaves and cotyledons. In contrast, lowest messenger levels were generally observed in pollen, seeds and roots. These observations suggest that members of the plastoglobulin family play a role in chloroplast function. However, the presence of transcripts of certain AtPGLs in non-photosynthetic tissues (e.g. AtPGL34 in roots) suggests that these proteins are involved in the metabolism of multiple plastid types. Moreover, high transcript levels of certain AtPGLs in petals (containing mostly leukoplasts) parallels the high levels of fibrillin detected in ripening fruit chromoplasts (Deruère et al., 1994), and suggests association with non-photosynthetic lipid structures.

Expression of AtPGL35, which is a close homologue to pea PG1, was further studied. To analyse the spatial distribution of AtPGL35 transcripts, Arabidopsis plants were grown on soil under 16h light conditions for 4 weeks. RNA extracted from different organs was then used for Northern blot analysis. AtPGL35 transcripts were detected using a [32P]-labelled probe synthesised from AtPGL35.
Figure 2.2: Spatial expression patterns of Arabidopsis plastoglobulins. A, Expression profile of AtPGLs in different organs and developmental stages. Public microarray data were analysed using the Genevestigator software. The blue-white heat map reflects signal intensity values. All gene-level profiles were normalised for colouring such that for each gene the highest signal intensity obtained a value of 100% (dark blue) and absence of signal obtained a value of 0% (white). Probesets for genes labelled with a star are non-unique. B, Northern analysis of the distribution of AtPGL35 and AtPGL33 transcripts in plant organs. RNA extracted from rosette leaves (leaves), stems, flowers, siliques, seeds or roots was used for acrylamide gel electrophoresis followed by Northern blotting. AtPGL35 and AtPGL33 mRNAs were detected using gene specific [\(^{32}\)P]-labelled probes. Ribosomal RNA (rRNA) indicates comparable loading amounts. C, Spot tests of probes specificity. Coding sequences from AtPGL35, -33, -40 and ACTIN were amplified by PCR and 10 or 0.1 ng were spotted on nylon membranes. Membranes were hybridised with probes specific to AtPGL35 (PGL35) or AtPGL33 (PGL33). D, Western blot analysis of the distribution of AtPGL35, -40 and -30.4 in plant organs. Total protein extracts (25 µg) of rosette leaves (leaves), roots, stems, flower buds (buds), flowers, siliques or seeds were analysed by Western blotting using antibodies specific to AtPGL35, AtPGL40 and AtPGL30.4. The amidoblack-stained membrane is shown. Position of the large subunit of RuBisCO (RLSU) is indicated.
coding sequence template. As shown in Fig. 2.2B, AtPGL35 transcripts were predominantly detected in rosette leaves and in flowers. Transcript abundance was lower in stems, siliques and seeds and was close to detection limit in roots. The results are in accordance with the microarray data. The latter suggest strongest expression of AtPGL35 in petals. Since whole flowers were used for Northern analysis (vs. isolated petals or other floral organs for microarray analysis), transcripts from petals were diluted with mRNAs from other floral organs in the Northern experiment. Expression of AtPGL33, which shares high sequence similarity with AtPLG35, was also monitored by Northern blot (Fig. 2.2B). The distribution of AtPGL33 and -35 transcripts was very similar, with highest levels in leaves and flowers. Using a dot blot experiment, cross-hybridisation of the probes was estimated to 1% (Fig. 2.2C).

To determine if PGL protein and RNA levels correlate, plant organs were used for Western blot analysis. Total proteins were isolated from rosette leaves, roots, stems, flower buds, flowers, siliques or seeds as described (Rensink et al., 1998). Proteins were resolved by SDS-PAGE, blotted to nitrocellulose membrane and AtPGL35, -40 or -30.4 were detected using specific antibodies (Fig. 2.2D). The α-AtPGL35 antibody decorated a single protein in the different extract with an apparent mass of 32 kDa. The predicted molecular weight of mature AtPGL35 (residues 56-318) is 29 kDa. A shift between predicted and apparent mass was also observed for AtPGL40 (37/43 kDa) and AtPGL30.4 (23/32 kDa) and similar differences were reported for homologous proteins (Ting et al., 1998). The slightly acidic character of AtPGL35 and -40 (theoretical pI 4.6 and 4.3) could account for this difference. AtPGL30.4, however, showed the largest discrepancy between predicted and apparent mass and has a predicted isoelectric point of 5.9. Post-translational modifications of the proteins may also account for the observed behaviour on SDS-PAGE.

AtPGL35 was mostly detected in green tissues as well as in flowers or flower buds. Weak signals were detected in roots and seeds. This result is in good agreement with microarray and Northern data. AtPGL40 and -30.4 showed a similar distribution to that of AtPGL35. AtPGL30.4, however, was less abundant in flowers and flower buds. In seeds, strong signals were given by anti-AtPGL30.4 and -40 antibodies. These corresponded in size to abundant 12S cruciferin proteins (Hou et al., 2005) and may therefore have resulted from unspecific cross-reactions. Alternatively, these could reflect presence of AtPGL degradation products in seeds. To exclude the possibility that AtPGLs were degraded during preparation of the protein extract, seed protein were extracted directly in SDS sample buffer as described (Hennig et al., 2002). Similar results were obtained (data not shown) indicating that protein degradation had not occurred during sample preparation.

2.1.3 Several Arabidopsis plastoglobulins are regulated by light

The observation that most AtPGLs are predominantly expressed in green tissues (Fig. 2.2A) suggests that plastoglobulins may be regulated by light. To verify
this hypothesis, AtPGL transcript levels in etiolated seedlings and in seedlings exposed to white light for 4 hours were compared using the Genevestigator Digital Northern toolbox (Zimmermann et al., 2004). Data for AtPGL genes for which signal values were significantly higher than background are shown in Fig. 2.3A. At least AtPGL26, -30.4 and -45 were induced by the treatment. Transcripts from AtPGL45 accumulated more than six fold after light treatment. This is comparable with the upregulation of the chlorophyll a/b binding protein (CAB, AT1G29910). AtPGL30.4 was two-fold upregulated already 45 minutes after illumination.

To verify whether light treatment also triggers accumulation of PGL proteins, Arabidopsis plants were grown for 8 days in the dark or in a 16h/8h light/dark regime. As expected, protein levels of the CAB and of the large subunit of RuBisCO (RLSU) were higher in de-etiolated seedlings (Fig. 2.3B). AtPGL35 and AtPGL30.4 were more abundant in light-grown compared to etiolated seedlings, indicating that not only PGL transcripts but also protein levels increased after exposure to light. In contrast, light treatment had little or no impact on the expression of other AtPGLs, notably AtPGL34 and AtPGL40, suggesting involvement of the proteins in general plastid metabolism. The observation that these proteins are also expressed in roots (Fig. 2.2), supports this idea.

At least two models could account for the observed accumulation of several AtPGLs in light conditions. In a first model, photoreceptors sensing the light would act positively on AtPGL transcription. The control of a large set of genes related with chloroplast metabolism is mediated by phytochomes, photoreceptors absorbing red and far red (FR) light (Schafer and Bowle, 2002). In an alternative model, oxidative stress in chloroplasts caused by illumination may indirectly trigger accumulation of AtPGLs. Indeed, several studies have shown accumulation of plastoglobulins in environmental conditions resulting in oxidative stress (see Table 1.1). To distinguish between these two models, accumulation of AtPGL transcripts after exposure to white, red or far red light was compared using a digital Northern (Fig. 2.3C). All plastoglobulin genes which were strongly induced by white light responded to FR light. Furthermore, AtPGL26 and -30.4 were also upregulated by red light. Longer wave length light have lower energy content and FR light is not or little absorbed by photosynthetical pigments. FR light is therefore expected to cause only little photooxydative stress in plastids. These preliminary results therefore strongly suggest a direct effect of light on the transcription of several AtPGL genes.

2.1.4 AtPGL35 as an Arabidopsis plastoglobule marker protein

Studying plastoglobules required a reliable marker protein for this chloroplast compartment. We chose AtPGL35, which shares a high degree of similarity with the pea plastoglobulin PG1, as a candidate marker protein for Arabidopsis plastoglobules. Although PG1 and the closely related pepper fibrillin were shown to associate with plastoglobules (Kessler et al., 1999; Pozueta-Romero
Figure 2.3: Induction of Arabidopsis PGLs by light. **A**, Digital northern showing relative transcript abundance in etiolated seedlings (grey bars) and after exposure to white light during 4h (white bars). Values of signal intensities were retrieved from public microarray datasets using the Genevestigator Digital Northern toolbox. Means and standard errors from 3 replicate experiments are shown. **B**, Digital northern showing the effect of 4h red (R) and far red (FR) light treatment on AtPGL transcript abundance. Means from 3 replicate experiments were calculated and relative values are shown (for each gene, signal value for the dark treatment was set to 1). **C**, Western blot analysis of etiolated and light grown seedlings. Plants were grown for 8 days in the dark or in a 16h/8h light/dark regime (light) on half MS medium. Total proteins (20 µg) were used for SDS-PAGE, Western transfer and immunoblot analysis. AtPGL40, AtPGL35, AtPGL30.4 and CAB were detected using specific antibodies.
et al., 1997), other laboratories have reported localisation of potato C40.4 and CDSP34 PAP/fibrillins to chloroplast stroma or thylakoid membranes (Monte et al., 1999; Rey et al., 2000). In order to determine the subcellular localisation of AtPGL35, we used immunolocalisation approaches. Affinity purified antibodies against AtPGL35 recognised a single band in a total protein extract of Arabidopsis leaves (Fig. 2.4A), indicating that artefacts caused by unspecific hybridisation were unlikely.

Immunogold-electron microscopy was first used to localise AtPGL35 in ultrathin sections prepared from Arabidopsis leaves (Fig. 2.4B). When sections were incubated with anti-AtPGL35 antibodies, labelling was restricted to chloroplasts. Gold particles were detected at the periphery of negatively stained plastoglobules but were absent from thylakoid or envelope membranes. No labelling was found in control experiments where anti-AtPGL35 antibody were omitted (data not shown). To obtain independent evidences for the localisation of AtPGL35, immunofluorescence experiments were performed with protoplasts. Fixed protoplasts were incubated with anti-AtPGL35 antibodies followed by FITC-coupled secondary antibodies. Fluorescein was subsequently detected by confocal laser scanning microscopy. FITC signals overlapped with chloroplasts in merged fluorescent and bright-field images, demonstrating localisation of AtPGL35 in chloroplasts (Fig. 2.4C). Furthermore, a dot-like fluorescent pattern was observed, consistent with labelling of plastoglobules. Control experiments using antibodies against AtTOC159 (At3g46740) and CAB (chlorophyll a/b binding protein) resulted in rim-like fluorescence at the envelope or fluorescence at the thylakoids, respectively. When protoplasts were incubated with the fluorescein-labelled secondary antibody in absence of primary antibodies, only low levels of background fluorescence were detected.

Taken together, the data indicate that, at least in leaves, AtPGL35 localises to plastoglobules. The protein is therefore an adequate plastoglobule marker in leaf preparations.

2.1.5 Plastoglobulins may have diverse molecular functions

Overexpressing different AtPGL-GFP fusion constructs lead to distinct fluorescent patterns

To confirm localisation of AtPGL35 to plastoglobules, we engineered constructs encoding C-terminal green fluorescent protein (GFP) fusions under the control of the CaMV 35S promoter. The constructs were used to transform Arabidopsis protoplasts and GFP fluorescence was monitored by confocal scanning laser microscopy (Fig. 2.5). AtPGL35 is predicted to possess a transit peptide (amino acids 1 to 54) responsible for chloroplast targeting (TargetP, http://www.cbs.dtu.dk/services/TargetP/). In agreement with the prediction, a GFP fusion to residues 1-74 from AtPGL35 (AtPGL35_1-74) gave a fluorescence pattern which widely overlapped with chlorophyll autofluorescence, indicating targeting to chloroplasts. Moreover, shifts between peak GFP and
Figure 2.4: Sub-organelar localisation of AtPGL35. A, Detection of AtPGL35 in total protein extract prepared from Arabidopsis leaves. 25 µg proteins were resolved by SDS-PAGE, transferred to nitrocellulose membrane and stained with amidoblack (lane 1). AtPGL35 was detected by immunoblotting using a specific affinity purified antibody (lane 2). B, Gold immunolocalisation of AtPGL35 in mature leaves. Sections of Arabidopsis leaves were incubated with anti-PGL35 antibodies followed by secondary gold-conjugated antibodies and observed using transmission electron microscopy (i to vi). Panels ii and v are two fold enlargements from panels i and iv, respectively. Plastoglobules are highlighted with arrows; T, thylakoid membranes. Scale bars: 100 nm. C, Fluorescent immunolocalisation of AtPGL35 in protoplasts. Fixed protoplasts were probed with anti-AtPGL35, anti-AtTOC159 or anti-CAB antibodies, as indicated, or directly incubated with the fluorescein-labelled secondary antibody (control). The detection of the chromophore fluorescence (FITC) by confocal microscopy, bright-field microscopic images (visible) and merges from bright-field and fluorescent images (merge) are shown. Bar length: 5 µm.
chlorophyll florescence suggested labelling of chloroplast stroma. Expression of a GFP fusion to the transit peptide of RuBisCO small subunit (pSSU-GFP) in control experiments gave very similar GFP patterns. GFP and FDH-GFP (presequence of potato formate dehydrogenase-GFP) were used as cytosolic and mitochondrial markers, respectively. As expected, GFP signals and chlorophyll autofluorescence were clearly distinct in protoplasts transformed with these constructs.

To determine the targeting destination of full length AtPGL35, protoplasts were transformed with the full coding sequence of AtPGL35 fused to GFP. Unlike the diffuse signals observed with the AtPGL35_{1−74}-GFP construct, globular fluorescent patterns were observed in chloroplasts. A dot-like pattern is consistent with plastoglobule localisation. Occasionally, a small fraction of the GFP-fusion protein was detected in the stroma or in the cytosol, suggesting incomplete chloroplastic import or assembly into plastoglobules. When compared with immunofluorescent results (Fig. 2.4), the fluorescent signals in protoplasts overexpressing AtPGL35-GFP appeared larger and less numerous. At least three hypothesis could account for the formation of the large globular fluorescent structures in chloroplasts: i) Accumulation of AtPGL35-GFP may result in the formation of protein aggregates, ii) the GFP moiety of the fusion protein may lead to the formation of the structures, or iii) overexpression of AtPGL35 may cause enlargement of plastoglobules or formation of large plastoglobule clusters. Protein aggregation has been observed with other GFP fusion constructs expressed in protoplasts (data not shown). Consistently, irregular structures were observed, mostly in the cytosol. The regular, spherical structures in protoplasts expressing AtPGL35-GFP are therefore unlikely to represent protein aggregates. To distinguish between the two other hypothesis, other plastoglobulins were expressed as GFP fusion proteins in protoplasts. AtPGL34-GFP (Fig. 2.5), as well as AtPGL30.4-GFP (data not shown), accumulated in globular fluorescent structures inside chloroplasts. The fluorescent structures, apparently smaller and more numerous than those obtained with AtPGL35-GFP, were reminiscent of the immunofluorescent pattern obtained with anti-AtPGL35 antibodies. We therefore retained the hypothesis that overexpression of AtPGL35 may alter plastoglobule morphology.

To control the integrity of each GFP-fusion protein, transformed protoplasts were analysed by Western blotting using an anti-GFP serum. All GFP-fusion proteins had the expected mass. Detection of a double band in protoplasts expressing AtPGL35-GFP probably reflects presence of both precursor and mature forms of the protein and is consistent with occasional detection of cytosolic fluorescence.

AtPGL35 and AtPGL34 do not colocalise when expressed as fluorescent protein fusions

When different plastoglobulins (AtPGL35 and AtPG34) were expressed as GFP fusion proteins in Arabidopsis protoplasts, slightly different fluorescent patterns were observed, suggesting that the AtPGLs localised to different types of plast-
Figure 2.5: Transient expression of GFP-fusion proteins in Arabidopsis protoplasts. Protoplasts were transformed with plasmids encoding GFP fused to the N-terminal part of AtPGL35 (PGL35\textsubscript{1-74}-GFP) or to full length AtPGL35 or AtPGL34 coding sequences (PGL35- or PGL34-GFP). GFP alone (GFP), mitochondrial potato formate dehydrogenase presequence (FDH-GFP) and stromal pea RuBisCO small subunit transit peptide (pSSU-GFP) were used as controls. Fusion proteins were visualised by confocal laser scanning microscopy 48h after transformation. Chlorophyll, GFP and merge indicate chlorophyll autofluorescence, GFP fluorescence, and the superposition of both fluorescent signals, respectively. Bar length: 5 µm. Panels on the right hand side show the detection of GFP fusion proteins in transformed protoplasts by immunoblotting, using anti-GFP antibodies.
toglobule or that overexpression of the AtPGLs have different effects on plastoglobule morphology. To address the possibility that AtPGL34 and AtPGL35 are targeted to different plastoglobule types, the two proteins were coexpressed as YFP and CFP fusions in protoplasts (Fig. 2.6). YFP and CFP are variants of GFP with excitation and emission spectra shifted toward yellow or blue, respectively, allowing simultaneous detection by confocal laser scanning microscopy. Fluorescent patterns obtained in cotransformed cells were similar to those observed in single transformation experiments. Structures labelled with CFP (AtPGL35) were in most cases also labelled with YFP (AtPGL34) but not reciprocally. This observation was confirmed by analysing pixel intensities in sections of the fluorescent images (Fig. 2.6B). In control experiments, protoplasts were cotransformed with constructs coding for AtPGL34-CFP and YFP. Fluorescent signals were observed in chloroplasts and in the cytosol and no cross-detection of YFP and CFP was detected. In contrast, a nearly exact overlap of the YFP and CFP channels was obtained in protoplasts cotransformed with AtPGL34-YFP and AtPGL34-CFP.

Fluorescent fusion proteins were detected by Western blotting in transformed protoplasts (Fig. 2.6C). Two bands corresponding in size to AtPGL35-CFP and AtPGL34-YFP were detected in the protein extract prepared from cotransformed protoplasts. Similar intensities of the two bands indicated similar expression levels of both proteins.

