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Abstract—The evolution of quantitative characters over long timescales is often studied using stochastic diffusion models.
The current toolbox available to students of macroevolution is however limited to two main models: Brownian motion and
the Ornstein-Uhlenbeck process, plus some of their extensions. Here, we present a very general model for inferring the
dynamics of quantitative characters evolving under both random diffusion and deterministic forces of any possible shape
and strength, which can accommodate interesting evolutionary scenarios like directional trends, disruptive selection, or
macroevolutionary landscapes with multiple peaks. This model is based on a general partial differential equation widely
used in statistical mechanics: the Fokker—Planck equation, also known in population genetics as the Kolmogorov forward
equation. We thus call the model FPK, for Fokker-Planck-Kolmogorov. We first explain how this model can be used to
describe macroevolutionary landscapes over which quantitative traits evolve and, more importantly, we detail how it can
be fitted to empirical data. Using simulations, we show that the model has good behavior both in terms of discrimination
from alternative models and in terms of parameter inference. We provide R code to fit the model to empirical data using
either maximum-likelihood or Bayesian estimation, and illustrate the use of this code with two empirical examples of body
mass evolution in mammals. FPK should greatly expand the set of macroevolutionary scenarios that can be studied since it
opens the way to estimating macroevolutionary landscapes of any conceivable shape. [Adaptation; bounds; diffusion; FPK

model; macroevolution; maximum-likelihood estimation; MCMC methods; phylogenetic comparative data; selection.]

Understanding the evolution of phenotypes over
geological timescales is one of the fundamental goals of
macroevolution (Simpson, 1944). Phenotypic evolution
is typically inferred either from time series of measure-
ments obtained in the fossil record (Hunt, 2007) or from
the distribution of phenotypic characters at the tips of
a phylogenetic tree (O’Meara, 2012). In both cases, one
then fits stochastic models for the evolution of traits on
single lineages or on phylogenies, all of which treat trait
evolution as a diffusion process that may or may not be
influenced by deterministic forces (O’Meara, 2012).

Many approaches attempt to bridge the gap between
microevolutionary process and macroevolutionary pat-
tern by interpreting model parameters in the context
of the dynamics of evolution on adaptive landscapes
(Wright, 1932; Simpson, 1944; Arnold et al., 2001; Arnold,
2014). Recent years have revitalized this connection with
the development of numerous methodological tools
specifically aimed at inferring “macroevolutionary land-
scapes” (Hansen et al., 2008; Eastman et al., 2013; Ingram
and Mahler, 2013; Uyeda and Harmon, 2014). Such
landscapes almost certainly do not reflect static land-
scapes upon which populations evolve over long time
scales; instead, these landscapes are most productively
described as representing the movements of adaptive
peaks over million-year time scales (Hansen, 1997; Uyeda
et al., 2011; Uyeda and Harmon, 2014). In particular, a
peak on such a landscape might not be a phenotypic
optimum in any particular generation of evolution of a
lineage, but instead might represent a long-term average

peak location on a dynamic landscape. Throughout this
article, we will refer to these as “macroevolutionary land-
scapes,” which summarize patterns of trait evolution
averaged over many generations.

