Faculté des sciences

Structure and electronic structure of quasicrystal and approximant surfaces: a photoemission study

Naumović, Dusanka

In: Progress in Surface Science, 2004, vol. 75, p. 205-225

The structure and electronic structure of different high-symmetry surfaces of either quasicrystalline or approximant Al–Pd–Mn were studied by means of photoemission-based techniques such as X-ray photoelectron diffraction (XPD) and ultraviolet photoelectron spectroscopy. We find that the twofold (2f), 3f and 5f surfaces of icosahedral Al–Pd–Mn exhibit all the symmetry elements of the... More

Add to personal list
    Summary
    The structure and electronic structure of different high-symmetry surfaces of either quasicrystalline or approximant Al–Pd–Mn were studied by means of photoemission-based techniques such as X-ray photoelectron diffraction (XPD) and ultraviolet photoelectron spectroscopy. We find that the twofold (2f), 3f and 5f surfaces of icosahedral Al–Pd–Mn exhibit all the symmetry elements of the icosahedral non-crystallographic group. These XPD experiments can be modeled by single-scattering cluster calculations. The bulk-terminated icosahedral or approximant surfaces are recovered after ion sputtering followed by annealing at T≈500–600 °C. A wealth of ordered surface phases (with different compositions) are found after sputtering and depending on the annealing temperature as, for example, a crystalline bcc multitwinned phase (for T<400 °C) or a stable decagonal quasicrystalline surface (for T>650 °C). The icosahedral surfaces are characterised by a lowering of the density of states close to the Fermi edge, compatible with the opening of a pseudogap, as expected for a quasicrystal. The crystalline overlayers are characterised by a sharp Fermi edge, while the approximant and decagonal quasicrystalline surfaces also have a lowered density of states.