2.1.6 Using reverse genetics for the study of plastoglobulins

T-DNA insertional disruption of AtPGL35

To investigate the function of AtPGL35 in vivo, we searched the SALK database (Alonso et al., 2003) for Arabidopsis mutant lines with T-DNA insertion in AtPGL35 and identified 4 lines (024528, 026661, 040709, 130350). Insertion sites of the T-DNA left borders were determined by sequencing PCR products amplified with T-DNA and AtPGL35-specific primers. In lines 024528 and 026661, the insertion site was 7 bp upstream from the start codon. These lines were therefore not further analysed. In line 040709, the T-DNA was inserted in the first exon, 405 bp downstream from the start codon. Insertion in line 130350 was in the second intron, 52 bp downstream of the exon 2 / intron 2 border (Fig. 2.7C). For both 040709 and 130350 lines, plants homozygous for the T-DNA insertion were identified by PCR (Fig. 2.7A and B). These plants will further be designated as pgl35-4 and pgl35-5, respectively. More detailed analysis of the T-DNA insertion in pgl35-4 showed that T-DNA left boarders were present both at the 3’ and 5’ ends of the insertion, suggesting insertion of two T-DNA molecules at this loci. This hypothesis was confirmed by Southern analysis of pgl35-4 genomic DNA (Fig. 2.8). After EcoRI restriction, two fragments migrating slightly below the 5 and 8 kb marker were detected. Assuming insertion of two T-DNA molecules as inverted repeats, sequence analysis predicts the formation of three fragments (4.66, 7.50 and 4.70 kb) detected by a left-boarder-specific

23
Figure 2.6: Colocalisation analysis of AtPGL35 and AtPGL34 in protoplasts.
A, Protoplasts were cotransformed with AtPGL34-YFP and AtPGL35-CFP constructs. YFP and AtPGL34-CFP or AtPGL34-YFP and AtPGL34-CFP constructs were used in control experiments. CFP fluorescence (CFP) and YFP fluorescence (YFP) were monitored sequentially using distinct excitation wavelengths and detection windows. Chlorophyll: chlorophyll autofluorescence, merge: superposition of YFP and CFP signals (green and red pseudocolours, respectively). Bar length: 5 µm. B, Pixel intensities (black and grey traces) were measured across two narrow sections in confocal pictures from a protoplast cotransformed with AtPGL34-YFP and AtPGL35-CFP. Signals corresponding to AtPGL34-YFP, to AtPGL35-CFP and to chlorophyll autofluorescence are shown. C, Western blot analysis of protoplasts transformed with AtPGL35-CFP (PGL35-CFP), AtPGL34-YFP (PGL34-YFP) or with both constructs. The blot was probed with anti-GFP antibodies.
probe including an EcoRI site. For XbaI restriction, 2.37 and 5.34 kb fragments, including genomic sequence upstream and downstream from the insertion, are expected. Although only a smear, possibly due to incomplete digestion, was observed in the range of 5 kb with pgl35-4 DNA after XbaI restriction, a band slightly below the 2.5 kb marker was detected, in agreement with the sequence analysis. No signal was detected with DNA from wild type plants, ruling out unspecific hybridisation. The data suggest presence of a single insertion locus in pgl35-4. 100% of the plants were resistant to phosphinothricin, indicating that seeds homozygous for the T-DNA insertion were received from the SALK collection.

Although the 5' end of the T-DNA insertion in pgl35-5 could not be detected by PCR, a genomic fragment upstream from the T-DNA left boarder insertion site was amplified in pgl35-5 homozygous plants (Fig. 2.7B, lane 5), indicating that no major chromosomal deletion took place at the AtPGL35 locus in this line. In order to determine the number of T-DNA insertion loci in pgl35-5 line, seeds from the parental plants (pgl35-5.1 to -5.4) were germinated on phosphinothricin-containing media. The offspring of pgl35-5.1 and pgl35-5.3 plants showed a segregation (sensitive:resistant) close to 1:3 on selective media (Binomial test for plant 1 (24:90), p=0.19; for plant 2 (27:103), p=0.156), suggesting the presence of a single insertion locus in this line.

Absence of AtPGL35 does not lead to a visible or microscopic phenotype

To verify if pgl35-4 and pgl35-5 are real knock-out mutant lines for AtPGL35, mature leaves from homozygous mutant plants, as well as wild type leaves for control, were analysed by Western blotting (Fig. 2.9A). AtPGL35 was detected in wild type but neither in homozygous pgl35-4 nor in homozygous pgl35-5, indicating that both lines have null alleles of AtPGL35. As shown in Fig. 2.9B and C, homozygous knock-out plants grown on soil did not exhibit a visible phenotype. Several Arabidopsis mutants with altered chloroplast morphology exhibit wild type phenotypes in standard growth condition (e.g. arc chloroplast replication mutants; Pyke, 1999). Therefore, to determine whether the morphology of plastoglobules or the ultrastructure of chloroplasts is affected in AtPGL35 knock-out mutants, ultrathin sections were prepared from wild type and pgl35-4 mature leaves. Membranes and plastoglobules were stained with osmium and sections were analysed by transmission electron microscopy (TEM). No difference was observed in chloroplasts from pgl35-4 plants compared to wild type (Fig. 2.9D). Furthermore, a preliminary quantification did not reveal differences in plastoglobule sizes and numbers in the mutant (data not shown).

Down-regulation of AtPGL35 homologues using RNA-mediated gene silencing

The absence of macro- and microscopic phenotype in AtPGL35 T-DNA insertional mutants implies that the protein is not essential for chloroplast function.
Figure 2.7: T-DNA insertion mutants in *AtPGL35*. **A**, PCR analysis of *pgl35-4* (SALK line 040709). DNA was extracted from wild type (wt) or homozygous *pgl35-4* plants. PCR reactions were designed to detect the wild type allele of *AtPGL35* (lanes 1 and 4) or the T-DNA 5' and 3' flanking sequences (FS, lanes 2 and 5 or 3 and 6, respectively). Primers used: PGL35-4_RP and PGL35-4_LP (1, 4); PGL35-4_RP and LB_pROK2 (2, 5); LB_pROK2 and PGL35-4_LP (3, 6). See methods part for primer sequences. **B**, PCR analysis of *pgl35-5* (SALK line 130350). DNA from wild type (wt) or homozygous *pgl35-5* plants was used for PCR analysis. Reactions were designed to detect the T-DNA 3' flanking sequence (lanes 1 and 6) or the presence of a wild type allele of *AtPGL35* (lanes 2 and 7). The T-DNA 5' flanking sequence (T-DNA 5' FS) could be amplified neither with primers specific for the left (line 3) nor the right (line 4) T-DNA borderer. In reaction 5, a genomic fragment in the exon 1 (E1) of *AtPGL35*, 189 bp upstream from the T-DNA insertion site, was amplified. Primers used: PGL35-5_RP and LB_pROK2 (1, 6); PGL35f and PGL35-5_RP (2, 7); PGL35f and LB_pROK2 (3); PGL35f and RB_pROK2 (4); PGL35f and PGL35r_216 (5). **C**, Mapping of T-DNA insertions in *pgl35-4* and *pgl35-5*. PCR product amplified using primers specific for *AtPGL35* and for the left borderer (LB) of the T-DNA insertion were used for DNA sequencing (*pgl35-4*: **A**, lane 5 and 6; *pgl35-5*: **B**, lane 1). The exon/intron structure of *AtPGL35* is supported by cDNA sequences (BT000148, BX828265, AY083530 and AY120766). Exons (E1, E2 and E3) and introns are indicated with grey boxes and lines, respectively. Start and stop codons are indicated. Positions of the primers used for PCR analysis are shown.
Figure 2.8: Southern blot analysis of line *pgl35-4*. **A**, DNA from wild type (wt) or *pgl35-4* plants was digested with *Xba*I (X) or *Eco*RI (E). Fragments containing the left border of the T-DNA insertion were detected with a specific probe as indicated in **B**. **B**, Model of the insertion consistent with sequencing and Southern blot results. Two T-DNA molecules (black) are inserted in *AtPGL35* (red) with their left boarders (LB) facing toward *AtPGL35* 3’ and 5’ ends. *Eco*RI and *Xba*I restriction fragments detected by a LB-specific probe (blue) are indicated.
Figure 2.9: Absence of visible phenotype in plants lacking AtPGL35. A, Western analysis of lines *pgl35-4* and *pgl35-5*. Total proteins from wild type (wt), *pgl35-4* or *pgl35-5* leaves were resolved by SDS-PAGE, transferred to nitrocellulose membrane and stained with amidoblack. Similar intensities of the RuBisCO large sub-unit (RLSU) indicated equal loading amounts. AtPGL35 was detected by immunoblotting using a specific affinity purified antibody. B, Photographs from wild type and homozygous *pgl35-4* plants grown for 7 weeks on soil under long-day conditions. C, Details from inflorescences. D, Chloroplast ultrastructure in wild type and *pgl35-4* leaves. Plants were grown on soil in short-days for one month and leaves were fixed in presence of osmium. Ultrathin sections were observed by transmission electron microscopy. s, starch granules; p, plastoglobules; g, thylakoid grana. Scale bars: 500 nm.
Since AtPGL35 is a member of a multiple gene family, functional redundancy among plastoglobulins may account for the lack of apparent phenotype. Indeed, two close homologues of AtPGL35 (AtPGL33 and AtPGL40) are present in the Arabidopsis genome (see Fig. 2.1). Presence of numerous ESTs for AtPGL33 and -40 in the databases indicates that both genes are expressed. Furthermore, Northern and Western analysis from different organs showed that expression patterns from both homologues overlap with AtPGL35 (Fig. 2.2B and D). AtPGL40 and/or AtPGL33 may therefore take over the function of AtPGL35 in the knock-out mutants. To investigate that possibility, and since T-DNA insertional mutants are not available yet for AtPGL33 and AtPGL40, a gene silencing approach was chosen. When expressed in plants, constructs generating intron-containing self-complementary 'hairpin' RNA (ihpRNA) efficiently trigger gene silencing (Smith et al., 2000) In order to produce ihpRNAs targeted against AtPGL33 and -40, N-terminal fragments of the coding sequences (bp 2 to 350 or 2 to 450 of AtPGL33 and AtPGL40, respectively) were cloned as inverted repeats in the pHANNIBAL vector (Wesley et al., 2001) and sub-cloned in the pCHF5 binary vector (prof. C. Frankhauser), placing AtPGL33 and -40 inverted repeats under the control of the cauliflower mosaic virus (CaMV) 35S promoter and the RuBiSCO small subunit (RSSU) terminator. Homozygous pgl35-4 Arabidopsis plants were transformed with these constructs using the flower dip technique. Transformants were selected on phosphinotricin-containing media and are referred to as pgl35-4/ihpgl33 or -40. Silencing efficiency in leaves was assessed by Western or RT-PCR analysis. As shown in Fig. 2.10B, abundance of AtPGL40 was strongly reduced in all transgenic lines tested. In eight pgl35-4/ihpgl33 lines (out of 11 tested), no RT-PCR signal was obtained with AtPGL33-specific primers (Fig. 2.10C), indicating silencing of AtPGL33.

Although pgl35-4/ihpgl33 (and -40) plants lacked or had strongly reduced levels of AtPGL35 and AtPGL33 (or -40), neither mutant seedlings grown on half MS media (data not shown) nor adult mutants grown on soil (Fig. 2.10D) exhibited an altered phenotype in standard growth conditions.

To generate triple mutants, pgl35-4/ihpgl33 and -40 T1 lines containing a single insertion locus were selected by analysing the segregation of their progeny on phosphinotricin (ppt). T2 plants from lines pgl35-4/ihpgl40 5, 6, 9 and 13 as well as pgl35-4/ihpgl33 5, 6, 14 and 15, which segregated 1:3 on selection media and showed reduced AtPGL33 messenger or AtPGL40 protein levels, were germinated on phosphinotricin-containing media and used for reciprocal genetic crosses. In the first generation, plants should be homozygous with respect to the T-DNA insertion in AtPGL35. Upon self pollination and since parental plants were either homozygous or heterozygous for ihpgl33 or -40, 4/9 lines are expected to be heterozygous for both ihpgl33 or -40 insertions, 4/9 for a single insertion and 1/9 should contain neither ihpPgl33 nor -40 insertion. Presently, only T1 lines resulting from the crosses are available. Segregation analysis from the T2 will allow genotyping: T1 lines carrying both ihpgl33 and -40 insertions should segregate 3:1 (pptR:pptS). In contrast, T1 lines having only one or no insertion should segregate 1:1 or 0:1, respectively.
Figure 2.10: RNAi-mediated silencing of *AtPGL33* and *AtPGL40* in the pgI35-4 knock-out background. **A**, intron-containing self-complementary 'hairpin' RNA (ihpRNA) constructs for *AtPGL33 AtPGL40* gene silencing. N-terminal fragments of *AtPGL33* (33) or *AtPGL40* (40) coding sequences were cloned as inverted repeats in the pHANNIBAL vector. A cassette consisting of the repeats interrupted by an intron (i) from the pyruvate dehydrogenase kinase was inserted in the pCHF5 binary vector, placing the ihp sequence under the control of two repeats of the cauliflower mosaic virus 35S promoter (35S) and the terminator of the RSSU (ter). Transformation with the pCHF5 vector conferred resistance to kanamycin. **B**, Western analysis of pgI35-4/ihp pgI40 lines. Wild type (wt) plants were grown on half MS media and pgI35-4/ihp pgI40 (T2) plants (lines 5, 6, 9 and 13) were grown on kanamycin-containing media for 7 weeks. For each lines, five seedlings were used for protein extraction and Western analysis. *AtPGL40* was detected using specific antibodies. The RuBisCO large sub-unit (RLSU) on the amidoblock stain of the membrane indicates equal loading amounts. **C**, Analysis of pgI35-4/ihp pgI33 lines (T2) by RT-PCR. Ten seedlings grown on selective media from each lines or wild type seedlings were used to prepare cDNAs. *AtPGL33* (AtPGL33) or *ACTIN* (actin) cDNAs were amplified by PCR using specific primers. gDNA, wild type genomic DNA. **D**, Photographs from adult wild type or pgI35-4/ihp pgI33 and pgI35-4/ihp pgI40 T2 plants. Line numbers are indicated.
2.2 Plastoglobules in oxidative stress response

2.2.1 High light stress leads to enlargement of plastoglobules in Arabidopsis leaves

Plants exposed to stressful environmental conditions need to respond to oxidative stress by scavenging reactive oxygen species (ROSs), notably in order to avoid oxidation of membrane lipids. Enlarged plastoglobules have been described in chloroplasts under abiotic stress conditions such as drought or hypersalinity (Eymery and Rey, 1999; Locy et al., 1996), implicating them in stress tolerance.

To our knowledge, effects of environmental stresses on plastoglobule morphology have not been studied in plants from the Brassicaceae family. In order to determine whether plastoglobules are also directly or indirectly involved in oxidative stress response in Arabidopsis, adult plants were exposed during 48 hours to a strong white light with a photon flux density of 1200 \(\mu \text{mol photons m}^{-2} \text{s}^{-1} \). Strong illumination is known to generate photooxidative stress in chloroplasts (Havaux et al., 2005). After exposure to strong light, leaves had a strong purple colour, indicating accumulation of protective anthocyanins (Fig. 2.11D). To compare chloroplast ultrastructure in plants exposed to high light or let in standard conditions, ultrathin sections were prepared from rosette leaves and were observed by transmission electron microscopy (Fig. 2.11A and B). Plastoglobules in plastids from treated plants appeared larger and, interestingly, clusters of plastoglobules were frequently observed in treated samples. To obtain quantitative data, chloroplasts from the uppermost layer of adaxial mesophyll cells were randomly chosen at low TEM magnification. Plastoglobule sizes and abundance, as well as the number of plastoglobule clusters were then determined using the ImageJ freeware (http://rsb.info.nih.gov/ij/). As shown in Fig. 2.11C, plastoglobules were significantly larger in chloroplasts from plants exposed to high illumination. Plastoglobules were also slightly more abundant in stressed chloroplasts (1.46 vs. 1.03 plastoglobules \(\mu \text{m}^{-2} \) of chloroplast section). Clusters were defined as the presence of at least three plastoglobules separated by distances smaller than their radius. In ten plastids from treated plants, 6 plastoglobule clusters were observed. Clusters were not observed in plastids from control plants. Similar results were obtained after 8h of strong light treatment in an independent experiment (data not shown).

2.2.2 AtPGL transcripts accumulate under oxidative stress conditions

Upregulation of several PGLs has been correlated with various treatments generating reactive oxygen species (Gillet et al., 1998; Monte et al., 1999; Chen et al., 1998; Pruvot et al., 1996b; see Table 1.1). To assess whether the Arabidopsis plastoglobule marker protein AtPGL35 is upregulated in stress conditions, we first analysed public microarray datasets using the Genevestigator Digital Northern toolbox (Fig. 2.12). Both osmotic and salt stresses lead to accumu-
Figure 2.11: Effect of high light treatment on chloroplast ultrastructure. Four week-old Arabidopsis plants were exposed to continuous strong white light (1200 µmol photons m$^{-2}$ s$^{-1}$, high light) for 48 hours. Control plants were let in short day conditions (8h light / 16h dark photoperiod). A, Young leaves from control plants (i, iii) or from plants exposed to strong illumination (ii, iv) were fixed and used to prepare ultrathin sections. Chloroplasts from the uppermost cell layer of the palisade parenchyma (adaxial side of leaves) were randomly chosen at low TEM magnification and pictures were subsequently taken at 3400 or 4600x magnification. Bar length: 500 nm. B, Detail showing plastoglobule clusters in a chloroplast exposed to strong illumination. p, plastoglobules; g, thylakoid granum; l, stroma lamellae; s, starch granule. Bar length: 500 nm. C, Surfaces of plastoglobules were measured in ten sections from control or stressed (high light) plants. Mean ± SE are shown; t-test: df = 279, t = -11.3, p < 0.001. D, Photographs from treated and control plants.
lation of AtPGL35 transcripts (1.9 and 1.7 fold-increases after 24h treatment, respectively). Data from time course experiments showed that AtPGL35 messengers accumulated already after 3 hours of osmotic stress treatment. Upregulation of AtPGL35 in salt stress conditions was somewhat slower. Exogenous application of abscissic acid (ABA) also induced expression of AtPGL35 after 3 hours (Fig. 2.12C).