Comparative methods to infer macroevolutionary
landscapes are all based on the Ornstein—Ulhenbeck
(OU) process (Hansen, 1997), which was itself strongly
inspired by the original concept of adaptive landscape
in population genetics (Lande, 1976). Under the OU
process, a continuous trait evolves under both random
diffusion (i.e., Brownian motion, Edwards and Cavalli-
Sforza, 1964), and a force that brings back the trait
close to an optimal value. Following models from
quantitative genetics (e.g., Lande, 1976), these two
components of the macroevolutionary OU process are
sometimes interpreted as genetic drift and stabilizing
selection. However, such an interpretation is almost
always overly simplistic. First, many other processes
can generate evolution following an OU model. For
example, the shape of the peak and, in turn, the dynamics
of selection and drift within populations may be less
important for long-term patterns than the movement
of the peak itself. Under such a scenario, both the
diffusion and deterministic components of OU reflect
peak movement, and both are strongly dependent on
the dynamics of both selection and drift. Second, the
actual parameters of OU models are almost always
incompatible with Lande’s model of evolution on a static
adaptive landscape (Estes and Arnold, 2007; Uyeda and
Harmon, 2014). However, even if we do not interpret
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diffusion as drift and determinism as selection, it is still
useful to divide macroevolutionary dynamics into these
two components. Any factor leading to trait change
that is random in direction from one generation to the
next (e.g., drift, randomly varying selection, plasticity
due to random environmental noise) will affect the
diffusion component, and any factor that leads to
predictable change towards some particular value (e.g.,
selection, predictable patterns of peak movement over
time, developmental constraints towards certain values)
will be seen in the deterministic component. Various
extensions of the OU model have been proposed in recent
years, including different optima in different clades,
either determined a priori (Hansen, 1997; Butler and
King, 2004) or not (Ingram and Mahler, 2013; Uyeda and
Harmon, 2014), varying rates of diffusion and intensities
of attraction towards optima in different clades (Beaulieu
et al., 2012), evolution of the optimum itself (Hansen
etal., 2008), or the possibility to study multivariate evolu-
tion (Bartoszek et al., 2012). The complexity of all of these
extensions, however, leads to difficulties in model iden-
tifiability and parameter estimation (e.g., Khabbazian
et al., 2016). While these models cover a wide range of
possible scenarios, they are restricted to two main kinds
of macroevolutionary landscapes: (i) macroevolutionary
landscapes with a single peak continuously moving in
time (Hansen et al., 2008) and (ii) macroevolutionary
landscapes with one or several peaks, eventually of vary-
ing heights (varying attraction strengths) and widths
(varying ratios of diffusion rate to attraction strength).
Importantly, in the second case the different peaks are
experienced at different epochs or by different lineages,
so thatno single lineage evolves in an macroevolutionary
landscape with multiple peaks. In addition, another type
of macroevolutionary landscape might be described by
the bounded Brownian motion model (BBM, Boucher
and Démery, 2016). BBM was developed as a model
of neutral evolution between bounds, but it could also
describe macroevolutionary landscapes in which one
part of phenotypic space (i.e., traits values between
the bounds) has high but constant fitness while other
phenotypes have null fitness, a scenario related to holey
adaptive landscapes (Gavrilets, 1997).

As can be seen from this short overview of existing
methods, the types of macroevolutionary landscapes
that can be estimated from comparative data are still
rather limited. For example, disruptive selection is
central to the theories of ecological speciation (Doebeli,
1996; Nosil, 2012) and adaptive radiation (Schluter,
2000), in which diverging lineages adapt to different
ecological niches. These theories are being increasingly
appreciated in the macroevolution community and
ecological speciation and/or adaptive radiation are
frequently invoked as explanations for the diversity of
extant clades (Soulebeau et al., 2015). However, despite
recent theoretical advances in modeling interspecific
interactions over macroevolutionary timescales (e.g.,
Nuismer and Harmon, 2015; Drury et al., 2016), we
still lack proper tools to infer disruptive selection on

phylogenies since macroevolutionary landscapes that
contain multiple local optima cannot be inferred from
phylogenetic comparative data. The current alternative
is to model phenotypic evolution in multimodal macroe-
volutionary landscapes using OU models with multiple
optima (Butler and King, 2004; Uyeda and Harmon,
2014). In this framework, cases in which transitions
between peaks are frequent can be interpreted as
evidence of a change in the adaptive environment, rather
than the existence of multiple, simultaneously existing
peaks among which lineages alternate. Such a model in
which several adaptive peaks are simultaneously present
in the adaptive landscape experienced by all species in
the clade would be a step towards a more explicit model
for disruptive selection.

