Corticotropin-Releasing Hormone Directly Stimulates Thermogenesis in Skeletal Muscle Possibly through Substrate Cycling between de Novo Lipogenesis and Lipid Oxidation

Department of Medicine (G.S., S.S., D.M., J.P.M., A.G.D.), Division of Physiology, University of Fribourg, Fribourg CH-1700, Switzerland; Department of Vascular and Metabolic Diseases (M.G.), Hoffman-La Roche, CH-4070 Basel, Switzerland; Department of Neuroscience (J.S.), Centre Médical Universitaire, CH-1211 Geneva, Switzerland; and Pennington Biomedical Research Center (S.R.S.), Baton Rouge, Louisiana 70808

The mechanisms by which CRH and related peptides (i.e. the CRH/urocortin system) exert their control over thermogenesis and weight regulation have until now focused only upon their effects on brain centers controlling sympathetic outflow. Using a method that involves repeated oxygen uptake determinations in intact mouse skeletal muscle, we report here that CRH can act directly on skeletal muscle to stimulate thermogenesis, an effect that is more pronounced in oxidative than in glycolytic muscles and that can be inhibited by a selective CRH-R2 antagonist or blunted by a nonselective CRH receptor antagonist. This thermogenic effect of CRH can also be blocked by interference along pathways of de novo lipogenesis and lipid oxidation, as well as by inhibitors of phosphatidylinositol 3-kinase or AMP-activated protein kinase. Taken together, these studies demonstrate that CRH can directly stimulate thermogenesis in skeletal muscle, and in addition raise the possibility that this thermogenic effect, which requires both phosphatidylinositol 3-kinase and AMP-activated protein kinase signaling, might occur via substrate cycling between de novo lipogenesis and lipid oxidation. The effect of CRH in directly stimulating thermogenesis in skeletal muscle underscores a potentially important peripheral role for the CRH/urocortin system in the control of thermogenesis in this tissue, in its protection against excessive intramyocellular lipid storage, and hence against skeletal muscle lipotoxicity and insulin resistance. (Endocrinology 147: 31–38, 2006)

The CRH system consists of distinct populations of CRH-expressing neurons, a CRH-binding protein, a family of receptors encoded by two different genes (crhr-1 and crhr-2) with several splice variants, and several related peptides (urocortin, urocortin 2, and urocortin 3), which are also ligands for CRH receptors. These components of the CRH system constitute an elaborate network of neuronal pathways that play a pivotal role in orchestrating the body’s overall response to stress and to stress-induced activation of the hypothalamic-pituitary-adrenal axis (1). The CRH system also interacts with brain circuits controlling food intake and thermogenesis (2). Its role in weight regulation has been linked to its interaction with peripheral hormonal signals that inform the brain about the status of the body’s fat reserves (2). In particular, the importance of the CRH system as a target for the anorectic and thermogenic effects of the adipocyte-secreted hormone leptin has been emphasized in studies demonstrating that 1) leptin down-regulates the expression of hypothalamic CRH (3), thereby reducing the hypothalamic pituitary-adrenal axis activity, and 2) when administered centrally, CRH antagonists prevent the anorectic effects of leptin (4), whereas CRH, like leptin (5–7), stimulates whole-body oxygen consumption (8) and sympathetically mediated thermogenesis in brown adipose tissue (9, 10).