2.2.3 Drought and photooxidative stress lead to accumulation of AtPGL35

Osmotic and salt stresses both lead to accumulation of reactive oxygen species in chloroplasts (Smirnoff, 1993; Hernandez et al., 2001; Chinmusany et al., 2005). Induction of AtPGL35 may therefore represent a general response to oxidative stress in chloroplasts rather than a specific response to salt or osmotic stress. If this is the case, other conditions leading to the formation of ROSs in chloroplasts should trigger the upregulation of AtPGL35. As shown in Fig. 2.13, drought and high light stresses caused accumulation of AtPGL35. Plants subjected to dehydration followed by 24h re-watering still contained higher levels of AtPGL35 than control pants, indicating stability of the protein. High light stress was accompanied by anthocyanin accumulation and most efficiently induced AtPGL35 (more than 10-fold).

2.2.4 AtPGL35 accumulates during ageing

Ageing is known to be a condition under which oxidative stress increases in chloroplasts (Munne-Bosch and Alegre, 2002). It is accompanied by raised levels of ROS and lipid radicals as well as of antioxidants such as tocopherols (Hollander-Czytko et al., 2005). If oxidative stress leads to the upregulation of AtPGL35 (as suggested by results in the previous section), the protein is expected to accumulate in older plants. To investigate that possibility, leaf material from 1 to 5 week-old plants was analysed by Northern and Western blot. (Fig. 2.14). Transcript levels were high in young seedlings (1 week-old), possibly reflecting light induction of the protein during germination (see Fig. 2.3). At week 4, when plants started bolting and showed accumulation of anthocyanins, AtPGL35 mRNAs were again more abundant. Upregulation of AtPGL35 transcription resulted in accumulation of the protein. Transcript abundance transiently decreased after week 1 but protein levels remained stable up to week 3, indicating stability of the protein.

During senescence, thylakoid membranes are degraded, plastoglobules enlarge and accumulate (Ghosh et al., 2001). Involvement of AtPGL35 in this process was assessed using an artificial system for senescence induction, i.e. dark incubation of excised Arabidopsis leaves (Pruzinska et al., 2003). After this treatment, levels of the RuBisCO large subunit and of CAB decreased (Fig. 2.14B). AtPGL35 was still detectable in senescing leaves but less abundant than in younger leaves, suggesting that the protein is not directly involved in plastoglobule formation during senescence. Other Arabidopsis PGLs may
Figure 2.12: Digital Northern showing accumulation of AtPGL35 transcripts under certain abiotic stress conditions and after ABA treatment (see caption on page 35).
Figure 2.12: Digital Northern showing accumulation of \textit{AtPGL35} transcripts under certain abiotic stress conditions and after ABA treatment (continued). \textbf{A}, Green parts from stressed or untreated (control) Arabidopsis plants (18 days-old) were used for microarray analysis. Treatments were the following: cold, 24h incubation at 4°C (Microarray Expression Set (ES) 1007966553); osmotic, 24h with 300 mM mannitol (ES 1007966835); salt, 24h with 150 mM NaCl (ES 1007966888); oxidative, 24h with 10 µM methyl viologen herbicide (ES 1007966941); wounding, wounding of leaves by punctuation and 24h incubation (ES 1007966439); heat, 3h of 38°C heat stress followed by 21h recovery at 25°C (ES 1007967124). Detailed description of the treatments is published on the TAIR website (http://www.arabidopsis.org). Control, untreated plants. \textbf{B}, Levels of \textit{AtPGL35} transcripts in time course experiments. Plants used for microarray analysis were incubated with 300 mM mannitol (osmotic) or with 150 mM NaCl (salt) for 30 min, 1h, 3h, 6h, 12h or 24h. \textbf{C}, Response to abscisic acid (ABA, ES 1007964750). Arabidopsis seedlings (7 days-old) were treated with 10 µM ABA for 1 or 3 hours. \textbf{A-C}, Signals from replicate experiments (a, b) are shown.
Figure 2.13: Accumulation of AtPGL35 in drought and high light conditions. Arabidopsis plants were grown on soil in short days for 4 weeks. Five plants stayed in short days and were used as control. Five plants were exposed to continuous strong white light (1200 µmol photons m⁻² s⁻¹, high light) for 12 or 24 hours. Ten plants were withdrawn from watering during 4 days (drought). The drought treatment lead to a loss of fresh weight of about 50%. Half of the plants were re-watered for 24h (drought + H₂O). A, Western blot analysis. Total leaf protein extracts (25 µg) from control or treated plants were analysed by SDS-PAGE and immunoblotting using specific anti-AtPGL35 antibodies. B, Photographs showing control and treated plants.
Figure 2.14: Time course of \(AtPGL35 \) expression in Arabidopsis leaves. Cotyledons and rosette leaves from Arabidopsis plants growing on soil in long day conditions were collected 1 to 5 weeks after germination and used for Northern (A) or Western (B) analysis. A, RNA extracted from cotyledons or rosette leaves was used for acrylamide gel electrophoresis followed by Northern blotting. A specific \(^{32}\)P-labelled probe was used to detect \(AtPGL35 \) transcripts. The 25S rRNA indicates equal loading amounts. B, Plants grown in the same conditions than in A were used for Western analysis. In addition, senescing material (Sc) was prepared by incubating for 8 days in the dark rosette leaves detached from 8 week-old plants. 25 \(\mu \)g of total proteins were separated by SDS-PAGE, blotted to nitrocellulose membrane and AtPGL35 was detected by immunoblotting. The amidoblack-stained membrane is shown. RLSU, large subunit of RuBisCO; CAB, chlorophyll a/b binding protein.

therefore be involved in this process. \(AtPGL34 \) notably, as suggested by expression profiling (see Fig. 2.2A), is a good candidate.

2.3 Plastoglobules and tocopherol metabolism

2.3.1 Tocopherol cyclase (\(AtVTE1 \)) localises to plastoglobules

Plastoglobules from pea and tomato chloroplasts were shown to contain around a dozen different proteins. However, only members of the PAP/fibrillin family have been identified (Kessler et al., 1999; Pozueta-Romero et al., 1997). In an effort to unravel molecular functions of plastoglobules, the Arabidopsis plastoglobule proteome was analysed by tandem mass spectrometry (Dr. Bréhélin, University of Neuchâtel and Dr. Sacha Baginsky, ETH Zürich; Ytterberg et al., 2006). Among proteins identified in the low density plastoglobule fraction were AtPGLs but also metabolic enzymes (See Table 4.2) including the tocopherol cyclase \(AtVTE1 \). The abundance of \(AtVTE1 \) and AtPGL33 peptides were comparable, suggesting relatively high abundance of \(AtVTE1 \).

To further investigate the subcellular localisation of \(AtVTE1 \), a construct encoding a C-terminal YFP fusion to \(AtVTE1 \) coding sequence (\(AtVTE1\)-YFP) was transformed in Arabidopsis protoplasts (Fig. 2.15A). Fluorescent signals
Figure 2.15: Transient expression of AtVTE1-YFP in protoplasts.

A. Arabidopsis protoplasts expressing AtVTE1 as a C-terminal YFP fusion (AtVTE1-YFP) were analysed by confocal microscopy. Merge: superposition of chlorophyll autofluorescence (chlorophyll) and YFP signals. Visible: bright field image of the protoplast. Bar length: 5 µm.

B. Western blot analysis of transformed protoplasts. Total proteins (25 µg) extracted from protoplasts transformed with the AtVTE1-YFP construct were used for SDS-PAGE followed by immunoblotting. Proteins were visualised by staining the membrane with amidoblack (lane 1). AtVTE1-YFP was detected using anti-GFP antibodies (lane 2).
Figure 2.16: Localisation of AtVTE1 to plastoglobules. **A**, Fluorescent immunolocalisation of AtVTE1. Chloroplasts prepared from isolated protoplasts were fixed and probed with anti-AtVTE1 antibodies. Secondary FITC-coupled antibodies were used for visualisation. The detection of the chromophore fluorescence (FITC) by confocal microscopy, bright-field microscopic images (visible) and merges from bright-field and fluorescent images (merge) are shown. Bar length: 5 µm. **B**, Distribution of AtVTE1 in chloroplast fractions. Chloroplast membranes (derived from Arabidopsis plants expressing AtPGL34g-YFP) were separated by flotation on a discontinuous sucrose gradient as described in Fig. 2.24. The nitrocellulose membrane shown in Fig. 2.24B was probed with anti-AtVTE1 antibodies. Immunoblots identical to those on Fig. 2.24B showing the distribution of AtPGL35, AtTOC75 and CAB are presented.
were restricted to chloroplasts and dot-like patterns were observed, similar to the one obtained with AtPGL-GFP constructs. Integrity of the AtVTE1-YFP fusion protein was verified by Western blot analysis of transformed protoplasts. A single band migrating between the 97 and 66 kDa markers was detected with anti-GFP antibodies, in agreement with the predicted size of AtVTE1-YFP (44 kDa, AtVTE1 mature form fused to the 27 kDa eYFP, Fig. 2.15B).

To obtain additional evidence for the localisation of AtVTE1, fixed chloroplasts were incubated with anti-VTE1 antibodies. Primary antibodies where then decorated with FITC-conjugated secondary antibodies and fluorescein was detected by confocal laser microscopy (Fig. 2.16A). Fluorescent signals labelled globular structures overlapping with chloroplasts, consistent with plastoglobule localisation of VTE1.

In a third line of experiments, the distribution of AtVTE1 in chloroplast membrane fractions was analysed. Chloroplasts were homogenised and membranes were separated from soluble proteins by centrifugation at 100,000x g. The chloroplast membrane systems have different buoyant densities due to varying lipid to protein ratios. Thylakoid membranes include abundant photosynthetic proteins and have therefore a higher density (1.2 g/cm3). In contrast, plastoglobules, which are mostly constituted of lipids, have a low buoyant density (0.9-1 g/cm3). The density of envelope membrane is intermediate (1.1 g/cm3). We took advantage of these properties to separate chloroplast membranes by flotation density gradient centrifugation. Fractions were collected from the gradient and analysed by Immunoblot (Fig. 2.16B). Antibodies against the CAB protein gave strong signals in fractions 11 to 21, indicating the presence of thylakoid membranes in the high density sucrose steps. Weaker CAB signals were present in fractions 5 to 9, most likely due to a minor presence of highly abundant thylakoid membranes in the low density fraction (5 and 15% sucrose steps). AtTOC75, a component of the chloroplast protein import machinery at the outer membrane, was detected in fractions 11 to 15. The sucrose density of these fractions (20-38%) is consistent with the presence of envelope membranes (Schnell and Blobel, 1993). In contrast to CAB and AtTOC75, AtPGL35 was enriched in fractions 1 to 7. The sucrose density of these fractions (5% and 15%) is consistent with isolation of plastoglobules (Kessler et al., 1999; Greenwood et al., 1963; Legget Bailey and Whyborn, 1963; Wu et al., 1997). Notably, separate peaks of AtPGL35 in fractions 1 and 5-7 suggest the existence of plastoglobule populations of different densities, as previously reported (Legget Bailey and Whyborn, 1963). AtPGL35 was also detected in higher sucrose density fractions, as previously observed for pea PG1 (Kessler et al., 1999). To analyse the distribution of AtVTE1 in chloroplast membranes, the fractions were probed with anti-VTE1 serum. AtVTE1 was detected in fractions 1-7 of the gradient and codistributed with AtPGL35 peak fractions.

To determine whether AtVTE1 colocalised with AtPGL35 (as suggested by the membrane fractionation experiment, the two proteins were coexpressed as YFP- and CFP-fusion proteins, respectively, in protoplasts (Fig. 2.17). AtPGL35-CFP as well as AtVTE1-YFP fluorescent signals were present in globular structures inside chloroplasts. Both the merge of the independent fluores-
Figure 2.17: Colocalisation of AtPGL35 and AtVTE1 in Arabidopsis protoplasts. A, Protoplasts were cotransformed with AtVTE1-YFP and AtPGL35-CFP or with CFP and AtPGL35-YFP constructs. CFP fluorescence (CFP) and YFP fluorescence (YFP) were monitored by confocal microscopy. Chlorophyll, chlorophyll autofluorescence. Merge, superposition of YFP and CFP signals (green and red pseudocolours, respectively). Bar length: 5 µm. B, Pixel intensities in YFP and CFP channels were measured across sections indicated by dotted lines on the fluorescence images. C, Western blot analysis of protoplasts transformed with AtPGL35-CFP and AtVTE1-YFP (lane 1) or with AtPGL35-YFP and CFP (lane 2). The blot was probed with antibodies raised against GFP.

Colocalisation images and the pixel intensity analysis showed an overlap of the fluorescence, indicating colocalisation of AtPGL35 and AtVTE1 in plastoglobules.

Taken together, the data suggest that AtVTE1 is neither a component of the thylakoids nor of the inner envelope membrane but associated with plastoglobules.

2.3.2 \(\gamma\)-tocopherol methyl transferase (AtVTE4) localises at the chloroplast envelope

The tocopherol cyclase AtVTE1 catalyses the cyclisation of DMPQ precursors to \(\delta\) or \(\gamma\)-tocopherol which are methylated to lead \(\beta\) or \(\alpha\)-tocopherol. \(\alpha\) and \(\gamma\) forms are the most abundant and their relative content varies in plant tissues.
Leaves mostly contain α-tocopherol (DellaPenna and Pogson, 2006). The final methylation step is catalysed by the γ-tocopherol methyl transferase (γ-TMT, At1G64970), also named AtVTE4.

Since AtVTE1 was identified as a plastoglobule protein, we questioned whether AtVTE4 was also associated with plastoglobules. AtVTE4 has a predicted transit peptide (TargetP score = 0.95), indicating localisation in plastids. AtVTE4 was however not detected in the proteome of plastoglobules (see Table 4.2), indicating either a very low abundance of the protein or its localisation to an other chloroplast compartment. Furthermore, a γ-tocopherol methylase activity was detected in a chloroplast envelope preparations in earlier studies (Soll and Schultz, 1980; Soll et al., 1985). To determine the localisation of AtVTE4, a GFP fusion to AtVTE4 coding sequence (AtVTE4-GFP) was transiently expressed in Arabidopsis leaves by particle bombardment. As shown in Fig. 2.18A, fluorescent rims around chloroplasts were detected in cells bombarded with the AtVTE4-GFP construct. Similar patterns were observed with a GFP fusion to the first transmembrane domain of AtTIC110 (AtTIC110tm-GFP), used as a chloroplast envelope marker. In contrast, globular structures were observed in cells expressing the plastoglobule marker AtPGL35-GFP and fluorescent signals overlapped with chlorophyll autofluorescence in cells transformed with a GFP fusion to the RuBisCO small subunit transit peptide (pSSU-GFP). For several constructs, weak cytosolic fluorescence (similar to GFP patterns) was also observed, indicating incomplete import of fusion proteins into chloroplasts. The data suggest localisation of AtVTE4 to the chloroplast envelope. Similar results were obtained when AtVTE4-GFP was expressed in protoplasts (Fig. 2.18B). However, frequent aggregation of the fusion protein was observed in this system. A single peptide, migrating to the expected mass of AtVTE4-GFP (33 kDa of AtVTE4 mature form fused to the 27 kDa eGFP) was detected by immunoblot in transformed protoplasts (Fig. 2.18C).

2.4 Protein targeting to plastoglobules

2.4.1 Plastoglobulins lack strongly hydrophobic domains

The identification of proteins associated with plastoglobules implies that mechanisms ensuring protein targeting to plastoglobules must exist in plastids. However, nothing is known regarding these mechanisms and PGLs do not share conserved sequence motifs with other plant or animal lipid body proteins. Several types of proteins associated with lipid bodies have been described in prokaryotic and eukaryotic cells (reviewed in Murphy, 2001). Such proteins often contain hydrophobic domains protruding in the apolar lipid environment. Alternatively, motifs responsible for lipid association in apolipoproteins consist of amphipathic α-helices and β-sheets. In addition, other lipid body proteins such as adipophilin do not contain obvious lipid binding domains.

Hydrophobic domains of proteins can be visualised using the algorithm developed by Kyte and Doolittle (Kyte and Doolittle, 1982). None of the 13 Ara-
Figure 2.18: Localisation of γ-tocopherol methyl transferase AtVTE4 (see caption on page 44).
Figure 2.18: Localisation of \(\gamma \)-tocopherol methyl transferase AtVTE4 (continued).

A. Transient expression of GFP-fusion proteins in leaves by particle bombardment. Rosette leaves from adult Arabidopsis plants were bombarded with gold particles coated with AtVTE4-GFP, AtPGL35-GFP, AtTIC110\(_{tm} \)-GFP, pSSU-GFP or GFP constructs.

B. Protoplasts were transformed with AtVTE4-GFP construct. A and B, GFP fluorescence was visualised by confocal microscopy. Bar length: 5 \(\mu \)m. Merge, overlap of GFP and chlorophyll autofluorescence (chlorophyll); Visible, bright field picture.

C. Western blot analysis of protoplasts transformed with AtVTE4-GFP. Proteins were visualised by staining the membrane with amidoblock (lane 1). AtVTE4-GFP was detected using anti-GFP antibodies (lane 2).
bidopsis PGLs contained strongly hydrophobic domains (above the 1.8 threshold using a window size of 19, see Fig. 2.19A). However, small stretches with higher hydropathy scores were observed in most AtPGL sequences. These stretches were found at different locations: shortly after the transit peptide, at the middle of the sequence or at the C-terminus. For comparison, hydropathy plots of an oleosin and of a caleosin, which associate with cytosolic oilbodies in oil-seeds, are shown (Fig. 2.19B).