In this article, we introduce a general model for
the evolution of continuous characters on phylogenies
that can accommodate macroevolutionary landscapes
of any shape and thus attempts to provide solutions
to the limitations mentioned above. In this model,
the continuous trait of interest evolves under random
diffusion but is also subject to deterministic change
following a macroevolutionary landscape of any pos-
sible shape and strength. This model will be especially
useful in situations where one thinks that all members
of a clade have experienced the same macroevolution-
ary landscape throughout their history, in contrast to
situations in which lineages shift between alternative
macroevolutionary landscapes. We present algorithms
for both maximum-likelihood estimation (MLE) and
Bayesian estimation of model parameters, that is the
value of the trait at the root of the tree, the diffusion
rate and the shape of the macroevolutionary landscape.
Using simulations, we show that this model is easily
distinguishable from other models of trait evolution like
BM, OU, and BBM. Parameter estimationis also generally
reliable, and in particular the shape of the macroevolu-
tionary landscape can be accurately estimated as long
as it has been fully explored by the clade evolving on
it. We also show how alternative hypotheses can be
statistically tested in empirical data sets. Our approach
opens new avenues for macroevolutionary research: it
renders possible the detection of evolutionary trends
from neontological data only, but also inference of
disruptive selection or of even more complex scenarios
in which the macroevolutionary landscape contains
multiple peaks.

DEVELOPMENT AND IMPLEMENTATION OF THE MODEL

General Presentation of the Fokker—Planck—Kolmogorov
Model

We introduce a general model for the evolution of
continuous traits on phylogenies, in which a trait x
undergoes a random walk (i.e., BM) that is biased by a
deterministic force that can be of any shape and strength.
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The force biasing trait evolution derives from a potential
V(x): differences in the values of the potential generate
a force that attracts the trait towards regions of trait
space in which the potential is the lowest and at each
point x, the BM process is biased by a force proportional
to —V’(x). This process can be modeled using the
Fokker-Planck equation, a partial differential equation
widely used in statistical mechanics to describe the time
evolution of the probability density of an observable
under the influence of both random and deterministic
forces (Risken, 1984). In population genetics, the Fokker—
Planck equation has been used to model changes in
allele frequencies and is better known as the Kolmogorov
forward equation (Wright, 1945). This is why we label
the present model Fokker—Planck—Kolmogorov (FPK).
Under FPK, the probability density p(x,xg.t) of the
position of a trait x with initial value x( after time t has
elapsed follows

_028
T2 9x

In this equation, the evolution of the probability
density of the trait (left hand side) is determined by both
random diffusion (i.e., BM; first term on the right hand
side) and a deterministic force set by the derivative of
the potential (second term on the right hand side). The
factor 62/2 on the front of the second term in the right
hand side is chosen so that the stationary distribution
for the probability density is

pr@= lim p(r.xo.)=Nexp(-V(E@). (@)

Vv
P v x0.) [%Z(x,xo,t)+p<x,xo,t>aa—x<x>}. 1)

where N is a normalization factor. Finally, the initial
position of the trait, xg, gives the initial condition for this
partial differential equation: p(x,xp,0) =3(x —xg) where
3(x) is the Dirac delta function.

In summary, the potential V(x) determines the force

—02V/(x)/2 that is exerted on the trait over the interval,
and the process has a stationary distribution, which is

proportional to exp(—V (x)) but does not depend on o?.
The force represents the deterministic component of trait
evolution, since it pulls traits towards specific values and
the stationary distribution can be interpreted as a macro-
evolutionary landscape because trait values are attracted
towards regions of trait space with the lowest potential,
which themselves corresponds to peaks of exp(—V(x)).
Figure 1 shows how the potential, the deterministic
force, and the macroevolutionary landscape are related.
In the remainder of this article, we will use the term
macroevolutionary landscape to refer to N exp(—V(x)) and
will avoid mentioning the potential (V(x)) as much as
possible. Itisimportant to note here that the evolutionary

rate, o2, is not a measure of the strength of the random

component of the process. Indeed, ¢ determines both
the intensity of the random diffusion component (first
term in the right side of Eq. 1) and of the deterministic
force exerted on the trait (second term in the right
side of Eq. 1). The relative strengths of the random
and deterministic components of the process are better