Leptin also exerts direct peripheral effects on skeletal muscle metabolism, namely by stimulating glucose use in a phosphatidylinositol 3-kinase (PI3K)-dependent manner (11) or fatty acid oxidation through activation of the AMP-activated protein kinase (AMPK) and ACC [acetyl coenzyme A (CoA) carboxylase] axis (12). More recently, leptin has also been shown to have direct effects on skeletal muscle thermogenesis (13), through mechanisms that involve substrate cycling between de novo lipogenesis and lipid oxidation (14, 15). Such an energy-dissipating pathway might not only contribute to the stimulatory effect of leptin replacement on energy expenditure after weight loss (16, 17) but may also be the mechanism by which leptin regulates intramyocellular lipid stores and protects skeletal muscle against lipid-induced stress (lipotoxicity) (18). Whether, as a circulating hormone, CRH might play similar roles at the periphery is not known. We therefore decided to test the hypothesis that CRH, like leptin, may also directly stimulate thermogenesis in skeletal muscle...
muscle on the basis of the following: 1) a splice variant of the CRH receptor encoded by the crhr-2 gene (CRH-R2β) is also expressed in skeletal muscle (19, 20), and 2) peripheral infusion of CRH stimulates thermogenesis and lipid oxidation, as previously reported for leptin and CRH's stimulatory effect on MO2, but which, in its own rights, did not have an inhibitory effect on basal MO2; this corresponded to 1 μg/ml for each of the two CRH receptor antagonists used: antisauvagine-30 and astressin. Furthermore, in testing whether CRH stimulates thermogenesis by the same mechanism (substrate cycling) that we previously proposed for leptin (14), we used the same concentration of the various inhibitors that we previously found to completely block the direct effect of leptin on muscle thermogenesis (13, 14). We believe that these concentrations are close to the minimal effective dose in our assay because concentrations corresponding to five times higher dilution of each inhibitor failed to produce statistically significant effects on CRH-induced increases in muscle MO2.

AMPK/ACC phosphorylation and PI3K/Akt assays

Soleus muscles were incubated ex vivo in Krebs-Ringer buffer alone for 30 min, followed by incubation alone or in presence of a test hormone or drug for 15 min, and then immediately frozen in liquid nitrogen. Frozen muscles were homogenized and incubated in lysis buffer [20 mM Tris-HCl, 138 mM NaCl, 2.7 mM KCl, 5% (vol/vol) glycerol, Nonidet P-40 and protease/phosphatase inhibitors] for 15 min. After centrifugation at 13,000 rpm for 15 min, protein concentration was quantified and the protein extracts were used for measurement of AMPK Thr172, ACC Ser79, and protein kinase B/Akt (referred to as Akt) Ser473 phosphorylation, or PI3K phosphorylation. 200 μg of protein extract were immunoprecipitated with phospho-AMPKα (Thr172) or phospho-ACC (Ser 79) polyclonal antibodies (Cell Signaling, Beverly, MA). The samples were then separated on a 10% SDS-PAGE gel and blotted on a polyvinylidene difluoride membrane that was analyzed with same phospho-AMPKα (Thr172) or phospho-ACC (Ser 79) polyclonal antibodies. For PI3K phosphorylation, the protein extract was analyzed by immunoblot using Akt P-Ser 473-specific antibody (Cell Signaling), the membrane was then stripped from the Akt P-Ser 473-specific antibody and treated with Akt antibodies (Cell Signaling).

Chemicals and drugs

All chemicals were purchased from Fluka (Buchs, Switzerland). Human CRH was synthesized by Bachem (Torrance, CA), and purity was confirmed by HPLC. The peptide, as the acetic salts, was reconstituted to a final concentration of 0.5 mg/ml (free base) in 0.9% saline acidified with glacial acetic acid. The peptides were aliquoted and frozen at −70°C until the day of use. Strescopin-related peptide (human) or urocortin 2 was purchased from Bachem (Merseside, UK), whereas Astressin and antisauvagine-30 were purchased from Polypeptide Laboratories Inc. (Torrance, CA), purity confirmed by HPLC, and the products supplied as acetate salts. Wortmannin and hydroxy-citrate from Calbiochem (Lucern, Switzerland), cerulenin from Fluka, and LY294002 as well as adrenine β-β-arabinofuranoside (araA) from Sigma (St. Louis, MO). Eto-moxir was a generous gift from Dr. W. Langhans (Zurich, Switzerland).