2.4.2 Most of AtPGL34 sequence may be required for targeting the protein to plastoglobules

In the absence of data on the sequence requirement for plastoglobule targeting, we designed a series of C-terminal GFP fusion constructs that removed portions of AtPGL34 coding sequence (Fig. 2.20B). AtPGL34 was chosen for this study since the fluorescent patterns obtained with the AtPGL34-GFP construct were similar to those obtained in plastoglobule immunolocalisation experiments (see Fig. 2.4 and 2.5). Three domains with higher hydrophobic scores can be visualised in the Kyte and Doolittle hydropathy plot of AtPGL34. These domains comprise residues 80-94 (H1), 142-161 (H2) and 273-282 (H3). Furthermore, we reasoned that if a domain responsible for targeting or anchoring PGLs to plastoglobules exists, it may be conserved among the different Arabidopsis PGLs. As revealed by sequence alignments (see Fig. 2.1), AtPGLs share conserved domains near the N- and C-termini of the proteins. In AtPGL34, the N-terminal domain comprises residues 103 to 138 but the conserved C-terminal domain is lacking. Both homology and hydrophobic criteria were therefore taken into account for the choice of the deletion constructs. The shortest construct (AtPGL341-56-GFP) only comprised 3 residues in addition to the predicted transit peptide and was designed as a stromal control. The second construct, comprising the amino acids 1-133 (AtPGL341-133-GFP), contained the H1 domain as well as the conserved motif. The construct AtPGL341-170-GFP included in addition the H2 motif. The fourth construct (AtPGL341-290-GFP) comprised H1, H2 and H3 motifs, as well as the conserved region. An additional N-terminal deletion construct (AtPGL341-56..134-308-GFP), lacking residues 57-133, only contained H2 and H3 motifs.

As shown in Fig. 2.20B, AtPGL341-56-GFP and AtPGL341-133-GFP gave diffuse signals broadly overlapping with the autofluorescence from the chlorophyll. In several chloroplasts however, peak GFP and chlorophyll fluorescence did not overlap, suggesting that both fusion proteins localised in the stroma. In contrast, when AtPGL341-290-GFP construct was expressed in protoplasts, the fusion protein localised to small punctuated structures, similarly to the full length protein. A distinct pattern was observed with AtPGL341-170- and AtPGL341-56..134-308-GFP constructs. Fewer and larger fluorescent spots were observed in chloroplasts, suggesting mistargeting or protein aggregation.

Mistargeting (or aggregation) of AtPGL34 deletion constructs imply that the corresponding fusion proteins do not colocalise with full-length AtPGL34. We therefore cotransformed protoplasts with AtPGL34-CFP and AtPGL34 deletion
Figure 2.19: Hydropathic character of plant oilbody proteins. Kyte and Doolittle hydropathy plots of AtPGLs (A), of a rapeseed oleosin (B) and of a caleosin from barley (C) are represented. Positive values are attributed to hydrophobic residues. A window size of 19 amino acids was used. Peaks with scores greater than 1.8 (pale horizontal lines) identify putative transmembrane regions. Dotted lines indicate predicted cleavage sites of transit peptides. Bn, Brassica napus; Hv, Hordeum vulgare; GeneBank accession numbers are indicated.
Figure 2.20: Transient expression of GFP fused to AtPGL34 fragments (see caption on page 48).
Figure 2.20: Transient expression of GFP fused to AtPGL34 fragments (continued). A, Arabidopsis protoplasts were transformed with fragments of, or with full length AtPGL34 coding sequence fused to GFP, as indicated. GFP signals (GFP) were detected by confocal microscopy. Arrows indicate strong GFP signals overlapping with weak chlorophyll autofluorescence signals (chlorophyll). Merge: overlap of chlorophyll and GFP signals. Scale bars: 5 µm. The panels on the right hand side show the detection of GFP fusion proteins in transformed protoplasts by immunoblotting, using anti-GFP antibodies. N.D., not detected. B, Schematic representation of the constructs. The transit peptide of AtPGL34 (PGL34) is in grey. C, Kyte and Doolittle hydropathy plot of AtPGL34. Domains with higher hydropathy scores (H1-H3) are indicated.
constructs fused to YFP (Fig. 2.21). As revealed in merged fluorescent images, CFP and YFP signals did not overlap in protoplasts expressing AtPGL34 and AtPGL34\textsubscript{1–133}. In contrast, AtPGL34-CFP and AtPGL34\textsubscript{1–290}-YFP colocalised, indicating that the short C-terminal hydrophilic part of the protein is dispensable for targeting. The strong punctuate signals observed in protoplasts expressing AtPGL34\textsubscript{1–170} were not labelled with AtPGL34-CFP, confirming mistargeting and/or aggregation of the truncated protein.

2.4.3 Transgenic Arabidopsis plants expressing \textit{AtPGL34-YFP}

Based on fluorescence patterns, we have deduced that full length AtPGL34 fused to GFP localised to plastoglobules. Moreover, the preliminary results obtained with AtPGL34-GFP deletion constructs suggested that most of AtPGL34 sequence is required for correct targeting. In order to substantiate our hypothesis that chimaera plastoglobulin fusion proteins can be directed to plastoglobules, wild-type plants were stably transformed with the coding sequence of YFP fused to \textit{AtPGL34}. Regulatory elements are often found in introns and in 3' UTRs. Moreover, we observed that transgene expression driven by the strong CaMV 35S promoter often leads to gene silencing. We therefore used the genomic sequence of \textit{AtPGL34} (Fig. 2.22A).
Ten primary transformants were identified on selection media and homozygous T3 lines containing a single insertion locus were identified by segregation analysis (data not shown). When illuminated with UV light and observed under the binocular microscope, plants from different lines exhibited various levels of YFP fluorescence. Representative examples are shown in Fig. 2.22B. To demonstrate the presence of AtPGL34g-YFP in the transgenic plants, protein extracts prepared from wild type or transgenic seedlings were analysed by Western blot (Fig. 2.22D). No signal was detected in the wild type, indicating specificity of the anti-GFP antibody. In the transgenic lines, a peptide with an apparent mass of 55 kDa, the predicted mass of PGL34-YFP (28.3, processed PGL34 and 26.9, YFP), was decorated with anti-GFP antibodies. A second band, migrating slightly higher and possibly representing partially cleaved precursor, was also recognised. Signal intensities from different lines correlated with the fluorescence levels observed in the leaves. Differences in expression levels probably reflected positional effects of the T-DNA insertions (Goodrich and Tweedie, 2002). Plants from the line 5.2, which showed strongest expression of AtPGL34g-YFP, were further analysed. Although weaker than in leaves, YFP fluorescence was also detected in roots (Fig. 2.22C). This observation is in accordance with DNA microarray results (see Fig. 2.2A) showing the presence of AtPGL34 transcripts in most plant organs including roots.

More detailed pictures of AtPGL34g-YFP signals were obtained by confocal microscopy analysis of leaves and roots (Fig. 2.23). In both organs, punctuated signals were observed. In leaves, the signals were detected in epidermal as well as in mesophyll cells. YFP patterns were indeed similar to those observed in protoplasts transiently expressing AtPGL34-YFP. In roots, strongest signals were observed in the vasculature and in nascent secondary roots.

2.4.4 AtPGL34g-YFP associates with low-density particles in vivo

The fluorescent patterns observed in plants expressing AtPGL34g-YFP and in protoplasts transformed with AtPGL34-GFP construct suggested association of the fusion proteins with plastoglobules. To verify this hypothesis, chloroplast membranes from transgenic AtPGL34g-YFP plants were used for gradient flotation centrifugation (Fig. 2.24). Proteins extracted from the different sucrose gradient fractions were used for SDS-PAGE, transferred to a nitrocellulose membrane and stained with amidoblack. In lanes corresponding to the low-density fractions 1-7 (5 and 15% sucrose steps), a dominant band was observed between the 66 and 45 kDa markers, at the expected size of AtPGL34g-YFP (55 kDa). After immunoblotting with anti-GFP antibodies, strong signals overlapping with the visible bands were detected, confirming the identity of the 55 kDa peptide. AtPGL34g-YFP codistributed with AtPGL35 in the gradient fractions and peak AtPGL34g-YFP signals were clearly distinct from peak AtTOC75 and CAB signals. Moreover, analysis by confocal microscopy revealed that the low density fractions 1 and 7 (5 and 15% sucrose steps, respectively) contained numerous globular fluorescent structures. These data strongly suggest association
Figure 2.22: Transgenic plants expressing YFP fused to AtPGL34 genomic sequence. A, Scheme of the construct used for plant transformation. The genomic sequence of AtPGL34, comprising the 5’ upstream region (P), AtPGL34 exons and introns, as well as the 3’ downstream region (T), was fused to the yellow fluorescent protein (YFP) and inserted in the p3300 binary vector. The vector contained the bar gene (phosphinotricin acetyl transferase) under the control of the CaMV 35S promoter (35P) and the CaMV 3’UTR (35T, polyA signal) for selection. LB and RB, T-DNA left and right boarders. B, Detection of AtPGL34-YFP with UV light. Wild type (wt) and AtPGL34-YFP plants from different T3 lines (1.1, 4.3 and 5.2) were observed with a binocular equipped with a UV lamp. Fluorescent signals (UV) are shown in green. C, Enlargements from B showing YFP signals in leaves and roots from a transgenic plant (line 5.2). Scale bars: 0.5 mm. D, Western blot analysis of rosette leaves from wild-type and AtPGL34-YFP plants. AtPGL34-YFP was detected using anti-GFP antibodies. Protein staining (amido black) indicates similar loading amounts.
Figure 2.23: Analysis of AtPGL34G-YFP plants by confocal microscopy. A leaf section (A, B) and a root (C) from an adult transgenic plant (line 5.2) were observed with a confocal microscope. A and C, Z-projections from optical sections are shown. B, Higher magnification showing chloroplasts from a mesophyll cell. Visible, bright-field microscopic images; Merge, superimposing of chlorophyll autofluorescence (chlorophyll) and YFP fluorescence (AtPGL34G-YFP).
of AtPGL34\(_g\)-YFP with plastoglobule lipid bodies.

The fluorescent structures observed in fraction 1 appeared somewhat larger than those in fraction 7. Using the ImageJ software, mean areas (± SE) of fluorescent spots were determined to be 0.121 ± 0.006 \(\mu\text{m}^2\) in fraction 1 and 0.072 ± 0.003 \(\mu\text{m}^2\) in fraction 7. The difference in particle size suggest the existence of plastoglobule populations of different densities, as previously reported (Legget Bailey and Whyborn, 1963).

2.4.5 Yield estimation of recombinant protein

Strong immunoblotting signals suggested that substantial levels of recombinant proteins were synthesised, at least in line 5.2. The amount of AtPGL34\(_g\)-YFP in crude plant extracts was estimated by comparing immunoblot signals with serial dilutions of purified GFP produced in Escherichia coli (Fig. 2.25). AtPGL34\(_g\)-YFP was calculated to account for approximately 0.2% of total leaf protein.

2.4.6 Phenotype of AtPGL34\(_g\)-YFP-expressing plants

Plant from different lines expressing AtPGL34\(_g\)-YFP at various levels were indistinguishable from wild-type when grown in short or long-day conditions. The germination rate of transgenic seeds (line 5.2) was equal to wild type (Pearson Chi-Square test, \(n=358\), \(p=0.33\)). Fluorescence measurements revealed similar maximum photosystem II quantum efficiencies (\(F_v/F_m\)) in transgenic vs. wild type leaves (Fig. 2.26B), ruling out major inhibitory effects of plastoglobule targeting on photosynthesis. Moreover, rosettes from wt and AtPGL34\(_g\)-YFP adult plants had similar fresh weigh (Fig. 2.26C).

The data indicate that plant growth and development were not affected by the accumulation of AtPGL34\(_g\)-YFP in plastoglobules. Together with the simple purification procedure of plastid lipid bodies, they demonstrate an excellent potential for protein accumulation in plastoglobules.
Figure 2.24: Analysis of AtPGL34$_g$-YFP plants by gradient flotation centrifugation. **A**, Total membranes from a crude chloroplast preparation were separated by flotation centrifugation on a discontinuous sucrose gradient PG, plastoglobules; OM/IM, outer and inner envelope membranes; Thyl, thylakoid membranes. Fractions 1 and 21 (F1 and F21) are indicated. **B**, SDS-PAGE analysis of fractions from the sucrose gradient. After ultracentrifugation, fractions of 0.5 ml were collected from the top of the gradient. Proteins contained in 400 µl of fractions 1 to 7, 200 µl of fractions 9 to 15, 100 µl of fractions 17 and 19 or 50 µl of fraction 21 were separated by SDS-PAGE, transferred to a nitrocellulose membranes and stained with amidoblack. The nitrocellulose membrane was then probed with antibodies against GFP, AtPGL35, AtTOC75 and CAB, as indicated. **C**, Analysis by confocal microscopy of the representative fractions 1, 7, 11 and 21 (F1-21, corresponding to 5, 15, 20 and 45% sucrose steps, respectively). YFP fluorescent signals (YFP) and chlorophyll autofluorescence (chlorophyll) are shown. Scale bars: 1 µm (F1-11) or 5 µm (F21).
Figure 2.25: Yield estimation of AtPGL34\textsubscript{g}-YFP recombinant protein. Different amounts of total protein extracts from line 5.2 were subjected to SDS-PAGE in parallel with different amounts of recombinant GST-GFP, as indicated. Signals were quantified using a CCD camera and the Quantity One software.

Figure 2.26: Phenotype of AtPGL34\textsubscript{g}-YFP plants. A, Photographs from wild-type or AtPGL34\textsubscript{g}-YFP plants (line 5.2) grown for 8 weeks in 16/8 hour light/dark conditions. B, Maximum photosystem II quantum efficiencies (Fv/Fm). T-test: t=0.17, p=0.67, n=14. C, Fresh weight of rosette leaves five weeks after germination. T-test: t=-1.22, p=0.23. At least 19 plants were measured. Normal distribution of the data (B and C) was verified using the Kolmogorov-Smirnov test (p > 0.1).
Chapter 3

Discussion

3.1 Towards understanding the functions of plasto
globulins

3.1.1 Arabidopsis plastoglobulins associate with plastoglobuluses

Proteins of the PAP/fibrillin family (bell pepper fibrillin and pea PG1) were previously shown to localise to the periphery of plastoglobules or of related chromoplast fibrils (Deruère et al., 1994; Pozueta-Romero et al., 1997; Kessler et al., 1999). However, CDSP34 and C40.4 potato plastoglobulins were localised mainly in the stroma and thylakoids (Monte et al., 1999; Eymery and Rey, 1999; Rey et al., 2000), suggesting that proteins from the PAP/fibrillin family may associate with thylakoid membranes in addition to plastid lipid bodies. Here, the localisation of AtPGL35 and AtPGL34, two Arabidopsis PGLs was studied. Using immunogold labelling on leaf sections and immunofluorescence on fixed protoplasts, AtPGL35 was localised in chloroplast plastoglobules (Fig. 2.4). Moreover, GFP-fusions to AtPGL34 and -35 were apparently targeted to plastoglobules in vivo (Fig. 2.5). Association of AtPGL34-YFP with low-density particles was further confirmed by flotation centrifugation (Fig. 2.24).

AtPGL35, as well as AtPGL30.4, -33, -40 and -25/29 have previously been shown to behave as peripheral components of thylakoid membranes by TX-114 extraction (Friso et al., 2004). In a separate study, AtPGL35, -40, -33, -30.4, -45 and -25 were identified in the 8 M urea extract of chloroplast membranes, also suggesting a peripheral membrane association (Kleffmann et al., 2004). With the exception of AtPGL45, all these proteins were identified in the proteome of plastoglobules (Ytterberg et al., 2006; Vidi et al., 2006). It is therefore likely that PAP/fibrillins extracted by TX-114 or 8 M urea were present in plastoglobules attached to thylakoids (Lichtenthaler, 1969; Kessler et al., 1999; Austin et al., 2006) and therefore identified as thylakoid proteins.

Because specific labelling of plastoglobules was observed in tobacco, Ara-
bidopsis and spinach chloroplasts using antibodies raised against PG1 (Austin et al., 2006), it seems unlikely that plastoglobulin localisation differs in plant species. Although it can not be excluded that some PGLs associate with thylakoids rather than plastoglobules, the localisation of CDSP34 and C40.4 might need to be re-evaluated.

3.1.2 Distinct plastoglobule populations or molecular functions of plastoglobulins?

In protoplasts coexpressing AtPGL34 and AtPGL35 coding sequences fused to GFP variants, the corresponding signals were largely separated (Fig. 2.6). Instead, AtPGL35 colocalised with AtVTE1 and with the fructose-bisphosphate aldolase 2 isoform (not shown).

Different populations of plastoglobules might therefore exist, as suggested in previous studies (Legget Bailey and Whyborn, 1963; Kessler et al., 1999). Certain subsets of proteins, e.g. enzymes, might be restricted to given plastoglobule types. To verify this hypothesis, it will be interesting to selectively immuno-purify plastoglobules using antibodies directed against different PGLs or plastoglobule-associated enzymes.

Plastoglobulins may also have different molecular functions. Several lines of evidence indicate that levels of AtPGL35 are linked with plastoglobule abundance: i) High expression of AtPGL35 in petals correlates with the accumulation of lipid bodies in leukoplasts (Pyke and Page, 1998). ii) Upregulation of AtPGL35 in stress conditions parallels the increase in plastoglobule volume (Eymery and Rey, 1999). iii) Overexpression of AtPGL35 as a GFP fusion lead to the formation of large globular structures, probably corresponding to swollen globules or to plastoglobule clusters (Austin et al., 2006). In contrast to AtPGL35, AtPGL34-GFP localised to smaller structures. AtPGL34 may therefore be targeted to pre-existing plastoglobules. Consistent with this hypothesis, the large structures containing AtPGL35-CFP were also labelled with AtPGL34-YFP but smaller structures containing AtPGL34-YFP did not contain AtPGL35-CFP (Fig. 2.6).

3.1.3 Plastoglobulin expression patterns highlight ubiquity of plastoglobules

Expression data showed that plastoglobulins are expressed in most (if not all) organs (Fig. 2.2A). However, expression levels of most AtPGLs were highest in green tissues and messengers of at least five AtPGLs accumulated after exposure to light (Fig. 2.3A), in agreement with a function for plastoglobules in chloroplast metabolism.

During germination or de-etiolation, prolamellar bodies are rapidly converted into thylakoids. The number of plastoglobules was reported to decrease during this process (Lichtenthaler, 1968). It has therefore been proposed that lipids stored in plastoglobules are utilised for the synthesis of thylakoids. According to this model, one might expect the decrease of plastoglobule abundance
to be accompanied by a drop of PGL levels. However, all AtPGLs were ex-
pressed in cotyledons and, related to total protein contents, AtPGL35 and -30.4
e.g. were clearly more abundant in light-grown than in dark-grown seedlings
(Fig. 2.3C). Moreover, only a single Arabidopsis PGL homologue (AtPGL45)
was identified in a low density fraction derived from rice etioplasts (Ytterberg
et al., 2006).