captured by the variations in the stationary distribution
of the process, phax/Prin=8XP(Vmax —Vmin): a ratio
close to one means that diffusion dominates, while
deterministic forces are important if this ratio is large.
We can also define a characteristic time T, representing
the time it takes for the trait to explore the macroevolu-
tionary landscape. Supplementary Appendix I available
on Dryad at http://dx.doi.org/10.5061/dryad.28g37
shows how this characteristic time can be calculated.
Over short time periods, that is for <& T¢, the trait
has no time to fully explore the macroevolutionary
landscape. Over long time periods, that is for >
T, the trait explores the whole macroevolutionary
landscape; the probability density thus reaches its
stationary distribution (Eq. 2). An important feature of
the characteristic time is that a low valuep}. , | of the mac-
roevolutionary landscape between two peaks (p}., >
Prin) can considerably slow down the exploration of
the landscape; in this situation the characteristic time
follows the Arrhenius law: Tc~ph .« /Pry, (Gardiner,
1985). If there is a single peak in the macroevolutionary
landscape, like in the OU process, the characteristic time
is proportional to the phylogenetic half-life of the process
(Supplementary Appendix I available on Dryad).

Calculation of the Likelihood

The likelihood of the FPK model given a phylogenetic
tree and observed values of the trait at the tips of the
tree is obtained by multiplying the probability densities
along each branch of the tree and integrating over all
possible trait values at the internal nodes:

ﬁ:/ 1_[ p(xivxparent(i)vti_tparent(i)) dei’ 3)

ielUT iel

where I is the set of internal nodes (excluding the root), T
is the set of tips, x; is the value of the trait at thenode, ¢; is
the time at node i, and parent(i) is the parent of the node
i. Computing the likelihood numerically thus requires
integrating over all possible values of the trait at interior
nodes of the tree, which makes it computationally
challenging. Since the distribution of the trait at the
tips of the tree is often not multivariate normal, fast
methods like Generalized Least-Squares (Grafen, 1989),
phylogenetic independent contrasts (Felsenstein, 1985;
Freckleton, 2012), or the 3-point algorithm (Ho and Ané,
2014a) cannot be used either.

To compute the likelihood of FPK, we instead dis-
cretize the trait interval by considering only a set of
n points equally spaced between two extreme val-
ues, Bmin and Bmax, a procedure already used for
the BBM model (Boucher and Démery, 2016). In the
following of this article, we call this regular set of
points the grid. Supplementary Appendix II available
on Dryad shows how the continuous evolution equation
for the probability density (1) can then be cast in
a matrix form and that these discretized equations
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Behaviour of the FPK model. a) Example of a potential with V(x)=3x*—6x2. b) The stationary distribution of the process,

N.exp(—V(x)), can be interpreted as a macroevolutionary landscape. Wells of the potential become peaks in the macroevolutionary landscape.
Differences in the potential generate a force —V’(x), which attracts trait values towards the two peaks of the macroevolutionary landscape, as
indicated by the arrows. c¢) One simulation of the evolution of a trait in a clade of four species in this macroevolutionary landscape: the x-axis
shows time and the y-axis the trait value of each species, in different colors. The ancestral trait value lies between the two peaks, and species’
traits get attracted towards one of the peaks, which have equal heights. The bounds of the trait interval, represented by thick horizontal lines,
are not reached during the process and thus do not influence the evolution of the trait in this case.

converge to the continuous one (1) as we increase the
number of points used to discretize the trait interval
(i.e., n— 00).

The use of this discretization procedure imposes that
bounds on the trait interval exist: these two bounds are

denoted By and Bmax. As done for the BBM model, we
make the hypothesis that these two bounds are reflective
and calculate the probability density of a trait evolving
under FPK using the method of images (Jackson, 1998),
that is by cutting and reflecting the probability density
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of the unbounded model an infinite number of times at
each one of the two bounds (Boucher and Démery, 2016).
However, these bounds need not be reached by the trait
and need not even influence the evolutionary process.
We thus distinguish two different cases:

1. In situations where the stationary distribution of
the FPK model converges to zero when trait values
tend to +o0o or —oo, bounds located far apart
from the observed trait interval will most likely
never be reached: there is a strong force opposing
trait evolution towards low-lying regions of the
macroevolutionary landscape. Such scenarios can
be seen on the top part of Figure 2 (scenarios
a—d). In this case, the discretization procedure
only introduces a very slight approximation to the
likelihood function.