Statistics

The analysis of data on changes in MO2 in response to CRH and other drugs was performed either by paired t test or by ANOVA with repeated measures, using the statistical software STATISTIK (St. Paul, MN). Upon detection of significant increases by ANOVA, post hoc pairwise comparisons were conducted using Scheffe’s test, with the level of statistical significance taken as P < 0.05.

Results

Direct effect of CRH on skeletal muscle thermogenesis

The addition of CRH, at 0.1 or 0.5 μg/ml, to the intact skeletal muscle preparations, resulted in significant increases in MO2 above basal rate in the soleus muscle, namely by 20
and 25% ($P < 0.01$), respectively (Fig. 1A); at higher concentrations (1 μg/ml), the addition of CRH did not lead to further increase in MO_2 (data not shown). A stimulatory effect of CRH on MO_2 is also observed in EDL muscles from these same mice, but this increase (~7% above basal values, $P < 0.05$) is much less pronounced than in the soleus muscle (Soleus vs. EDL response, $P < 0.01$). Real-time PCR data from our laboratory indicate that this muscle type difference in MO_2 response cannot be attributed to differential gene expression of CRH-R2β because the mRNA levels were similar in both soleus and EDL muscles. Because the CRH effect on MO_2 in EDL is small, subsequent studies were performed only in the soleus muscle whose response to CRH is quantitatively more important. To test whether the observed direct effect of CRH on muscle thermogenesis was due to binding of CRH to CRH-R2β receptors (the only CRH receptor isof orm so far reported to be expressed in skeletal muscle), we investigated whether the CRH-induced increase in soleus muscle MO_2 could be prevented by the presence of antisauvagine-30, a selective CRH-R2 antagonist, and whether it could be mimicked by urocortin 2, a selective CRH-R2 agonist. The results, presented in Fig. 1, B and C, indicate that urocortin 2 also stimulates muscle MO_2 (+14% above basal values, $P < 0.001$) maximally at 0.25 μg/ml; at lower doses tested in preliminary studies (data not shown), urocortin 2 had either no effect relative to basal MO_2 at 0.05 μg/ml or increased muscle MO_2 by about 10–12% ($P < 0.05$) at 0.1 μg/ml. Antisauvagine-30, at concentrations that do not have an effect on basal MO_2 (Fig. 1D), resulted in a partial inhibition of the stimulatory effect of CRH or urocortin 2 on muscle MO_2 ($P < 0.05$), and its withdrawal resulted in an increase in muscle MO_2 ($P < 0.01$) in response to continuous administration of CRH and urocortin 2 (Fig. 1, B and C). However, complete blunting of the thermogenic effect of CRH and urocortin 2 can be observed in presence of the nonselective CRH receptor antagonist, astressin, at concentrations that do not have an effect on basal MO_2 (Fig. 1D). Indeed, as also shown in Fig. 1, B and C, CRH (or urocortin 2) failed to FIG. 1. Steady-state MO_2 of: A, soleus and EDL muscles in the basal state and during sequential addition of 0.1 or 0.5 μg/ml of CRH; B, soleus muscles in presence or absence of CRH, antisauvagine-30 (a selective CRH-R2 antagonist) or astressin (a nonselective CRH receptor antagonist); C, soleus muscles in presence or absence of urocortin 2 (a CRH-R2 agonist), antisauvagine-30 or astressin; and D, soleus muscle indicating that at the concentrations used, the CRH receptor antagonists (antisauvagine-30 and astressin) did not alter basal MO_2. All data are on MO_2 means, with vertical bars representing SEs ($n = 5–7$). Significant effects in sequential changes in MO_2 were assessed by paired t test or by ANOVA with repeated measures followed by Scheffé’s test for pair-wise comparisons; in the latter case, the values not sharing the same superscript letters (a, b) are significantly different from each other ($P < 0.05$).
stimulate muscle MO₂ in the presence of astressin, in contrast to that observed in contralateral muscles treated only with CRH (or urocortin 2) (P < 0.001). Taken together, these studies indicate that CRH can directly stimulate thermogenesis in skeletal muscle, and that the thermogenic effects of CRH are consequential to the activation of specific CRH receptors.