These observations may nevertheless be reconciled with the 'lipid reservoir'
hypothesis: i) Germination is accompanied by de novo lipid synthesis (Davies
et al., 1980). Newly synthesised lipids may therefore move through plastoglob-
ules and balance the disappearance of the pre-existing plastoglobules. ii) The
number and volume of chloroplasts strongly increase during greening (Possing-
ham and Saurer, 1969). It may be more appropriate to correlate PGL levels
to the volume of plastids in dark or light-grown seedlings. Further work is
necessary to define the role of plastoglobules in thylakoid genesis. It would no-
tably be interesting to compare plastoglobule lipid composition in etiolated and
de-etiolated plants. Transgenic plants expressing AtPGL-YFP fusion proteins
under the control of the endogenous promoter may also provide useful tools to
follow plastoglobule dynamics during greening. An alternative hypothesis is that
plastoglobules do not represent a storage compartment for thylakoid structural
lipids (galactolipids) or precursors thereof (notably di- and triacylglycerols) in
proplastids and etioplasts. They may rather store antioxidants to protect devel-
oping membranes. Tocopherol contents were indeed shown to increase during
germination (Munne-Bosch and Alegre, 2002).

During leaf senescence, enlargement and accumulation of plastoglobules has
been observed together with disappearance of thylakoid membranes (e.g. Tu-
quet and Newman, 1980; Ghosh et al., 2001). Moreover, carotenoid esters and
free fatty acids are enriched in plastoglobules derived from gerontoplasts (in
comparison to chloroplasts), indicating that lipids from degenerating thylakoid
membranes accumulate in plastoglobules (Tevini and Steinmüller, 1985). As ex-
pected, several AtPGLs are expressed in senescing leaves (Fig. 2.2A). Interest-
ingly, highest levels of AtPGL24 transcript were present in senescing material,
indicating that the protein may be implicated in this process.

AtPGLs were also expressed in non-green tissues such as pollen, petals and,
to a lesser extent, roots. Intracellular lipid bodies are present in vegetative
cells of pollen grains (Piffanelli et al., 1998) and serve as a source of energy
and structural lipids for pollen germination. Similarly to seed oleosomes, the
oilbodies are thought to derive mostly from the endoplasmic reticulum and
oleosins were detected amongst pollen proteins (Kim et al., 2002). In contrast
to most other organs, only five AtPGL genes (out of 11 for which probesets were
available) were expressed in pollen. AtPGL31, however, showed highest relative
expression in these cells. The protein may therefore be associated with certain
pollen lipid bodies and/or participate in their formation.

In floral buds, young petals are green and contain chloroplasts. During the
development of the petal lamina, plastids loose their chlorophyll and differen-
tiate into leukoplasts, resulting in a white petal blade (Pyke and Page, 1998).
Large and numerous plastoglobules are characteristic of leukoplasts. It is there-
fore not surprising that plastoglobulin transcripts were detected in this organ (Fig. 2.2A). High AtPGL35 mRNA and protein levels were notably detected in flowers (Fig. 2.2B,D).

Root cells contain amyloplasts and proplastids, the latter containing numerous plastoglobules (Yu and Li, 2001). In Western blot experiments, lowest AtPGL40, -35 and -30.4 levels were detected in roots. (Fig. 2.2D). The data are consistent with gene expression profiling studies (Fig. 2.2A), where the root to leaf signal ratio was 0.16 for AtPGL35. This ratio was 0.4 for AtPGL34 and the YFP signals detected in roots from AtPGL34-YFP plants was only about half of that observed in leaves (Fig. 2.22). AtPGL34 messengers did not accumulate after exposure to light (Fig. 2.3), consistent with expression in green and in non-photosynthetic tissues. Fluorescent globular structures observed in roots from reporter plants were particularly dense in emerging lateral roots (Fig. 2.23), possibly due to the presence of numerous proplastids in these zones (Whatley, 1983).

The fact that AtPGLs are differentially expressed in plant organs (leaves, petals, siliques, roots), which contain different plastid types (chloroplasts, leukoplasts, elaioplasts or proplastids), suggest that the proteins may have different molecular functions (e.g. plastoglobule generation, stabilisation, fusion) and/or that they may associate with different types of lipids. The observation that PAP1, -2 and -3 plastoglobulins in Brassica rapa are associated with specific tissues (Kim et al., 2001) support this idea.

3.1.4 Stress leads to the upregulation of AtPGL35

Under various environmental conditions resulting in oxidative stress, plastoglobules enlarge or accumulate in clusters (see above). In parallel, a number of studies have shown that proteins from the PAP/fibrillin family are upregulated by abiotic stress (see Table 1.1). Consistent with these observations, Arabidopsis PGL35 (and -33) transcripts were shown to accumulate in stress conditions (Fig. 2.12, Laizet et al., 2004) and AtPGL35 accumulated after drought or high light treatments, as well as during ageing (Fig. 2.13 and 2.14). In contrast to AtPGL35, AtPGL40 and -30.4 were not significantly induced by drought and photooxidative stress (data not shown). Moreover, transcription profiling revealed that plastoglobulin transcripts other than from AtPGL35 did not accumulate in stress conditions or after ABA treatment (data not shown). The data therefore suggest that AtPGL35 (and maybe AtPGL33) are the only AtPGLs responsive to environmental stresses. In a recent report, Yang et al. (2006) showed that tolerance of photosystems to photooxidative damage positively correlates with AtPGL35 protein levels. Moreover, overexpression of fibrillin in potato plants increased plastoglobule number and drought stress tolerance (Rey et al., 2000). In Arabidopsis, high illumination treatment was accompanied by increased plastoglobule size and formation of plastoglobule clusters. It is tempting to propose that these morphological changes were caused by increased levels of AtPGL35/33.
3.1.5 Functions of plastoglobulins are partially redundant

Arabidopsis knock-out plants for AtPGL35 (pGL35; Fig. 2.9) or for other AtPGLs (Dr. C. Bréhélin, personal communication), did not show growth defects nor any visible phenotype under standard growth conditions. Moreover, chloroplast ultrastructure in pGL35 plants was not different from wild-type (Fig. 2.9D).

Single knock-out mutants from multiple copy genes often lack visible phenotype (Bouche and Bouchez, 2001). The presence of highly homologous genes among the Arabidopsis plastoglobulin family (Fig. 2.1) and the observation that three AtPGL genes may be issued from recent gene duplication suggest function redundancy, especially between highly similar proteins. In particular, AtPGL35 and -33 probably represent functional homologues. The proteins are 76% identical and the distribution of AtPGL35 and AtPGL33 messengers in the different organs was very similar (Fig. 2.2B). The simultaneous reduction of AtPGL35 and -33 (or AtPGL35, -33 and -40) in the pGL35/ihp pGL33 (or pGL35/ihp pGL33/-40) plants may provide insight into the functions of PGLs. Further investigation will focus on photooxidative stress tolerance of the mutants, as well as on their chloroplast and leukoplast ultrastructures.

3.2 Plastoglobules as synthesis and storage sites for tocopherols

3.2.1 Localisation of the tocopherol cyclase to plastoglobules

The pathway leading to tocopherols has been elucidated using radio-labelling studies and, more recently, using molecular genetic tools (see Hofius and Sonnewald, 2003; DellaPenna, 2005; DellaPenna and Pogson, 2006 for review). Homogentisic acid (HGA) and phytyldiphosphate (phytyl-PP) serve as precursors for tocopherol biosynthesis. (Fig. 3.1A). HGA derives from the shikimate pathway and is synthesised from tyrosine via Tyr transaminase and 4-hydroxyphenylpyruvate dioxygenase (HPPD/PDS1; Garcia et al., 1999; Norris et al., 1998). This reaction is the only step in tocopherol biosynthesis occurring outside chloroplasts, in the cytosol. HGA is then prenylated to 2-methyl-6-phytyl-1,4-benzoquinone (MPQ) by addition of a phytol molecule through the action of HGA phytoltransferase (HPT1/VTE2; Savidge et al., 2002; Collakova and DellaPenna, 2001, 2003). In labelling experiments, Soll et al. (1985) showed the presence of HPT activity in inner chloroplast membranes purified from spinach leaves. While it is generally accepted that phytol-PP originates directly from geranylgeranyldiphosphate (GGDP; Hofius and Sonnewald, 2003; Keller et al., 1998), it has also been proposed that tocopherol phytol tails might derive from chlorophyll (Lichtenthaler, 1968). Indeed, Valentin and colleagues (2006) have recently shown that reduced tocopherol content in the vte5 mutant is caused by defective phytol kinase activity, suggesting that phytol-PP may
be synthesised from chlorophyll breakdown products. Part of the MPQ pool is subsequently methylated to 2,3-dimethyl-6-phytyl-1,4-benzoquinone (DMPQ) by 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase (APG1/E37/VTE3; Motohashi et al., 2003; Cheng et al., 2003; Van Eenennaam et al., 2003), which is highly similar to the 37 kDa polypeptide from spinach inner chloroplast membrane (Block et al., 1983). The corresponding methyl transferase activity was detected in chloroplast inner membrane fractions (Soll et al., 1980; Soll and Schultz, 1980; Soll et al., 1985).

Cyclisation and methylation of MPQ and DMPQ leads to the formation of the four major tocopherol forms (α-, β-, γ- and δ-tocopherol) that differ only in position and number of methyl groups on the aromatic ring. In Arabidopsis, ring closure is catalysed by VTE1 (Porfirova et al., 2002). AtVTE1 is an orthologue of the maize sucrose export deficient 1 protein (SXD1; Provencher et al., 2001). Although SXD1 was originally implicated in transferring chloroplast signals relevant to the carbohydrate status to the nucleus (Provencher et al., 2001), the protein was shown to have tocopherol cyclase activity and thus to be a functional orthologue of Arabidopsis VTE1 (Sattler et al., 2003). Cyclisation of DMPQ in γ-tocopherol was reported to occur in total chloroplast membrane fractions (Camara et al., 1982). The tocopherol cyclase activity, however, was at the detection limit when chloroplast envelope membranes were used for the assay (Soll and Schultz, 1980; Soll et al., 1985), suggesting that the cyclase reaction takes place in another chloroplast compartment. In labelling experiments using membrane fractions from bell pepper chromoplasts (Arango and Heise, 1998), 14C-radiolabelled DMPQ accumulated in the lightest sucrose fraction. In contrast, 14C-α-tocopherol was predominantly detected in the fraction corresponding to inner membranes. Although the authors claimed to have localised tocopherol biosynthesis at the inner membrane of chromoplasts, their data rather suggest that DMPQ (transiently) accumulates in an other compartment.

We present Western blotting of membrane fractions, immunofluorescent localisation of AtVTE1 in fixed chloroplasts as well as transient expression of AtVTE1-YFP fusion protein (Fig. 2.15 and 2.16) as evidence for the plastoglobule localization of AtVTE1. The codistribution of AtVTE1 with AtPGL35 in the membrane fractionation experiment (Fig. 2.16B) and microscopic colocalization of corresponding YFP and CFP-fusion proteins (Fig. 2.17) suggest that plastoglobules are the unique site of AtVTE1. The observation that DMPQ accumulates in plastoglobules prepared from vte1 plants (Dr. P. Dörmann, personal communication) further indicates that AtVTE1 activity is located in plastoglobules. Plastoglobule localisation of VTE1 is consistent with the hydrophobic character of the protein (Stocker et al., 1996) and with the absence of predicted transmembrane domain.

In chloroplasts, most γ-tocopherol molecules are further methylated to lead to the most abundant α-tocopherol form. This reaction is catalysed by γ-tocopherol methyl transferase (γ-TMT/AtVTE4; Bergmüller et al., 2003), the enzymatic activity of which was measured in chloroplast envelope preparations (Soll and Schultz, 1980; Soll et al., 1985). Localisation of AtVTE4 to the chloro-
plast envelope was confirmed by transiently expressing the protein as a GFP fusion in leaf epidermal cells (Fig. 2.18).

3.2.2 A model for tocopherol biosynthesis

Based on the data, we propose a working model for tocopherol biosynthesis in chloroplasts (Fig. 3.1B). Distinct localisations of tocopherol biosynthetic enzymes imply transport of precursors inside chloroplasts: i) Trafficking DMPQ to plastoglobules for ring cyclisation and ii) re-distribution of α-tocopherol from the chloroplast inner membrane to the other plastid compartments. Although a direct transport of DMPQ from the envelope to plastoglobules is proposed, it cannot be excluded that DMPQ is first directed to thylakoid membranes and subsequently accumulates in plastoglobules.

How tocopherols and tocopherol precursors are transported inside chloroplasts is not known and plastidic lipid transport in general is still poorly understood. Lipids may laterally diffuse from the envelope to thylakoids at contact sites (Siegenthaler, 1998). Such contacts have been observed in Chlamydomonas during greening (Hoober et al., 1990) but are usually not observed in developed chloroplasts. Plastoglobules have been proposed to function as transporters (Kessler et al., 1999). However, association of plastoglobules with envelope membranes in mature chloroplasts has not been reported (Austin et al., 2006).

In ultrastructural studies, vesicles originating from the envelope membranes were observed (e.g. Westphal et al., 2001; Morre et al., 1991) and a vesicular transport of lipids inside chloroplasts was proposed (see Benning et al., 2006 for review). Such vesicles are absent in vippl, a pale green Arabidopsis mutant with a constitutively high chlorophyll fluorescence and distorted and reduced thylakoid membranes (Kroll et al., 2001). It may be interesting to measure prenylquinone contents in vippl plastoglobules. If tocopherols and their precursors are transported by vesicles, DMPQ is expected to accumulate in the envelope membrane of vippl plants. The albino vippl phenotype is consistent with altered lipid trafficking. However, several albino mutants unrelated to vesicular transport (e.g. ppi2, defective in plastid protein import [Bauer et al., 2000]; var1-1, knock-out for a chloroplastic FtsH protease [Sakamoto et al., 2002] or cla1, impaired in methyl-erythritol-phosphate synthesis [Estevez et al., 2000; Mandel et al., 1996]), have a chloroplast ultrastructure similar to vippl, obviously due to pleiotropic effect of the mutations. Moreover, envelope-derived vesicles were not observed with cryo-electron microscopy techniques (Dr. J. R. Austin, personal communication). The exact nature of the vesicles is therefore still a matter of active research.

Certain lipids including tocopherols might also be translocated by transporter proteins. However, tocopherol binding proteins have not been identified in plants yet. In human liver cells, α-tocopherol is transported by α-TTP, a protein from the SEC14-like family. Human TAP (tocopherol associated protein), an other member of the SEC14-like protein family, has also been shown to bind to α-tocopherol (Zimmer et al., 2000). Database searches revealed that 24 Arabidopsis proteins are similar to TAP (BLAST e-values comprised between
Figure 3.1: Tocopherol synthesis in chloroplasts. **A**, The biosynthetic pathway of α-tocopherol (adapted from Schneider, 2005). **B**, Spatial model for tocopherol biosynthesis. HGA, Homogentisate; Phytol-PP, phytol-diphosphate; MPQ, 2-methyl-6-phytyl-1,4-benzoquinone; DMPQ, 2,3-dimethyl-6-phytyl-1,4-benzoquinone; Toco, tocopherol; OM/IM, outer and inner chloroplast membranes; PG, plastoglobule; HPT, HGA phytoltransferase; VTE3, MPQ methyltransferase; VTE1, tocopherol cyclase; γ-TMT, γ-tocopherol methyl transferase.
10^{-25} and 10^{-5}) and that 3 sequences are similar to \(\alpha\)-TTP (protein BLAST e-values < 10^{-5}). Arabidopsis SEC14-like proteins are therefore good candidate tocopherol transporters.

Proteins from the PAP/fibrillin family have been proposed to directly interact with carotenoids in chromoplast fibrils (Vishnevetsky et al., 1999) but experimental evidence are lacking. The possible function of PGLs as lipid transporters, in addition to their structural function has not been investigated. It might therefore be interesting to test whether PGLs can bind to tocopherols (or to other plastoglobule lipids).

3.2.3 VTE1 provides a molecular link between plastoglobules and oxidative stress response

Stressful conditions often lead to an increase in leaf tocopherol contents (Munne-Bosch and Alegre, 2002). Tocopherol synthesis, for example, is upregulated after exposure to high light intensities (Collakova and DellaPenna, 2003; Kanwischer et al., 2005) and messenger levels of \(AtVTE1\), notably, strongly increase after the treatment (Kanwischer et al., 2005). In parallel, plastoglobules increase in size and number under conditions resulting in oxidative stress (Bondada and Syvertsen, 2003; Rey et al., 2000; Eymery and Rey, 1999, Fig 2.11). Changes in plastoglobule morphology probably reflect increased needs for antioxidants under stress conditions: Swelling of plastoglobules may indeed allow accumulation of tocopherols (and possibly other antioxidants such as zeaxanthin) and enzymes such as the tocopherol cyclase.

3.2.4 Why do tocopherols accumulate in plastoglobules?

Tocopherols were shown to protect thylakoid lipid membranes and PSII from photooxidative damage (Havaux et al., 2005); a site of action of tocopherols is therefore the thylakoids. Plastoglobules and thylakoid membranes were recently shown to form a continuum (Austin et al., 2006). Therefore, tocopherols probably diffuse between these two compartments.

In addition to tocopherols, plastoglobules were reported to contain phylloquinone (vitamin K, "A1") and high amounts of plastoquinone (PQH\(_2\)) (Legget Bailey and Whyborn, 1963; Lichtenthaler and Sprey, 1966; Lichtenthaler and Peveling, 1967). Both quinones are involved in the electron transport chain in thylakoid membranes. Like tocopherols, quinones probably extensively diffuse in the thylakoid-plastoglobule lipid continuum. Plastoglobules may therefore represent a storage compartment for reduced PQH\(_2\) pools. Furthermore, presence of tocopherols in plastoglobules may protect this pool from oxidative damage. Similarly, tocopherols accumulating in chromoplasts plastoglobules and fibrils (Lichtenthaler, 1969) probably protect accumulated carotenoids from oxidation.
3.2.5 Recycling of oxidised tocopherols

Reduction of lipid peroxyl radicals by tocopherol leads to the formation of tocopheroxyl radicals. In animal systems, tocopherol can be restored by reduction of tocopheroxyl radical with ascorbate or ubiquinol (Schneider, 2005). In plants, however, the corresponding reactions have not been reported. Tocopherols also react with ROS such as hydroperoxyl radicals (HOO-), leading tocopherol quinones. Tocopherol quinones may be recycled to tocopherols or degraded (DellaPenna and Pogson, 2006). No evidence favouring either mechanism has been reported yet.