2. While we need to introduce bounds for technical
reasons, we can also actually make use of them. The
same model can thus be used to model situations
in which reflective bounds on each side of the trait
interval are actually reached during trait evolution.
Such scenarios can be seen on the bottom part
of Figure 2 (scenarios e-h). For clarity’s sake, in
these situations, we will call the model BBMYV,
for bounded BM with an evolutionary potential.
BBMYV is actually the most general model, since
FPK is a special case of it with bounds set to —oo
and +oo.

The discretization procedure that we use enables cal-
culating the transition matrix between different points
on the grid. Once this matrix is obtained, we calculate
the likelihood of the model as is done for the evolution of
discrete characters (i.e., the Mk model, Lewis, 2001). We
use the pruning algorithm (Felsenstein, 1973), starting
from the probability density of the trait at the tips, and
propagating it down to the root of the tree. Finally, we
treat the value of the trait at the root of the phylogenetic
tree, xg, as a parameter of the FPK model. This makes
comparison with other models of evolution possible,
since most implementations include the root value as
a parameter.

The precision of the discretization procedure (i.e., the
number of points used to discretize the trait interval)
naturally influences the precision of the numerical
calculation of the likelihood (Boucher and Démery, 2016)
and the accuracy in the estimation of the shape of the
macroevolutionary landscape, but on the other hand
calculation quickly grows with the number of points (the
transition matrix M, which needs to be diagonalized,
has 12 terms). In the rest of this article, all simulations
have been run with n=>50 points on the trait grid.
This value was used because of the large number of
simulations we ran, but we generally recommend people
working on a single empirical case to increase this
number.

Shape of the Macroevolutionary Landscape

The model we have presented above can accommodate
any shape of the macroevolutionary landscape. How-
ever, in order to infer macroevolutionary landscapes
from empirical data we need to specify a parametric
shape for it and optimize its parameters. One possibility
to do so would have been to use step functions with
different values at each point in the trait grid, but this
would have led to a very large number of parameters
to estimate. Using combinations of sine functions of
various periods and amplitudes would also have been
possible, but their periodicity renders optimization dif-
ficult. Instead, we chose a polynomial function with only
three terms, parametrized as V(x) =ax*4bx? +cx, with
x taken on the interval [—1.5,+1.5]. This interval was
chosenbecauseitis symmetric, but it is then transformed
to the actual trait interval observed in the data set
following an affine transformation (see Supplementary
Appendix III available on Dryad). We discard the term
x3 because any function of the form f(x)=ax*+bx3+
cx?+dx can be written as f(x) =a(x —xo)* +b'(x —xq)> +
c/(x—x0)+d" with xg=—b/(4a). This means that adding
a term proportional to x> amounts to a translation of the
potential. No constant term needs to be added to this
polynomial function either, since it is the derivative of
V(x) that controls the dynamics of the model (Eq. 1).
This shape of the potential can approximate a variety of
scenarios, including flat landscapes (i.e., BBM, V(x)=0),
linear trends (e.g., V(x)=x), domed (e.g., V(x)=—x2)
or U-shaped (e.g., V(x)=x2) macroevolutionary land-
scapes, but also macroevolutionary landscapes with two
central peaks of equal (e.g., V(x)=x*—x?) or different
heights (e.g., V(x)=x*—x2+4x). Figure 2 shows a variety
of shapes of the macroevolutionary landscape that canbe
obtained with this parametric function, either under the
pure FPK (no bounds in practice) or the BBMV model
(bounds are actually reachable). Finally, note that both
BM and the OU model are special cases of the FPK
model: BM corresponds to V(x)=0 and OU to V(x)=
(a/02)x% —(206/0%)x, where a and 6 are the attraction
strength and optimum of the OU model, respectively
(Hansen, 1997).