Requirement for lipid oxidation and de novo lipogenesis

We have previously proposed that substrate cycling between de novo lipogenesis and lipid oxidation, a futile cycle known to be involved in brown adipose tissue thermogenesis (24), also operate as a thermogenic effector in skeletal muscle (15) on the basis of previously reported calorimetric studies indicating that inhibition of key control points along pathways in this substrate cycle resulted in the blunting of the direct effect of leptin in stimulating thermogenesis in skeletal muscle (14). After our findings above that CRH also stimulates skeletal muscle thermogenesis with a similar muscle type specificity (soleus > EDL) and similar magnitude (20% increase in soleus muscle) as previously reported for leptin (13, 14), we test here whether CRH might also operate through the same molecular mechanisms of substrate cycling. To this end, we used the same concentrations of inhibitors that we previously used to implicate a potential role of this substrate cycle in the direct effect of leptin on muscle thermogenesis (14).

The results presented in Fig. 2A show that the direct effect of CRH on muscle MO₂ is completely inhibited (P < 0.001) by 1 etomoxir, a known selective inhibitor of carnitine palmitoyl transferase-1 (CPT-1), which regulates the entry of long chain fatty acids into mitochondria, and by 2) the replacement of glucose in the perfusion medium with 2-deoxyglucose, a glucose analog whose metabolism stops after its phosphorylation by hexokinase, thereby indicating that CRH-induced thermogenesis in muscle requires both fatty acid oxidation and glucose metabolism. A requirement of de novo lipogenesis for CRH-induced thermogenesis in skeletal muscle is suggested by data in Fig. 2B, showing that CRH-induced increases in muscle MO₂ are completely abolished (P < 0.01) by the addition of inhibitors of key control points in pathways leading to the synthesis of lipids, namely by either OH-citrate, which inhibits the enzyme citrate lyase, or by cerulenin, an inhibitor of fatty acid synthase. Taken together, these data suggest that lipid oxidation, glucose metabolism and de novo lipogenesis are all required for the direct thermogenic effect of CRH in skeletal muscle.

Requirements for PI3K and AMPK

We have also previously proposed that PI3K and AMPK are key signaling pathways required for the orchestration of this thermogenic substrate cycle between de novo lipogenesis and lipid oxidation in response to leptin (14, 15). To test whether PI3K and AMPK signaling are also involved in the direct thermogenic effects of CRH in skeletal muscle, we investigated here whether the increase in muscle MO₂ in response to CRH might be abolished by inhibitors of PI3K or AMPK, at concentrations previously reported to be effective in blocking the thermogenic effect of leptin (13, 14). Furthermore, we also measured, using biochemical assays for PI3K and AMPK, whether these signaling pathways are stimulated in skeletal muscle incubated with CRH. The results, presented in Fig. 3A, show that the subsequent addition of either wortmannin or LY294002, two specific inhibitors of PI3K, completely abolished the CRH-induced increase in soleus MO₂ (P < 0.001 for wortmannin and P < 0.05 for LY294002). Using in vitro kinase assays in ex vivo intact soleus muscles incubated with CRH, insulin, or saline solution as control, we could not, however, detect an induction of PY, IRS1, IRS2 and p85-associated PI3K activity, nor in Akt phosphorylation (a target of the PI3K pathway) with 0.1 μg/ml CRH (Fig. 3, B and C) nor with 0.5 μg/ml CRH (data not shown); this is in contrast to the expected marked increases in both PI3K and Akt signaling observed in response to insulin (Fig. 3, B and C). These data from biochemical assays, together with those obtained by calorimetry with the use of PI3K inhibitors, suggest that at least a basal PI3K activity is required (and possibly sufficient) for the thermogenic effect of CRH.