Plastoglobules emerge as a potential site for recycling tocopherols (Fig. 3.1B). It will be interesting to address whether unknown proteins identified in the plastoglobule proteome may carry out (part of) the reactions necessary for tocopherol recycling.

3.3 Signalling mechanisms involving plastoglobules

Abscisic acid (ABA) is known to mediate many aspects of adaptation to abiotic stresses (Shinozaki and Yamaguchi-Shinozaki, 2000). As revealed by transcription profiling, ABA treatment lead to an accumulation of AtPGL35 and/or -33 transcripts (Fig. 2.12). In an earlier study, ABA was also shown to induce the expression of CDSP34, a potato gene highly similar to FIBRILLIN and AtPGL35 (Gillet et al., 1998). The authors further showed that transcripts from the tomato CDSP34 ortholog also accumulated after both ABA or dehydration treatments in wild type plants and in flacca tomato mutants (impaired in ABA biosynthesis). In contrast, accumulation of tomato CDSP34 did not occur in the flacca background unless exogenous ABA was supplied, indicating that an ABA-dependant post-transcriptional mechanism controls the expression of LeCDSP34. In a recent report, Yang et al. (2006) demonstrated accumulation of AtPGL35 after exogenous application of ABA. Moreover, using yeast-two-hybrid and pull-down assays, the authors could show a direct interaction between the transit peptide of AtPGL35 and ABI1 (a key player of ABA signalling), further implicating ABA in the post-transcriptional regulation of AtPGL35 expression. Interestingly, AtVTE1 transcripts also accumulated after 3h treatment with 10\textmu M ABA (3.3 fold, Genevestigator, [Zimmermann et al., 2004]). These observations suggest that ABA mediates the accumulation of tocopherols both by up-regulating their synthesis and by increasing the volume of plastoglobules - their storage compartment.

The first, rate-limiting step of ABA biosynthesis is the cleavage of 9-cis-epoxycarotenoids (Schwartz et al., 2003). Interestingly, a 9-cis-epoxycarotenoid (NCE) dioxygenase isoform (AtCCD4, At4g19170) was identified in the plastoglobule proteome (Ytterberg et al., 2006; Vidi et al., 2006). To address the possible involvement of AtCCD4 in abscisic acid biosynthesis, future work will address whether the protein possesses a NCE cleavage activity. Arabidopsis
null mutants may also prove useful tools with regard to its role in ABA synthesis. Plastoglobules serve as storage compartments for quinones and tocopherols in chloroplasts. They might therefore represent ‘sensors’ of the redox status of plastids. Taking this into consideration, the possible localisation of (part of) ABA biosynthesis in plastoglobules may be rationalised.

In addition to a role as antioxidants, tocopherols have been shown to possess non-antioxidant functions in animal systems (Rimbach et al., 2002; Azzi et al., 2002, 2004). Protein phosphatase 2A, e.g., was shown to be activated specifically by α-tocopherol. Moreover, γ-tocopherol has a negative effect on cyclo-oxygenase activity, resulting in decreased levels of prostaglandin E\textsubscript{2}.

Tocopherols may also have non-antioxidant functions in plants. Disruption of tocopherol cyclase activity in the maize sucrose export defective 1 (sxd1) mutant (Provencher et al., 2001), or down-regulation of the potato ortholog gene by RNAi (Hofius et al., 2004) caused callose deposition in plasmodesmata and accumulation of soluble sugars, consistent with functions of tocopherols beyond photooxidative protection. Tocopherols have indeed been proposed to regulate jasmonic acid (JA) synthesis by modulating the accumulation of JA lipid hydroperoxide precursors (Munne-Bosch and Alegre, 2002; Munne-Bosch, 2005).

Conversely, JA was shown to regulate tocopherol levels in Arabidopsis by inducing the expression of HPPD (Falk et al., 2002) as well as of a tyrosine aminotransferases, catalysing the formation of p-hydroxyphenylpyruvate (from which HGA derives) from L-tyrosine (Lopukhina et al., 2001; Sandorf and Hollander-Czytko, 2002). Moreover, addition of JA to Arabidopsis cell cultures increased α-tocopherol contents (Gala et al., 2005). Thus, tocopherol levels may indirectly regulate the amount of JA in the leaves and vice versa. The allene oxide synthase (AOS), involved in the biosynthesis of JA precursor OPDA, was identified in the plastoglobule proteome (Ytterberg et al., 2006; Vidi et al., 2006). As for ABA biosynthesis, plastoglobules in addition to containing lipid precursors may act as redox sensors for JA biosynthesis.

Rather than being mere storage compartments, we propose that plastoglobules are metabolically active and that they also participate in a signalling network involving ABA and JA.

3.4 Plastoglobules as a potential protein destination for molecular farming

3.4.1 Targeting YFP to plastoglobules: a proof-of-concept

Proteins are massively used in medicine as diagnostic reagents, drugs or vaccines. Moreover, the rapid discovery of new pharmaceutical proteins leads to an increased demand for production of recombinant proteins (Joshi and Lopez, 2005). To date, production of recombinant proteins rely on microbial fermentation or on insect and mammalian cell cultures. These systems allow highly controlled manufacturing procedures essential for product quality. However,
they have disadvantages in term of cost and scalability. Pathogen contamination of animal cell cultures also represent an important safety issue.

Plants are now being recognised as an alternative system for the production of recombinant proteins. Plant expression systems allow large scale production of recombinant proteins with accurate folding and assembly of protein complexes (Ma et al., 2003; Fischer et al., 2004; Ma et al., 2005a,b). Importantly, plant systems offer the possibility of lowering production costs by a factor of 10 to 100 compared to traditional systems (Menkhaus et al., 2004; Joshi and Lopez, 2005). Chloroplasts have proven a useful cellular compartment for protein accumulation owing to their large size and number. Moreover, transplastomic plants (produced by introducing DNA into the chloroplast genome) enable high yields in recombinant proteins due to a high transgene copy number and limited epigenetic phenomena. Contamination of wild and crop species by pollen flow is also largely circumvented by organellar transformation (Bock, 2001). Important issues for industrial production of plant-derived recombinant proteins are extraction and purification (Giddings et al., 2000). Standard protocols include homogenisation of plant biomass followed by chromatographic methods. However, high abundance of secondary compounds, especially in tobacco, is problematic for chromatographic procedures. therefore, developing a cost-effective preliminary (or alternative) purification step is required (Menkhaus et al., 2004).

Due to their low density, plastoglobules can readily be purified by flotation centrifugation (Picher et al., 1993; Kessler et al., 1999). Plant cells contain roughly 29’000 different proteins and chloroplast are constituted of more than 2’000 different proteins (Cline, 2000). Targeting recombinant proteins to plastoglobules, the proteome of which only consists of about 20 core components (see Table 4.2), followed by plastoglobule purification may therefore represent an effective purification step. We examined the possibility of targeting a recombinant model protein (YFP) to plastoglobules and to recover it in purified plastoglobule fractions. For that purpose, transgenic plants expressing YFP as a C-terminal fusion to AtPGL34 were generated (Fig. 2.22) and chloroplast membranes derived from these plants were fractionated by density gradient flotation centrifugation. AtPGL34-YFP was detected in the low-density fractions by Western blot and fluorescence imaging (Fig. 2.24), indicating targeting to plastoglobules.

3.4.2 Preliminary experiments failed to identify a targeting determinant for plastoglobules

Although plastoglobulins associate with lipid bodies, their overall amino acid composition is not hydrophobic (Grand average of hydropathicity (GRAVY) index = -0.268 for AtPGL35). A somewhat hydrophobic central domain in fibrillin, also present in AtPGL35 and -33, has been proposed to penetrate in the hydrophobic core of fibrils or plastoglobules, anchoring the proteins like drawing pins (Vishnevetsky et al., 1999; Austin et al., 2006). Oleosins, which associate with cytosolic oilbodies in oil-seeds and in tapetum cells, have been shown to have such a topology. Oleosins are constituted of a 72-residue central
hydrophobic stretch surrounded by an N-terminal hydrophilic domain and a C-terminal domain forming an amphiphatic α-helix (Hsieh and Huang, 2004). It should be noted that the 16-residue hydrophobic stretch in fibrillin/AtPGL35/-33 (W I L A/V Y T S F V/S G L F P L L A/S) is much smaller than the one in oleosins and is interrupted by polar residues. Moreover, AtPGL30, -30.4 and -34 which were identified as plastoglobule-associated proteins in two independent studies (Ytterberg et al., 2006; Vidi et al., 2006) lack a similar central domain. Therefore, association of PGLs with plastoglobules may rather rely on interactions with surface lipids, as proposed by Kim et al. (2001). Several AtPGLs (AtPGL40, -35, -33, -25, -30.4, -29 and -24) contain a C-terminal RGD adhesion recognition motif, which has been implicated in cell adhesion (D’Souza et al., 1991). This motif is also present in other PGLs including the turnip PAP1, -2 and -3, pea PG1, fibrillin and cucumber ChrC (Kim et al., 2001; Kessler et al., 1999; Deruère et al., 1994; Vishnevetsky et al., 1996). The implication of this motif in PGL function and targeting is however unknown.

Several proteins are known to associate with oilbodies in animal systems. Hydrophobic domains of human caveolin-1 are essential for targeting the protein to ER-derived lipid droplets (Ostermeyer et al., 2004). In contrast, several other proteins associated with oil bodies including ADRP do not contain long hydrophobic domains. Discontinuous segments from ADRP are required for targeting to lipid bodies (Targett-Adams et al., 2003).

The Arabidopsis PGL34 plastoglobulin typically lacks a large hydrophobic domain (Fig. 2.19). Fusing truncated AtPGL34 sequences to GFP revealed that most of the protein sequence was necessary for obtaining GFP patterns similar to full length AtPGL34-GFP (Fig. 2.20). Only the AtPGL34_{1−290} deletion construct, which lacked a 18-residue hydrophilic C-terminal stretch, colocalised with full length AtPGL34 (Fig. 2.21). In the perspective of using plastoglobules as a destination for recombinant proteins, full length PGLs should therefore be used as vectors. In order to allow an additional purification step, expression constructs could include a protease recognition site followed by an affinity tag between the PGL and the transgene sequences.

Protein targeting to plastoglobules obviously implicates structural features of PGLs but may also require interactions with regulatory proteins. Such proteins may be of low abundance and may not have been detected in the proteome analysis. A possible way to identify factors involved in plastoglobule protein targeting would be to mutagenise plants expressing AtPGL34_{1−290}-YFP and to screen for altered YFP patterns (e.g. loss of punctuate signals, large fluorescent structures).

3.4.3 Viability of transgenic plants

Our data suggests that the viability of plants expressing the AtPGL34-YFP fusion protein was not affected. i) Germination rate of transgenic plants was identical to wild-type. ii) Fresh weight and iii) quantum efficiency, indicative of the status of the photosynthetical apparatus, were similar to wild type in standard conditions. Targeting recombinant proteins to plastoglobules may avoid
deleterious effects on photosynthesis light reactions as well as on metabolic processes occurring in the stroma. Moreover, overexpression of the plastoglobulin fibrillin in tobacco plants has previously been shown to enhance drought stress tolerance (Rey et al., 2000).

3.4.4 Engineering fruit or leaf crops instead of A. thaliana

Although Arabidopsis was used for a proof-of-concept, it is obviously not a system of choice for producing recombinant proteins on an industrial scale. Leaf crops having a high biomass yield such as spinach, potato or tobacco should be envisaged. Contamination of food supply with transgenic plant products as well as transgene flow to wild relatives or traditional corps represent major concerns for molecular farming. In this respect, tobacco would have the advantages of not being a food crop and of being amenable to chloroplastic transformation. Legumes such as soybean or alfalfa are also interesting alternatives because they require little fertilisation.

Plastoglobulin genes are highly conserved throughout the plant kingdom. Homologues of AtPGL35 and AtPGL34 were notably found in the tobacco genome (http://www.tobaccogenome.org/index.html). It is therefore likely that homologues of AtPGLs could be successfully used as targeting vectors in many plant species.

Several studies (cited in the introduction) have established that plastoglobules drastically increase in size and number during chloroplast breakdown in senescing tissues. It is tempting to propose to place PGL fusion proteins under the control of senescence-inducible promoters or to drive transgene expression in senescing material with inducible promoters. Alternatively, chromoplasts of ripening fruits, which massively accumulate plastoglobules or related fibrils (Vishnevetsky et al., 1999), may also be envisaged as a destination for PGL fusion proteins.

Many questions however are still open. i) Transplastomic plants expressing PGL fusion proteins may potentially produce very high amounts of recombinant proteins. However it will be necessary to test whether proteins synthesised inside chloroplasts can associate with plastoglobules. Effects of very large amounts of PGL fusion proteins on plant viability will also have to be determined. ii) In the study presented here, YFP was used as model protein. It will be interesting to test whether proteins having other properties (stability, solubility) can also be targeted to plastoglobules with a PGL fusion system. iii) Shelf live of the starting material is an important aspect for large-scale production and freezing or drying leaf material prior to extraction procedures may be required. The integrity of PGL fusion proteins after desiccation and the amenability of dried material for plastoglobule purification will therefore have to be determined.

Answering these questions will require further research and will be essential to address the potential of plastoglobule targeting systems for molecular farming.
Chapter 4

Materials and Methods

4.1 Materials

4.1.1 Biological material

Arabidopsis

Wild type (wt) Arabidopsis plant always refers to *Arabidopsis thaliana* (L.) Heynh. var. Columbia 2. T-DNA insertion lines from the SALK collection were obtained from the Nottingham Arabidopsis Stock Centre (NASC, http://arabidopsis.info).

Micro-organisms

Escherichia coli DH5-α were from Invitrogen and *E. coli* BL21(DE3) cells were from Novagen. *Agrobacterium tumefaciens*, strain C58 were kindly provided by Dr. Roger Kuhn (Institute of Plant Sciences, ETH Zurich, Switzerland).

4.1.2 Oligonucleotides

Oligonucleotides were synthesized at Microsynth GmbH.

4.1.3 cDNA clones

cDNA clones were obtained from the Arabidopsis Biological Resource Centre (ABRC, http://www.biosci.ohio-state.edu/~plantbio/Facilities/abrc/abrc/home.htm).

4.1.4 Plasmids

pET21d and pCAMBIA3300 were obtained from Novagen and CAMBIA, respectively. pHANNIBAL is described in *Wesley et al.* 2001 and was obtained from CSIRO Plant Industry. pCHF5 was kindly provided by Dr. C.
Frankhauser (Center for Integrative Genomics, University of Lausanne, Switzerland). pCHF5 is a pCAMBIA3300 derivative with the cauliflower mosaic virus (CaMV) 35S promoter and the RuBisCO small subunit terminator flanking the multiple cloning site. pCL60 (described in Bauer et al., 2000) is a pBluescript SK-(Stratagene) derivative with a CaMV 35S promoter and a nopaline synthase (nos) terminator cassette containing the coding sequence for enhanced green fluorescent protein (GFP; Becton Dickinson Biosciences Clontech). An NcoI site containing the start codon of GFP is available to insert cDNA fragments to be expressed as C-terminal GFP fusion proteins. pCL61 and pCL62 were kindly provided by Dr. Andreas Hiltbrunner (Institute for Biology, Albert-Ludwigs University Freiburg, Germany). They are derivatives from pCL60 with CFP or YFP replacing GFP, respectively. pCL60-AtVTE4 was obtained from Dr. P. Dörmann (Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany). pCL61-AtVTE1 was obtained from Dr. C. Bréhénin (University of Neuchâtel, Switzerland). pCL60-AtTIC110tm, containing a GFP fusion to the transmembrane domain of AtTIC110, was obtained from Dr. M. Alvarez-Huerta (University of Utrecht, The Netherlands). pCL60-pSSU, containing the transit peptide sequence of the small subunit of pea RuBisCO fused to GFP, was obtained from Dr. A. Hiltbrunner. The FDH-GFP construct was a gift from Dr. I. Small (University of Paris-Sud, France) and is described in Ambard-Bretteville et al. (2003).

4.1.5 Chemicals

Unless stated otherwise, the chemicals were purchased from Fluka Chemie GmbH.

4.1.6 Antibodies

Antibodies specific to AtTOC159 or AtTOC75 have been described (Bauer et al., 2000; Hiltbrunner et al., 2001). Sera against AtPGL40 and AtPGL30.4 were kindly provided by Dr. C. Bréhénin. Serum raised against GFP was a gift from Dr. E. Schäfer (Institute for Biology, Albert-Ludwigs University Freiburg, Germany). Antibodies specific to the chlorophyll a/b binding protein (CAB) were kindly provided by Dr. K. Apel (Institute of Plant Sciences, ETH Zurich, Switzerland). Serum against the large subunit of RuBisCO (RLSU) was kindly provided by Dr. S. Crafts-Brandner (US department of Agriculture, Phoenix, USA). Serum against AtVTE1 was a gift from Dr. P. Dörmann. Anti-AtPGL35 antibodies are described below.
4.2 Methods

4.2.1 Physiological methods

Growing *A. thaliana* on Murashige and Skoog medium

Seeds were surface sterilised in chlorine vapour as described by S. Clough and A. Bent (http://plantpath.wisc.edu/~afb/vapster.html). Germination was synchronised by exposing the seeds 2 days at 4°C in the dark. For preparation of protoplasts, plants were grown on 0.8% (w/v) Phyto Agar (Durchefa) containing 0.5x Murashige and Skoog medium (MS; Duchefa) under long-day conditions [16 h light (120 µmol m$^{-2}$ s$^{-1}$), 8 h dark; 21°C]. Selection of phosphinothricin-resistant plants was done on half MS medium supplemented with 0.8% (w/v) sucrose and 30 µg/ml phosphinothricin (BASTA; Duchefa).

Segregation analysis on phosphinothricin

For segregation analysis, seeds were germinated in petri dishes on Whatman paper moistened with 0.5x MS and 30 µg/ml phosphinothricin. Plates were incubated in long-day conditions for one week before counting sensitive and resistant plants.

Growing *A. thaliana* on soil

Seeds were set on sandy soil (Top Dressing, Ricoter). Germination was synchronised as above. Plants were grown under short- (8 h light, 16 h dark) or long-day (16 h light, 8 h dark) conditions.