Maximum-likelihood Inference of Model Parameters

The FPK model has five parameters: the value of
the trait at the root of the tree xy, the evolution-
ary rate o2, and the three coefficients determining
the shape of the macroevolutionary landscape. We
have implemented MLE of the FPK model in the
R statistical environment (R Core Team, 2016). All
functions needed to fit the model to empirical data
are freely available from the following Github repos-
itory: https://github.com/fcboucher/BBMYV, and only
depend on functions from the ape package (Paradis
et al., 2004). We have verified that the likelihoods
obtained from our code are compatible with likelihoods


https://github.com/fcboucher/BBMV

2018 BOUCHER ET AL—ESTIMATING MACROEVOLUTIONARY LANDSCAPES 309

- ___a) Tc=2000 o b) Tc=2000 o ) Tc=2000 o ___d) Te=2000
© | @ - 3 3 B FPK4

B FPK2
° ° ° ° B FPK1
< < | < | < B FPKO

= OuU
. | . . ] ‘| 01 BM
o a) Tc=5 o b) Tc=5 - c) Tc=5 o d) Te=5
) ) ) ) a) b)

00 02 04 06 08 10 00 02 04 06 08 10

3 3 3 c) d)
° - S ° - 00 02 04 06 08 10 00 02 04 06 08 10
o ) Tc=2000 o f) Te=2000 o ___9) Tc=2000 o ___h) Te=2000
. | - | . : - W BBMV4

B BBMV2
&7 & £ £ M BBMV1
< < < | < E BBM

= OuU
g n g | g | g . l:l BM

0.0
0.0

e) Tc=5 f) Tc=5

FIGURE 2.  Model discrimination in simulations.

1.0
1.0

08

06

0.4

0.2

0.0
0.0

rest of the figure.

0.0

1.0

0.8

0.6

0.4

0.2
1

0.0

g) Tc=5

0.0

1.0

h) Tc=5

00 02 04 06 08 10

e)
00 02 04 06 08 10
g)

h

00 02 04 06 08 10

00 02 04 06 08 10

Each barplot shows AIC weights of each of the six models fitted to the simulated data: 4
versions of the FPK or BBMV models, plus BM and OU fitted using the package geiger, averaged over 20 simulations. In each case, black stars
indicate the model that was used for simulations and blocks of three columns show results for trees of 50, 100 and 200 tips, from left to right.
The top height panels show simulations of the pure FPK model, the height bottom ones simulations of the BBMV model. Numbers after FPK or
BBMYV in the legends indicate the degree of the leading polynomial term that was used for fitting: for example, FPK4 stands for the FPK model
with V(x) =ax* +bx? +cx, and BBMV1 for the BBMV model with V(x)=cx. In case d) there are two stars since FPK2 and OU are identical models.
Small panels on the right show the shape of the macroevolutionary landscape that was simulated in each case, with colors corresponding to the
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for other models of trait evolution implemented in the
fitContinuous function of package geiger (Pennell et al.,
2014). This makes comparison between FPK and other
evolutionary models like BM or OU possible, using
the Akaike information criterion (AIC) for example.
Maximume-likelihood inference of model parameters is
conducted using the optim function in R with the Nelder—
Mead optimization routine (i.e., the simplex method,
although our code also allows for optimization using the
BFGS method with box constraints), which was found to
perform better than other optimization routines follow-
ing preliminary tests. For better numerical precision, we
do not directly optimize the evolutionary rate, o2, but
rather log(o2 /2). In cases where obvious bounds on the
trait values exist, for example if the trait under study
is a proportion or a probability, the user can specify
the values of the bounds on the trait interval and fit
the BBMV model. In cases where no actual bounds are
suspected to exist and the user wants to fit the pure
FPK model, we place artificial bounds far away from the
observed traitinterval (i.e., Bmin = Xmin — Xmax — Xmin)/2
and Bmax =Xmax + (Xmax — Xmin)/2)-

In order to test complex macroevolutionary land-
scapes against simpler ones, we have also written R
functions for fitting the FPK and BBMV models with sim-

pler macroevolutionary landscapes, that is V(x) =bx?+
cx, V(x)=cx, and V(x)=0. Alternatives shapes of the
macroevolutionary landscape can then be statistically
compared based on their likelihoods, using likelihood
ratio tests or any information criterion. Note that the
pure FPK model does not make sense in cases where
exp(—V(x)) does not converge to 0 when x tends to +oo
or —oo: this is the case for V(x)=cx and V(x)=0, as
well as for both V(x)=ax*+bx?+cx and V(x) =bx?+cx
when the dominant polynomial coefficient is negative.
This does not mean that evolutionary trends cannot
be estimated from comparative data when the trait
interval is not bounded: a macroevolutionary landscape
which quickly raises from low to high probabilities,
then decreases slowly until a given trait value, and
finally quickly drops to low probabilities again would
fit a scenario with a trend towards small trait val-
ues with soft bounds on trait values (scenario a in
Fig. 2).