Fig. 2. Steady-state MO₂ of soleus muscle (A) in the basal state, followed by sequential addition of CRH and etomoxir (an inhibitor of fatty acid oxidation), or during addition of CRH, and subsequently after addition of CRH in buffer in which glucose has been replaced by 2-deoxyglucose (2-DG), and (B) MO₂ in the basal state, during sequential addition of CRH and OH-citrate, an inhibitor of citrate lyase, or during sequential addition of CRH and cerulenin, an inhibitor of fatty acid synthase. Note that at the concentrations used, the inhibitors did not alter basal MO₂. All data are means, with vertical bars representing S.E.S (n = 5–6). Statistical significance of differences are shown as indicated in the legend to Fig. 1.
A requirement for AMPK signaling is also indicated by data presented in Fig. 3D showing that prior addition of adenine araA, an intracellular competitive inhibitor of AMPK, prevents CRH-induced increases in muscle MO$_2$, and that both AMPK and ACC phosphorylation are increased after treatment of skeletal muscle with CRH (Fig. 3E and F), these increases being marginal with 0.1 µg/ml CRH (−20%, not significant), but significant with 0.5 µg/ml CRH (+40−120%, $P < 0.01$). Taken together, these data suggest that both PI3K and AMPK activities are required for the direct action of CRH in stimulating skeletal muscle thermogenesis.

Discussion

We show here, for the first time, that CRH can directly stimulate thermogenesis in skeletal muscle, an effect that is much more pronounced in oxidative muscles (soleus) than in glycolytic muscles (EDL). This thermogenic response to CRH in skeletal muscle could be completely blocked by the non-selective CRH receptor antagonist astressin, thereby showing that this response is dependent upon the activation of specific CRH receptors. To date, only one CRH receptor isoform, CRH-R2, has been described in skeletal muscle (19, 20). Our data showing that the thermogenic effect of CRH can be mimicked by urocortin 2 (a CRH-R agonist with high affinity for CRH-R2), and that it can be partially inhibited by antisauvagine-30 (a selective CRH-R2 antagonist), are consistent with a role for CRH-R2 in the peripheral effect of CRH on muscle thermogenesis. At present, we cannot rule out whether the partial inhibitory effects of antisauvagine-30 on thermogenic actions of CRH or that of urocortin 2 are due to a partial inhibition of CRH-R2β or because skeletal muscle
expresses other CRH receptor isoforms that are not yet identified. This latter explanation might assume greater importance after the observation, by immunohistochemistry analysis of both oxidative and glycolytic skeletal muscles, that the CRH-R2β protein could be localized in neural structures, blood vessels, myotendinous junctions, and endomysial/perimysial spaces, but not in myocytes (25). On the other hand, the report that CRH-R2 expression is detectable in primary cardiomyocytes cell culture by RT-PCR suggests that this receptor subtype is also expressed in muscle cells (26). Taken together, these observations raise questions as to whether the differential thermogenic responses to CRH observed here in mouse soleus and EDL muscles (which we found to show similar gene expressions levels of CRH-R2β) would reside 1) in the abundance of this putative unidentified CRH receptor isomform in myocytes, 2) in the relative abundance of CRH-R2β in different tissues/structures within the muscle, or 3) in events downstream to CRH-R2 signaling. Furthermore, because the heart, like skeletal muscle, also expresses CRH-R2β and urocortin 2 (27), the questions arise as to whether the localization of CRH-R2β receptors in the heart muscle is fundamentally different from that in skeletal muscle, and whether urocortin 2—a potentially important ligand to the CRH-R2β in both muscles—plays an autocrine/paracrine role in controlling substrate metabolism and thermogenesis in these tissues.