Oxidative stress by high light treatment

For high light treatments, plants grown in short days were incubated in a Percival growth chamber (CLF Plant Climatics) with continuous high light (1200 µmol m$^{-2}$ s$^{-1}$). Incubation times are indicated in the Result section.

4.2.2 Methods for molecular cloning

Standard protocols were used for cloning (Sambrook and Russell, 2001). DNA fragments were amplified using a proof-reading DNA polymerase (pfu, Promega) and oligonucleotides including appropriate restriction sites. EST-clones, pre-existing plasmid-constructs or genomic DNA extracted from Arabidopsis plants were used as templates for PCR. PCR products and plasmids were digested (restriction enzymes from New England Biolabs or Promega) and purified from agarose gels using the QIAquick kit (Quiagen). Vectors were dephosphorylated using shrimp alkaline phosphatase (Roche) according to the manufacturer’s recommendations. T4 DNA ligase (New England Biolabs) was used to ligate vectors and inserts as described (Sambrook and Russell, 2001). Ligation reactions were subsequently transformed by heat shock into competent *E. coli* DH5-α cells (Sambrook and Russell, 2001). Competent *E. coli* cells were prepared as
described (Inoue et al., 1990). Selection was done on LB medium [25g/l LB Broth Miller (Becton Dickinson Diagnostic Systems), 1.2% (w/v) Agar Bacteriological Grade (ICN Biomedicals)] supplemented with appropriate antibiotics. Clones were selected by PCR and restriction digestion and DNA sequences were verified by sequencing (Microsynth GmbH or Synergene Biotech GmbH).

4.2.3 Plasmid isolation and purification

For small-scale plasmid isolation, the GenElute Plasmid Miniprep Kit (Sigma) was used according to the suppliers instructions. The PureYield™ Plasmid Midiprep System (Promega) was used for plasmid isolation from 100 ml culture volume.

4.2.4 Transient transformation of *A. thaliana* protoplasts

DNA constructs for transient expression in protoplasts

Complete coding sequences, excluding the stop codon, were amplified from *AtPGL35* and *AtPGL34* cDNA clones (U16632 and U15686 respectively) by PCR using 5’ and 3’ primers including *Nco*I sites. *AtPGL34*: 5’-cat gcc ATG GCA TTG ATC CAA CAT GG-3’ / 5’-cat gcc atg gcA CTG TTG TAT TCA AGA TTC TCT ACA AC-3’; *AtPGL35*: 5’-cat gcc ATG GCG ACG GTA CCA TTG-3’ / 5’-cat gcc atg gcA GGG TTT AAG AGA GAG CTT CCT TC-3’. The PCR products were ligated in the *Nco*I site of either pCL60, pCL61 or pCL62, resulting in C-terminal GFP, YFP or CFP fusions under the control of the CaMV 35S promoter and the nos terminator.

Partial *AtPGL34* N-terminal sequences were amplified from pCL60-*AtPGL34* using the 5’ primer 5’-gct cta gaA TGG CAT TGA TCC AAC ATG G-3’ containing a *Xba*I site and 3’ primers containing *Nco*I sites: 5’-cat gcc atg gcA ACC ATA GCT CTG CAT ATC ATT C-3’ (*AtPGL34*1–56), 5’-cat gcc atg gcA CTC CAT CTA CCT TCA AGA TAA GG-3’ (*AtPGL34*1–133), 5’-cat gcc atg gcA TCT TTA ATG AAT TCC A-3’ (*AtPGL34*1–170), 5’-cat gcc atg gcT TCC ACC CTC GTT AGA AC-3’ (*AtPGL34*1–290). The PCR products were ligated into the *Xba*I and *Nco*I sites of pCL61 or pCL62. To obtain pCL60-*AtPGL34*1–56,134–308, a cDNA fragment coding for the C-terminal part of *AtPGL34* was amplified from pCL60-*AtPGL34* using 5’-cat gcc atg gcT GAG TGG TTT GGA GTC AAC-3’ and 5’-cat gcc atg gcA CTG TTG TAT TCA AGA TTC TCT ACA AC-3’ primers. The DNA fragment was digested with *Nco*I and ligated in the *Nco*I site of pCL60-*AtPGL34*1–56.

Protoplast transformation

Transient transformation of protoplasts was done using the polyethylene glycol method as described (Jin et al., 2001), but reducing cellulase and macerozyme (Serva) concentrations to 1% and 0.25% (w/v) respectively.
Confocal laser scanning microscopy

Fluorescence in transformed protoplasts was monitored 48 to 80 h after transformation by confocal laser scanning microscopy. The FITC (488 nm) laser line from a LEICA TCS 4D microscope (LEICA Microsystems) was used to detect GFP. For double fluorescent experiments, CFP and YFP were detected sequentially using 458 and 514 nm laser lines, as well as 460-510 nm and 520-588 nm detection windows, from a LEICA SP2 AOBS microscope. Chlorophyll autofluorescence was monitored using either 594 nm or TRITC (568 nm) excitation wavelengths.

4.2.5 Transient transformation of *A. thaliana* leaves by particle bombardment

Gold particles (BioRad Laboratories, 1.0 µm and Aldrich, 1.5-3 µm) were sterilised in ethanol and resuspended in water to a final concentration of 60 µg/µl. 50 µl aliquots consisting of a 1:1 mixture of microcarrier from BioRad and Aldrich were prepared. Plasmid DNA (5 µg) was precipitated on the gold carrier by adding 50 µl 2.5 M CaCl$_2$ and 20 µl 0.1 M spermidine free base under continuous vortexing. After washing with ethanol, DNA-coated gold particles were suspended in ethanol, spread on 4 macrocarrier discs (BioRad Laboratories) and used for bombardment. Leaves from mature *A. thaliana* plants grown on soil for 4 to 7 weeks were placed upside-down on 0.5x MS medium and bombarded with a PDS-1000/He BIOLISTICR Particle Delivery System (BioRad Laboratories) operating at 1100 PSI He pressure, according to the manufacturer’s recommendations.

24 to 48 h after transformation, leaves were stuck on glass slides with lanolin and GFP fluorescence in transformed cells was monitored by confocal laser scanning microscopy (see section 4.2.4) using water immersion objectives.

4.2.6 Stable transformation of Arabidopsis

'Hairpin RNA' constructs for gene silencing

N-terminal fragments of *AtPGL33* and *AtPGL40* cDNAs were amplified by PCR from pCL60-AtPGL33 and pCL60-AtPGL40 (Dr. Bréhélin, University of Neuchâtel, Switzerland) using 5’ primers including *Xho*I and *Xba*I sites (5’-ccc tcg agt cta gaT GGC GAC GGT ACA ATT GTC-3’ and 5’-ccc tcg agt cta gaT GGC TAC GCT CTT CAC CGT C-3’, respectively) and 3’ primers containing *Hind*III and *Eco*RI sites (5’-gga att caa gct tTG TGT GAT TAG ATC TCC GAT TCT-3’ and 5’-gga att caa gct tAG TCG GGT CAG ACA CCG C-3’, respectively). *AtPGL33* and *AtPGL40* cDNA fragments were then digested with either *Xho*I and *Eco*RI or *Hind*III and *Xba*I and ligated in the corresponding sites of pHANNIBAL, resulting in intron-containing hairpin (ihp) constructs. These 'hairpin' cassettes were excised from the pHANNIBAL vector by *Xba*I restriction digest and ligated in the *Xba*I site of pCHF5 binary vector, yielding pCHF5-AtPGL33$_{ihp}$ and pCHF5-AtPGL40$_{ihp}$.
Genomic AtPGL34-YFP construct

AtPGL34-YFP genomic construct comprises the 5’ upstream region (up to the adjacent gene), AtPGL34 genomic sequence (introns and exons, without Stop codon) in frame with YFP and the 3’ downstream region (terminator, down to the adjacent gene). The primers: 5’-ccg cgg cgg cAA ACA GGT TCT CTT GTT ACT CTG ATT C-3’ (includes NotI) and 5’-ggg cgg cgg cag atC TCG GTC TCT CAA AGG ATG TG-3’ (includes BglII and NotI) were used to amplify AtPGL34 terminator. AtPGL34, as well as 0.85 kb 5’ upstream region, were amplified by PCR using the primer set: 5’-cat gcc atg gag atC TTC GGT GAG GAA CAA GAC TT-3’ (includes NcoI and BglII) / 5’-cat gcc atg gcA CTG TTG TAT TCA AGA TTC TCT ACA AC-3’ (includes NcoI). The DNA fragment corresponding to AtPGL34 terminator was digested with NotI and ligated in the NotI site of pCL61, yielding pCL61-AtPGL34ter. The DNA fragment comprising the 5’ upstream region and AtPGL34 was digested with NcoI and ligated in the NotI site of pCL61-AtPGL34ter, yielding pCL61-AtPGL34g. AtPGL34g-YFP was then excised from pCL61 by restriction digest with KpnI. Fragments were blunted using T4 DNA polymerase (New England Biolabs) and ligated in the SmaI site of pCAMBIA3300, yielding pCAMBIA3300-AtPGL34g-YFP.

Transformation of Agrobacterium tumefaciens by electroporation

A. tumefaciens, strain C58 were grown in liquid YEB media [0.5% (w/v) Bacto-Trypton, 0.5% (w/v) Bacto-Pepton, 0.1% (w/v) yeast-extract (all from Difco), 2 mM MgCl2] until an optical density (546nm) of 0.8 was achieved. Cells were pelleted (10 min, 4°C, 2’000g) and washed with a 10% glycerol solution. 50 ng plasmid DNA were used for electroporation in a MicroPulser (BioRad Laboratories) device, according to the manufacturer’s instructions. Transformants were selected on YEB media supplemented with 1.2% (w/v) agar (bacteriological grade, ICN Biomedicals) and appropriate antibiotics.

Arabidopsis transformation

A. thaliana plants were transformed using the floral dip method as described (Bechthold et al., 1993; Clough and Bent, 1998). Transformants were selected on plates containing phosphinothricin (see section 4.2.1 on page 73).

4.2.7 Diagnostic PCR on plants

Rapid DNA extraction

DNA was prepared from leaf material using the simple DNA preparation method described on the University of Wisconsin Biotechnology Center Web site: http://www.biotech.wisc.edu. Leaf tissue corresponding to 0.5 cm² was ground in 0.2 M Tris/HCl pH 9, 0.4 M LiCl, 25 mM EDTA, 1% (w/v) SDS. The homogenate was cleared by centrifugation (5 min, 16’000x g, 4°C), supplemented
with an equal volume of isopropanol and centrifuged again (45 min, 16’000x g, RT). The supernatant was discarded and the DNA pellet was washed with 80% (v/v) ethanol. Finally, DNA was dried and resuspended in 50 µl TE (10 mM Tris/HCl pH 8, 1 mM EDTA).

PCR analysis

PCR reactions contained 2 µl DNA solution, 0.5 U GoTaq DNA polymerase (Promaga), as well as 0.2 mM dNTPs (Eurobio) in a total volume of 25 µl. The primer sets 35-4_RP: 5’-CTG TGT GTA GTT ATG AGC CTT CG-3’ / 35-4_LP: 5’-CAC TAG TAA ACA TAG ACA GAT GGG-3’ and 35-5_RP: 5’-CGA AGG CTC ATA ACT ACA CAC AG-3’ / 35-5_LP: 5’-CAT GCC ATG GCG ACG GTA CCA TTG-3’ were used to detect wild type *AtPGL35* in *pgl35-4* and *pgl35-5* lines, respectively. T-DNA insertions were detected using the LBpROK2 primer: 5’-TGG ACT CTT GTT CCA AAC TG-3’ in combination with 35-4_RP and 35-5_RP. The PCR program was as follows: 2 min, 94°C, 40x (30 s, 94°C; 30 s, 50°C; 1 min, 72°C). PCR reactions were analysed by agarose gel electrophoresis according to standard protocols (Sambrook and Russell, 2001).

4.2.8 Fluorescence imaging in transgenic plants

YFP fluorescence was detected using a Nikon SMZ 1000 binocular equipped with a GFP long pass (GFP-L) filter. For higher resolution imaging, roots or leaf sections were analysed by confocal microscopy using GFP settings as described in section 4.2.4.

4.2.9 Southern and Northern analysis

DNA extraction from *A. thaliana* leaves

Genomic DNA was extracted using the CTAB method (Murray and Thompson, 1980). Arabidopsis leaves were ground to fine powder in liquid nitrogen and incubated 1h in extraction buffer [2% (w/v) cetyltrimethylammonium bromide (CTAB), 1.4 M NaCl, 20 mM EDTA, 100 mM Tris/HCl pH 8, 0.2% (v/v) β-mercaptoethanol; heated at 60°C]. Proteins were extracted with an equal volume of CHCl₃ : isoamyl alcohol (24 : 1) and debris were cleared by centrifugation (10 min, 20°C, 500x g). DNA was precipitated with isopropanol, pelleted (10 min, 20°C, 7’500x g) and rinsed in washing buffer [70% (v/v) ethanol, 10 mM ammonium acetate]. DNA pellets were lyophilised and dissolved in water. After a second precipitation with isopropanol, DNA was resuspended in water and used for digestion.

Restriction digest and Southern transfer

DNA (30 µg) was digested for 4 h in a total volume of 25 µl with 30u XbaI or EcoRI (New England Biolabs) and separated on agarose gel as described
The DNA was then transferred to Porablot-NY plus nylon membrane (Macherey-Nagel) by capillary transfer as described (Sambrook and Russell, 2001). Finally, the membrane was baked 2 h at 80°C to immobilise DNA.

RNA extraction

Plant material was ground in liquid nitrogen, homogenized in extraction buffer [0.5 M Tris/HCl pH 8.2, 0.25 M EDTA, 5% (w/v) SDS] and extracted with phenol : chloroform : isoamylalcool (25 : 24 : 1). After centrifugation (10 min, 12'000x g, 20°C), the aqueous phase was extracted with chloroform : isoamylalcool (24 : 1) and mixed with equal volume of 6 M lithium chloride. RNA was precipitated for 15 h at 0°C and pelleted (15 min, 12'000x g, 4°C). The pellet was rinsed twice with 3 M sodium acetate pH 5.2, once with 70% (v/v) ethanol, air-dried and resuspended in water treated with diethyl pyrocarbonate (DEPC).

Northern transfer

Total RNA (10 µg) was separated on a formaldehyde agarose gel and transferred to Porablot-NY plus nylon membrane (Macherey-Nagel) by capillary transfer as described (Sambrook and Russell, 2001). RNA was immobilised on the membrane by UV crosslinking.

Synthesis of radio-labelled probes

Probes were synthesised using the The Prime-It II Random Primer Labelling Kit (Stratagene) in presence of 0.2 µM [α-32P]dCTP (3 Ci/µmol, Amersham Biosciences, cat. n° AA0005) as described by the supplier. To remove unincorporated nucleotides, the labelling reaction was passed over a MicroSpin™ S-300 HR column (Amersham Biosciences) equilibrated with STE buffer (10 mM Tris/HCl pH 8, 0.1M NaCl, 1 mM EDTA). Templates for AtPGL33 and AtPGL35 - specific probes were amplified from pCL60-AtPGL33 (Dr. Bréhelin, University of Neuchâtel, Switzerland) and pCL60-AtPGL35 (see section 4.2.4 on page 74) using the primer sets (5’-CAA CAT GCC ATG GCG ACG GTA CCA TTG-3’, 5’-GAC CAT GCC ATG GGA TTC AAG AGA GGG-3’) and (5’-CAT GCC ATG GCA TTT AAG AGA GAG CTT CCT TC-3’, 5’-CAT GCC ATG GCA GGA TTT AAG AGA GAG CTT CCT TC-3’), respectively. The template for the synthesis of a probe specific to the left border of pgl35-4 T-DNA insertion was obtained by PCR amplification from pgl35-4 genomic DNA, using the primers 5’-CTT CAC CGC CTG GCC CTG AG-3’ and 5’-CCC CGA TCG TTC AAA CAT TTG GC-3’.

Hybridisation of radioactive probes

Hybridisation of radioactive probes to Southern and Northern blot membranes and subsequent washing steps were done as described (Sambrook and Russell,
Radioactive signals were detected by exposing the membranes to X-ray films (Kodak BioMax).

4.2.10 RT-PCR

Before reverse transcription, total RNA (see section 4.2.9 on page 78) was treated with DNase RQ1 (Promega) according to the supplier’s recommendations. The DNase was then heat-inactivated and first strand synthesis was performed as described (Gubler and Hoffman, 1983). Briefly, oligo(dT)15-mers (Promega) were added to 5 µg DNase-treated RNA. Secondary RNA structures were denatured by incubating for 10 min at 70°C and reverse transcription was performed in the presence of 0.6 mM dNTPs and 200u moloney murine leukemia virus Reverse Transcriptase (Promega) according to the supplier’s recommendations. All steps were carried out in the presence of RNasin RNase inhibitors (Promega). cDNAs were directly used for PCR reactions. The primer sets 5'-CAA CAT GCC ATG GCG ACG GTA CAA TTG-3' / 5'-GAC CAT GCC ATG GGA TTC AAG AGA GGG-3' and 5'-GTT AGC AAC TGG GAT GAT ATG G-3' / 5'-CAG CAC CAA TCG TGA TGA CTT GCC C-3' were used to amplify AtPGL33 and ACTIN2 cDNAs, respectively.

4.2.11 Purification of plastoglobules from *A. thaliana*

Crude chloroplast preparation

Leaves from Arabidopsis plants grown on soil for 4 weeks were harvested and immersed 30 min in tap water in the dark at 4°C. All subsequent steps were also carried out at 4°C. Leaf material was homogenized in HB buffer (450 mM sorbitol, 20 mM Tricine/KOH pH 8.4, 10 mM EDTA, 10 mM NaHCO₃, 1 mM MnCl₂) with a Waring blender and filtered through cheese cloth and miracloth. Chloroplasts were sedimented (2 min 700x g), washed with TrE (50 mM Tricine/HCl pH 7.5, 2 mM EDTA) and hypertonically lysed 10 min in TrE + 0.6 M sucrose. Chlorophyll concentration was determined using the method of Arnon (Arnon, 1949) and was adjusted to 2 mg/ml. To prevent proteolytic degradation, 0.5% (v/v) protease inhibitor cocktail for plant cell extracts (Sigma P9599) was added to the lysate. The lysate was frozen at −80°C, thawed on ice and used for chloroplast membrane fractionation.