Finally, for all versions of the macroevolutionary
landscape, confidence intervals (Cls) containing the 95%
highest probability density around parameter estimates
while fixing other parameters to their maximum likeli-
hood estimate can be calculated. This is technically done
by removing the lowest 2.5% density regions on each
side of the MLE for o2, the parameters describing the
shape of the macroevolutionary landscape, and the root
value when its MLE does not lie in one of the bounds
of the trait interval. If the MLE of the root value lies in
one of the bounds of the trait interval, then the lowest
5% density region on the other side is removed. These
CIs can be returned along with likelihood profile plots
around parameter estimates.

MCMC Algorithm

In addition to maximume-likelihood optimization, we
present a MCMC algorithm to estimate parameters of
the FPK model, which is also written in R. Since the
aim of this MCMC algorithm will often be to get an
idea of the distribution of parameter estimates, we have
focused on the full model with three polynomial terms.
However, nested models with simpler macroevolution-
ary landscapes can also be fit by setting the probability of
update for unnecessary parameters to zero. Numerical
calculation of the likelihood of FPK in our MCMC
implementation is done as for the maximume-likelihood
case, and we use the Metropolis—-Hastings algorithm to
create a Markov chain of parameter estimates.

Parameters of the FPK model have different natures:
the three coefficients determining the shape of the
macroevolutionary landscape (4, b, and c) as well as the

diffusion coefficient log(c2 /2) are continuous variables,
while the root value of the trait, xp, is only allowed
to vary on a regular grid of points (see above). These
different parameters thus have different kinds of prior
and proposal functions.

We have implemented two prior distributions for con-
tinuously varying parameters: either normal or uniform
ones. However, one should keep in mind that very large
values of a and b in particular (i.e., the coefficients

of the x* and x? terms) can lead to extremely steep
macroevolutionary landscapes, which will be unrealistic
in most cases. For these two parameters at least, a normal
prior centered on zero thus seems to be the most sensible
choice. For xp, we have only implemented a discrete
uniform prior on all points of the trait grid.

As for proposal functions, both normal deviates
and sliding windows are available for continuously
distributed parameters (but other proposals could easily
be implemented by modifying our R code). Note that

since we actually update log(c?/2), this corresponds

to a multiplier proposal for 62. Only a discrete sliding
windows is possible for xp and a move on the trait
grid is forced to occur each time this parameter is
updated. The sensitivity of these proposal functions can
be set by the user, but we recommend that the discrete
sliding window for xy only allows for moves of one
step on the grid. Parameters of the model are updated
independently, but in order to speed up convergence
of the Markov chain to its stationary distribution the
relative frequencies of update of the different parameters
can be modified.

In practice, we have observed two contrasting behavi-
ors for convergence: (i) when the characteristic time T
is larger than the depth of the phylogenetic tree, o2 will
converge rapidly in the MCMC chain while parameters
setting the shape of the macroevolutionary landscape
will not; (i) on the opposite, when T, is smaller than
the depth of the phylogenetic tree, parameters setting
the shape of the macroevolutionary landscape will
converge rapidly while o will be slow to converge.
These two behaviors simply reflect the fact that when
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T. is large relative to the total time span of trait
evolution, the distribution of traits at the tips of the
phylogeny will not have converged to the stationary
distribution of the FPK model: the macroevolutionary
landscape is poorly explored and tip values retain very
little information regarding its shape. On the contrary,
when T, is small, the macroevolutionary landscape will
have been thoroughly explored by the clade, but it is
difficult to determine the value of the evolutionary rate
with precision (see below). Manipulating the relative
frequencies at which these different parameters are
updated can have dramatic effects on the speed of
convergence of the MCMC chain. A good way to set
this tuning parameter would be either to first run a
MLE of the model or to do an initial quick MCMC run
(e.g., with a very low number of points to discretize the
trait interval) in order to get an idea of the values of o2
and V. From our experience, convergence of our MCMC
algorithm takes a long time, even on rather small data
sets (c.200,000 to 1 million steps for trees with less than 50
tips). We recommend running at least two independent
chains in order to make sure that they have converged to
the same stationary distribution.

