Faculté des sciences

Water-Soluble Arene Ruthenium Complexes Containing a trans-1,2-Diaminocyclohexane Ligand as Enantioselective Transfer Hydrogenation Catalysts in Aqueous Solution

Canivet, Jérôme ; Labat, Gael ; Stoeckli-Evans, Helen ; Süss-Fink, Georg

In: European Journal of Inorganic Chemistry, 2005, vol. 22, p. 4493 - 4500

The cationic chloro complexes [(arene)Ru(H2N∩NH2)Cl]+ (1: arene = C6H6; 2: arene = p-MeC6H4iPr; 3: arene = C6Me6) have been synthesised from the corresponding arene ruthenium dichloride dimers and enantiopure (R,R or S,S)... Plus

Ajouter à la liste personnelle
    Summary
    The cationic chloro complexes [(arene)Ru(H2N∩NH2)Cl]+ (1: arene = C6H6; 2: arene = p-MeC6H4iPr; 3: arene = C6Me6) have been synthesised from the corresponding arene ruthenium dichloride dimers and enantiopure (R,R or S,S) trans-1,2-diaminocyclohexane (H2N∩NH2) and isolated as the chloride salts. The compounds are all water-soluble and, in the case of the hexamethylbenzene derivative 3, the aqua complex formed upon hydrolysis [(C6Me6)Ru(H2N∩NH2)OH2]2+ (4) could be isolated as the tetrafluoroborate salt. The molecular structures of 3 and 4 have been determined by single-crystal X-ray diffraction analyses of [(C6Me6)Ru(H2N∩NH2)Cl]Cl and [(C6Me6)Ru(H2N∩NH2)OH2][BF4]2. Treatment of [Ru2 (arene) 2Cl4] with the monotosylated trans-1,2-diaminocyclohexane derivative (TsHN∩NH2) does not yield the expected cationic complexes, analogous to 1-3 but the neutral deprotonated complexes [(arene)Ru(TsN∩NH2)Cl] (5: arene = C6H6; 6: arene = p-MeC6H4iPr; 7: arene = C6Me6; 8: arene = C6H5COOMe). Hydrolysis of the chloro complex 7 in aqueous solution gave, upon precipitation of silver chloride, the corresponding monocationic aqua complex [(C6Me6)Ru(TsHN∩NH2)(OH2)]+ (9) which was isolated and characterised as its tetrafluoroborate salt. The enantiopure complexes 1-9 have been employed as catalysts for the transfer hydrogenation of acetophenone in aqueous solution using sodium formate and water as a hydrogen source. The best results were obtained (60 °C) with 7, giving a catalytic turnover frequency of 43 h-1 and an enantiomeric excess of 93 %.