Plastoglobule purification

Lysed chloroplasts were diluted 3 times with TrE buffer and homogenised with a Potter homogeniser. Total membranes, corresponding to 10 mg of chlorophyll, were sedimented at 100’000x g and resuspended in 3 mL 45% sucrose in TrE buffer using a Potter homogeniser. Membranes were overlaid with a discontinuous sucrose gradient consisting of 2 ml 38% sucrose, 2 ml 20% sucrose, 1.4 ml 15% sucrose and 2.7 ml 5% sucrose in TrE buffer and centrifuged for 17 h at 100’000x g and 4°C (SW41Ti rotor, Beckman). 0.5 ml fractions were collected
starting from the top of the gradient and used for confocal microscopy analysis or Western blotting.

4.2.12 Preparation of anti-AtPGL35 antibody

The coding sequence of AtPGL35 was sub-cloned from pCL60-AtPGL35 (see section 4.2.4 on page 74) in pET21d-H6. pET21d-H6 was obtained by digesting pET21d (Novagen) with NcoI and EcoRI and inserting a hexahistidinyl (His6) tag in frame with the NcoI site using the primers 5’-CAT GGG TCA CCA TCA CCA TTA ACT GCA GG-3’ and 5’-AAT TCC TGC AGT TAA TGG TGA TGG TGA TGG TGA CC-3’. The full length His6-tagged precursor protein was expressed in E. coli BL21 (DE3) (Novagen) and purified under denaturing conditions by Ni-NTA affinity chromatography (Qiagen), according to the manufacturers recommendations. Eight aliquots of purified AtPGL35 (100 µg recombinant protein in [10 mM NaH2PO4, 10 mM Tris/HCL pH 8.0, 0.8 M urea, 10% glycerol]) were used to produce rabbit polyclonal antibodies (Eurogentec).

Antibodies were affinity purified using recombinant AtPGL35 coupled to Affi-Gel10 (Bio-Rad Laboratories).

In order to purify anti-AtPGL35 antibodies, recombinant AtPGL35 proteins were coupled to Affi-gel10 (Bio-Rad Laboratories) according to the supplier’s instructions. Serum from the immunised rabbit was incubated with the Affi-Gel slurry for 2 h on a rolling shaker at 4°C. Affi-Gel beads were washed extensively with PBS (140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4 pH 7.4). Bound antibodies were eluted with 0.2 M glycine (pH 2.2). Tris/HCl pH 9.0 was added to affinity-purified antibodies to adjust the pH to 7.

4.2.13 Protein extraction and Western blot analysis

Total proteins were isolated from Arabidopsis leaves, roots, stems, floral buds, flowers, siliques or seeds according to Rensink et al. et al. (1998). To avoid proteolytic degradation, 0.5% (v/v) protease inhibitor cocktail for plant cell extracts (Sigma P9599) was added to the extraction buffer. Proteins were concentrated by chloroform - methanol precipitation (Wessel and Flugge, 1984) and resuspended in sample buffer [50 mM Tris/HCl pH 6.8, 0.1 M DTT, 2% (w/v) SDS, 0.1% (w/v) bromophenol blue, 10% (v/v) glycerol].

Protoplasts transiently expressing GFP, CFP and YFP fusion proteins were centrifuged 1 min at 100x g. Total proteins were extracted and concentrated as above.

Proteins were separated by SDS-PAGE and blotted onto Protran® nitrocellulose membrane (Schleicher & Schuell) using the Mini-PROTEAN System (Bio-Rad Laboratories). Western blot membranes were stained with Amido Black (= Naphthol Blue Black) as described (Sambrook and Russell, 2001) and scanned. To block unspecific binding of antibodies, membranes were incubated in blocking buffer [PBS (150 mM NaCl, 7.5 mM Na2HPO4, 1.5 mM NaH2PO4), TBS
Table 4.1: Antibody dilutions for immunoblotting and immunofluorescence. Incubation buffers and approximate incubation times for immunoblotting are indicated. See the text for buffer compositions. Mp, skim milk powder; o/n, over night.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Dilution (v/v)</th>
<th>Buffer</th>
<th>Inc. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-AtPGL35</td>
<td>(1/3000)</td>
<td>TBS-T 5% Mp</td>
<td>1h</td>
</tr>
<tr>
<td>α-AtPGL40</td>
<td>(1/3000)</td>
<td>TBS-T 5% Mp</td>
<td>1h</td>
</tr>
<tr>
<td>α-AtPGL30.4</td>
<td>(1/3000)</td>
<td>TBS-T 5% Mp</td>
<td>1h</td>
</tr>
<tr>
<td>α-CAB</td>
<td>(1/10000) or (1/50000)</td>
<td>TBS-T 5% Mp</td>
<td>1-3h</td>
</tr>
<tr>
<td>α-AtTOC75</td>
<td>(1/3000)</td>
<td>PBS 3% Mp</td>
<td>1h</td>
</tr>
<tr>
<td>α-AtVTE1</td>
<td>(1/2000)</td>
<td>PBS 2% Mp</td>
<td>2-6h</td>
</tr>
<tr>
<td>α-GFP</td>
<td>(1/1000)</td>
<td>PBS 5% Mp</td>
<td>1h-o/n</td>
</tr>
</tbody>
</table>

(25 mM Tris/HCl pH 7.4, 140 mM NaCl, 2.7 mM KCl) or TBS-tween (TBS-T; TBS, 0.05% (v/v) Tween® 20) containing 5% (w/v) skim milk powder] Membranes were then incubated for 60 min or longer with adequate antibody dilutions in blocking buffer. (see Table 4.1) and washed extensively with PBS, TBS or TBS-T buffer. To reveal primary antibodies, membranes were incubated 30 min with a 3'000x dilution of horseradish peroxidase-coupled goat anti-rabbit IgG (Bio-Rad Laboratories) in blocking buffer. After washing with PBS/TBS/TBS-T buffer, signals were detected by enhanced chemiluminescence. The membranes were incubated 1 min in [0.1 M Tris/HCl pH 8.5, 1.25 mM 3-aminophthalhydrazide (= luminol), 0.2 mM p-coumaric acid, 0.009% (v/v) H2O2] and exposed to high performance chemiluminescence films (Amersham Biosciences). Alternatively, luminescence was monitored and quantified using a ChemiDock system and the QuantityOne software (both from BioRad).

4.2.14 Immunolocalization in protoplasts

Immunolocalization in isolated protoplasts was performed as described by Matsui et al. et al. (1995) with the following modifications. Polysine slides (BDH Laboratories) were used. Protoplasts were fixed with 4% (v/v) formaldehyde in W5 buffer [154 mM NaCl, 125 mM CaCl2, 5 mM KCl, 5 mM glucose, 1.5 mM MES pH 5.6] and permeabilized with 0.5% (v/v) NP-40 in W5. Primary antibodies were diluted 1:50 (v/v, anti-CAB serum) and to 15 ng/µl (anti-AtTOC159 and anti-AtPGL35). Slides were mounted in SlowFade solution (Molecular Probes) and fluorescence of the fluorescein-coupled secondary antibody (Pierce) was monitored by confocal scanning microscopy using the FITC (488 nm) laser line from a LEICA TCS 4D microscope.

4.2.15 Electron microscopy and immunocytochemistry

Ultrastructural analysis of chloroplasts

Leaves from adult *A. thaliana* plants were fixed over night at 4°C in 50 mM sodium cacodylate containing 2.5% (w/v) glutaraldehyde, post-fixed with 1%
(w/v) osmium tetroxide for 2 h at 20°C, dehydrated in ethanol and acetone series and included in Spurr epoxy resin (Polyscience). Ultrathin sections of 90 nm were prepared using an Ultracut-E microtome (Reichert-Jung), mounted on copper grids and contrasted with uranyl acetate and Reynolds lead solution (Reynolds, 1963). Sections were observed with a Philips CM100 electron microscope operating at 60 kV. Plastoglobule size was quantified using the ImageJ software (http://rsb.info.nih.gov/ij/).

Immunogold-electron microscopy

Adult Arabidopsis leaves were fixed over night in 50 mM sodium cacodylate containing 4% (w/v) paraformaldehyde and 2% (w/v) glutaraldehyde at 4°C. After dehydration in ethanol, samples were embedded in LR-White resin (London Resin Company LTD). Ultrathin sections were prepared as above and were mounted on nickel grids. Sections were pre-treated with 0.5 M ammonium chloride for 1h, washed with TBT buffer [20 mM Tris/HCl pH 8.5; 150 mM NaCl; 20 mM sodium azide; 0.1% (w/v) bovine serum albumin; 0.1% (v/v) Tween20] supplied with 1% (v/v) goat serum (GS, Sigma G9023), and incubated for 30 min on TBT supplied with 10% (v/v) GS. Incubation with affinity purified anti-AtPGL35 was performed over-night at 4°C. Antibodies were diluted 10 times in TBT + 1% GS buffer. Sections were incubated without anti-AtPGL35 in control experiments. After washings with TBT + 1% GS, primary antibodies were revealed by incubation on 1:30 (v/v) dilution of gold-conjugated anti-rabbit IgG (Sigma G7402, in TBT + 1% GS). Sections were rinsed with distilled water, contrasted with 1% (w/v) tannic acid, saturated uranyl acetate and Reynolds lead solution and observed with a Philips CM100 electron microscope.

4.2.16 Fluorometry

Maximum quantum efficiency of photosystem II (Fv/Fm) was measured using a Handy Plant Efficiency Analyser chlorophyll fluorometer (Hansatech Instruments). Leaves were dark-adapted 20 min prior to measurements.

4.2.17 Bioinformatics

DNA microarray data were retrieved from public database and analysed using the Geenevestigantor toolbox (Zimmermann et al. et al. 2004; https://www.genevestigator.ethz.ch/at/). Kyte and Doolittle hydropathy plots (Kyte and Doolittle, 1982) were calculated at http://occawlonline.pearsoned.com/bookbind/pub-books/bc_mcampbell_genomics_1/medialib/activities/kd/kyte-doolittle.htm or using the Protean software from DNA* (http://www.dnastar.com/). ESTs from plastoglobulin genes were retrieved from The Arabidopsis Resource (http://www.arabidopsis.org/). The ClustalW software (http://www.ch.embnet.org/software/ClustalW.html) was used to generate multiple sequence alignments as well as dendrograms. Alignments were edited using the BOXSHADE software (http://www.ch.embnet.org/software/BOX_form.html). The phyloden-
dron program (http://iubio.bio.indiana.edu/trecapp/treeprint-form.html) was used to draw phylogenetic trees.
Appendix: The Arabidopsis plastoglobule proteome

Table 4.2. Proteins identified by tandem mass spectrometry in Arabidopsis low-density chloroplast membrane fraction. Proteins were divided in four groups: PAP/fibrillins, chloroplast metabolic proteins, unclassified proteins and thylakoid components. Prediction of subcellular localisation using the TargetP software are shown. Pept. nb., total number of peptides identified in replicate preparations; P, plastid; M, mitochondria. From Vidi et al., (2006).

<table>
<thead>
<tr>
<th>AGI code</th>
<th>Name, annotation or domain</th>
<th>Pept. nb.</th>
<th>TargetP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAP/fibrillins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At3g26070</td>
<td>AtPGL25, plastid-lipid associated protein PAP</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>At2g42130</td>
<td>AtPGL30</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>At3g23400</td>
<td>AtPGL30.4, plastid-lipid associated protein PAP</td>
<td>134</td>
<td>P</td>
</tr>
<tr>
<td>At4g22240</td>
<td>AtPGL33, plastid-lipid associated protein PAP</td>
<td>66</td>
<td>P</td>
</tr>
<tr>
<td>At3g58010</td>
<td>AtPGL34</td>
<td>33</td>
<td>P</td>
</tr>
<tr>
<td>At4g04020</td>
<td>AtPGL35, plastid-lipid associated protein PAP</td>
<td>160</td>
<td>P</td>
</tr>
<tr>
<td>At2g35490</td>
<td>AtPGL40, plastid-lipid associated protein PAP</td>
<td>103</td>
<td>P</td>
</tr>
<tr>
<td>Chloroplast metabolism protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At2g21330</td>
<td>AtFBA1, fructose-bisphosphate aldolase</td>
<td>120</td>
<td>P</td>
</tr>
<tr>
<td>At4g38970</td>
<td>AtFBA2, fructose-bisphosphate aldolase</td>
<td>93</td>
<td>P</td>
</tr>
<tr>
<td>At2g01140</td>
<td>AtFBA3, fructose-bisphosphate aldolase</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>At5g42650</td>
<td>AtAOS, allene oxide synthase</td>
<td>63</td>
<td>P</td>
</tr>
<tr>
<td>At4g19170</td>
<td>AtCCD4, 9-cis-epoxycarotenoid dioxygenase</td>
<td>45</td>
<td>P</td>
</tr>
<tr>
<td>At4g32770</td>
<td>AtVTE1, tocopherol cyclase</td>
<td>50</td>
<td>P</td>
</tr>
<tr>
<td>Unclassified proteins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At5g08740</td>
<td>Unknown, NADH dehydrogenase-like protein</td>
<td>33</td>
<td>P</td>
</tr>
<tr>
<td>At5g05200</td>
<td>Unknown, ABC1 motif/putative kinase</td>
<td>19</td>
<td>M</td>
</tr>
<tr>
<td>At1g79600</td>
<td>Expressed protein, ABC1 family protein, chaperonin</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>At1g54570</td>
<td>Expressed protein, esterase; lipase; thioesterase</td>
<td>24</td>
<td>P</td>
</tr>
<tr>
<td>At3g26840</td>
<td>Expressed protein, esterase; lipase; thioesterase</td>
<td>14</td>
<td>P</td>
</tr>
<tr>
<td>At1g78140</td>
<td>Hypothetical protein, menaquinone biosynthesis, methyltransferase-related</td>
<td>3</td>
<td>M</td>
</tr>
<tr>
<td>At2g41040</td>
<td>Expressed protein, methyltransferase-related</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>At1g32220</td>
<td>Unknown, 3-beta hydroxysteroid dehydrogenase/isomerase</td>
<td>25</td>
<td>P</td>
</tr>
<tr>
<td>At2g34460</td>
<td>Unknown, flavine reductase, steroid biosynthesis</td>
<td>32</td>
<td>P</td>
</tr>
<tr>
<td>At4g13200</td>
<td>Expressed protein</td>
<td>28</td>
<td>P</td>
</tr>
<tr>
<td>At3g10130</td>
<td>Unknown, SOUL heme-binding family protein, weak similarity to heme-binding protein</td>
<td>15</td>
<td>P</td>
</tr>
<tr>
<td>At1g06690</td>
<td>Unknown, aldo-keto reductase, ANC transporters family signature</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>At3g26060</td>
<td>Peroxiredoxin Q</td>
<td>6</td>
<td>P</td>
</tr>
<tr>
<td>At1g52590</td>
<td>Expressed protein</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>Thylakoid components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At5g66570</td>
<td>PSII-O, photosystem II oxygen-evolving complex</td>
<td>6</td>
<td>P</td>
</tr>
<tr>
<td>At3g50820</td>
<td>PSII-O, photosystem II oxygen-evolving complex</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>At5g01530</td>
<td>Lhcb4, putative chlorophyll a/b-binding protein</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>At1g29910</td>
<td>Lhca2, chlorophyll a/b-binding protein</td>
<td>12</td>
<td>P</td>
</tr>
<tr>
<td>At4g10340</td>
<td>Lhcb5, chlorophyll a/b-binding protein-like</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>At1g61520</td>
<td>Lhca2, PSI type III chlorophyll a/b-binding protein</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>At3g54890</td>
<td>Chlorophyll a/b-binding protein</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>At2g05070</td>
<td>Putative chlorophyll a/b binding protein</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Count</td>
<td>Type</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>at4g12800</td>
<td>PSI-L, probable photosystem I chain XI precursor</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>At4g28750</td>
<td>PSI-E, putative photosystem I reaction center subunit IV</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>At1g31330</td>
<td>PSI-F, photosystem I reaction center subunit III</td>
<td>7</td>
<td>P</td>
</tr>
<tr>
<td>At4g09650</td>
<td>AtpD, ATPase delta subunit</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>At4g02770</td>
<td>PSI-D, putative photosystem I reaction center subunit II</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>AtCg00480</td>
<td>AtpB, ATP synthase CF1 beta chain</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>AtCg00350</td>
<td>PsaA, PSI P700 apoprotein A1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>AtCg00280</td>
<td>PsbC, PSII CP43 subunit of the photosystem II reaction center.</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>
Bibliography

Acknowledgments

First of all, I would like to thank Prof. Dr. Felix Kessler for giving me the opportunity to perform my Ph.D. thesis in his group at the Laboratory of Plant Physiology, University of Neuchâtel. I highly appreciated his communicative enthusiasm and his numerous motivating ideas. I am deeply grateful for his support and encouragement throughout my thesis work, as well as for the opportunities he gave me to initiate interesting collaborations.

I would also like to acknowledge Prof. Dr. Jean-Marc Neuhaus, Prof. Dr. Samuel Zeeman and Prof. Dr. Danny Schnell for accepting to serve in my thesis committee.

A special acknowledgement goes for Dr. Claire Bréhélin for advice and inspiring discussion, as well as for DNA constructs and antibodies.

I am indebted to Dr. Gabor Csucs for introducing me to confocal microscopy and to Joanne Schwaar and Christelle Joss for invaluable technical assistance. Also, I would like to thank Dr. Andreas Hiltbrunner, Dr. Petra Weibel, Dr. Birgit Agne, Sibylle Infanger, Michaël Illeguems and Gwendoline Rahim for discussion and contributions to this work.

Additional thanks go to Romain Bessire for his frequent advice regarding informatics, as well as to Jana Smutny and Marlyse Meylan for taking care of general laboratory equipment and managing the ordering.

I am grateful, too, to Dr. P. Dörmann, Prof. Dr. E. Schäfer, Prof. Dr. C. Frankhauser, Dr. M. Alvarez-Huerta, Prof. Dr. I. Small, Prof. Dr. K. Apel and Dr. S. Crafts-Brandner for kindly providing antibodies and plasmid constructs.

Last but not least, I am grateful to my parents for their support and would like to thank Joëlle for her help with BTeX business and most importantly for her love and her patience.