Despite considerable search over the past decades for effectors of thermogenesis in skeletal muscle, there is to date no convincing evidence that this tissue is a site of regulated mitochondrial uncoupling, by analogy to that mediated by the uncoupling protein (UCP1) in brown adipose tissue. In fact, the notion that the uncoupling protein homologs, UCP3 and UCP2, could be physiological regulators of thermogenic uncoupling in skeletal muscle has not received experimental support despite considerable testing (28). This point is further illustrated by the recent demonstration that constitutive UCP3 overexpression at physiological levels in mouse skeletal muscle, while increasing the capacity of this tissue for fatty acid oxidation, nonetheless failed to increase thermogenesis (29). Given doubts that regulated mitochondrial uncoupling underlies thermogenesis in intact muscle, there is nowadays renewed interest about the potential role of futile cycles toward understanding the biochemical basis of thermogenesis in general and in skeletal muscle thermogenesis in particular. In this context, an increased rate of substrate cycling between triacylglycerol and fatty acid has recently been shown to account for about 15% of the thermogenic effect of leptin administered in vivo (30), and we have previously reported that leptin can directly stimulate thermogenesis in oxidative muscle ex vivo (13) possibly by promoting an energy dissipating substrate cycling between de novo lipogenesis and lipid oxidation (14, 15)—a futile cycle that is also known to be involved in cold-induced thermogenesis in brown adipose tissue (15, 24). We present here data indicating that the direct effect of CRH on skeletal muscle thermogenesis is also dependent upon this flux of substrates between de novo lipogenesis and fatty acid oxidation because the increase in muscle O2 consumption in response to CRH is completely inhibited by interference with either 1) the metabolism of glucose, using 2-deoxyglucose; 2) the conversion of citrate to acetyl-CoA, using the citrate lyase inhibitor hydroxycitrate; 3) the conversion of malonyl-CoA to fatty acids, using cerulenin, an inhibitor of fatty-acid synthesis; or with 4) the entry of fatty acids into mitochondrial β-oxidation pathway using etomoxir, an inhibitor of CPT-1. It is proposed that during CRH-induced activation of this substrate cycle (depicted in Fig. 4), acetyl-CoA produced from fatty acid and glucose oxidation, will overload the Krebs cycle. This will result in excess mitochondrial citrate that, in the cytoplasm, will exert an allosteric activation of the enzyme ACC and at the same time, under the action of citrate lyase, will provide acetyl-CoA to ACC for the synthesis of malonyl-CoA. The latter will serve as the main substrate for fatty acid synthesis, thereby producing a new pool of fatty acids. Glucose plays a central role in this cycle as a source of Krebs cycle intermediates and reduced nicotinamide adenine dinucleotide phosphate molecules that are required for de novo synthesis of fatty acids (31). The capacity of skeletal muscle to perform de novo lipogenesis is strongly supported by the recent demonstrations in muscle satellite cells that glucose stimulates the expression of sterol regulatory element binding protein-1c mRNA as well as key genes encoding glycolytic and lipogenic enzymes, leading to an increased lipogenic flux and intracellular lipid accumulation (32, 33). These findings in primary muscle cell cultures provide direct evidence that de novo lipogenesis can occur in rat and human skeletal muscle cells and are consistent with data of metabolic labeling from our laboratory showing that de novo lipogenesis can also occur in intact mouse soleus and EDL muscles used in our calorimetric studies (14, 15).

Our data also suggest that this CRH-induced substrate cycling between de novo fatty acid synthesis and fatty acid oxidation in skeletal muscle is coordinated by AMPK and P3K signaling because 1) the thermogenic effect of CRH in the soleus muscle, which is associated with AMPK and ACC phosphorylation, can be prevented by pharmacological inhibition of AMPK activation using araA, and because 2) the effects of CRH on muscle thermogenesis can also be completely inhibited by inhibitors of P3K (wortmannin or LY294002). Because our data also indicate that the requirement for P3K activity in CRH-mediated thermogenesis in skeletal muscle is independent of a CRH-mediated induction of P3K activity, it is possible that basal levels of P3K activity (inhibited by wortmannin or LY294002) are required to support the direct thermogenic effect of CRH in skeletal muscle. Further evidence underscoring a dual requirement for AMPK and P3K signaling in the operation of this substrate cycling can be derived from our previous findings (14) that the administration of insulin (a potent stimulator of P3K activity) to our muscle preparations is not sufficient to induce skeletal muscle thermogenesis, and that the activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside (or by leptin) led to an increase in muscle thermogenesis that is abolished by the P3K inhibitor wortmannin (14). Thus, as depicted in Fig. 4, in response to CRH, AMPK-induced phosphorylation of ACC, will counterbalance the stimulatory action of citrate on ACC thereby resulting in reduced malonyl-CoA concentration, disinhibition of CPT-1, and increased fatty acid oxidation. This in turn will lead to the production
of acetyl-CoA that will fuel the Krebs cycle and increase citrate levels. Conversely, PI3K activity will promote cellular glucose uptake and synthesis of fatty acids. This would occur despite AMPK-induced reduction in malonyl-CoA because it is known that full phosphorylation of ACC by AMPK results in an inhibition of ACC activities only by 50–60% (34, 35). Such partial inhibition of ACC is expected to redirect the flux of acetyl-CoA and malonyl-CoA toward fatty acid oxidation but would still allow substantial rate of fatty acid synthesis, particularly in presence of high levels of citrate. According to the stoichiometry of this substrate cycle, the synthesis of one molecule of palmitic acid from acetyl-CoA and its reoxidation to acetyl-CoA would cost at least 14 molecules of ATP. Repeated recycling of acetyl-CoA through the flux of substrates across lipogenesis followed by β-oxidation could therefore constitute the mechanism by which CRH directly stimulates thermogenesis in skeletal muscle. The increases in thermogenesis observed here with CRH are quite similar to those observed with leptin, namely between 20 and 30% (13, 14), and higher than we observe with catecholamines (about 5–15% increase; Seydoux, J., and A. G. Dulloo, unpublished data). It should, however, be emphasized that because the skeletal mass is large (contributing between 30 and 40% of total body mass and an even greater percentage of daily energy expenditure), a relatively small increase in muscle respiration rate can have a significant impact on whole body energy expenditure and on muscle lipid homeostasis. Consequently, the substrate cycling proposed here in response to CRH could also underscore a thermogenic effector system through which mobilization of the im triglycerides stores might have contributed to the increase in whole-body energy expenditure and fat oxidation observed in humans infused with CRH (21).

In conclusion, this study demonstrates that CRH can directly stimulate thermogenesis in skeletal muscle and provides evidence that raises the possibility that the direct action of CRH might be mediated by substrate cycling between de novo lipogenesis and lipid oxidation, orchestrated by PI3K and AMPK signaling. The capacity of CRH to directly stimulate metabolic rate by an energy dissipating substrate cycle linking glucose and lipid metabolism to thermogenesis in skeletal muscle provide the rationale for the development of peripheral CRH receptor agonists as potential thermogenic drugs in the management of obesity or against excessive accumulation of intramyocellular lipids, and hence against skeletal muscle lipotoxicity and insulin resistance.
Acknowledgments

We thank Dorothée Rohrer and Marie-Françoise Baeriswyl for excellent technical support, and Prof. Wolfgang Langhans (Zurich) for his generous gift of etomoxir.

Received August 12, 2005. Accepted September 16, 2005. Address all correspondence and requests for reprints to: Dr. A. G. Dulloo, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland. E-mail: abdul.dulloo@unifr.ch.

This work was supported by Grants 3157129.991 and 3200B0-101256 of the Swiss National Science Foundation, and the U.S. Department of Agriculture Grant 96034323-3031 and NIH 1RO1 DK050736 Community Foundation for Southeastern Michigan.

References

20. Koenen TW, Chalmers D J, Lin CT, De Souza EB 1995 CRF2α and CRF2β receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues. Endocrinology 136:4139–4142