PERFORMANCE OF THE FPK MODEL

In order to assess the performance of FPK in terms
of parameter inference and model discrimination, we
have conducted a large number of simulations. Our focus
was on the likelihood of FPK, thus we restricted our
simulations to the maximum-likelihood optimization
procedure since it is much faster than MCMC estimation.
We ran simulations under height contrasted scenarios,
four of them corresponding to the pure FPK model
and four to the BBMV model. The macroevolutionary
landscapes corresponding to these height scenarios are
pictured on Figure 2.

The four scenarios of the FPK model that we simulated
were the following: (a) a directional trend limited to a
portion of trait space (V(x) =5x*—x?+x), (b) a macroe-
volutionary landscape with two peaks of equal height
(V(x)=10x*-5x2), (c) a macroevolutionary landscape

with two peaks of different heights (V(x)=5x*—-5x2+
x), and (d) a single peak (i.e., an OU model, V(x)=
5x2). The four scenarios simulated under the BBMV
model, that is in which trait evolution was actually
bounded, cover a broad range of interesting cases: (e)
a flat macroevolutionary landscape (BBM, V(x)=0), (f)
a directional trend (V(x)=1.5x), (g) disruptive selection
(i.e., a U-shaped macroevolutionary landscape with
extreme trait values being favored, V(x)= —1.2x%), and
(h) two peaks of the same height (V(x) =3x*—6x2).

For each one of these height scenarios, we fit four
different versions of FPK: the full model (V(x)=ax*+
bx?+cx), a model with only quadratic and linear terms
(V(x) =bx%+cx), amodel with only a linear term (V(x) =
cx),and amodel with a flat macroevolutionary landscape

(i.e., BBM, V(x)=0). In simulations of the FPK model
(scenarios a—d), bounds were placed far apart from the
observed trait interval for inference, while in simulations
of the BBMV model (scenarios e-h) the true bounds used
in simulations were specified. In addition, we also fit
BM and an OU model with a single optimum to each
simulated data set using the fitContinuous function in
the geiger package (Pennell et al., 2014).

Phylogenetic trees were simulated under a pure birth
model, with unit birth rate. Trees were grown until the
desired number of tips plus one was obtained and one
of the two sister tips originating from the last speciation
event was trimmed. Trees were then rescaled to a total
depth of 100 arbitrary time units in order to enable
comparison between simulations. All simulations were
done with Bpyin=0, Bmax=1, and x¢=0.5. For each of
the height scenarios described above (and thus for each

value of V) we used two different values of o2 which
were calculated so that: (i) T =5 (i.e., 1/20 of tree depth),
which should ensure that the distribution of the trait
at the tips of the tree has converged to the stationary
distribution of the model, and (ii) T, =2, 000 (i.e., 20 times
tree depth), in which stationarity should not have been
reached at the end of the simulation. In addition, we also
explored the effect of tree size on parameter estimation
and model discrimination using trees of 50, 100, and 200
tips. For each combination of the shape of the potential,

the value of 62, and tree size, we conducted 20 different
simulations (960 simulations in total).

Model Discrimination

We first focused on whether FPK and BBMV can be
distinguished from other classic models of evolution
using relative Akaike weights (Burnham and Anderson,
2002). Our simulations showed that when stationarity
was reached (T, =5), all four scenarios of the FPK model
that we simulated could easily be discriminated from
BM, which always received less than 0.001% Akaike
weight (Fig. 2). Discrimination from OU was also easily
achieved, this model always receiving less than 13%
Akaike weight, except in the case where it was the
model which was actually simulated (scenario d, Fig. 2).
Discrimination was even better under the four scenarios
of the BBMV model that we simulated, with both
BM and OU always receiving less than 0.01% Akaike
weight (Fig. 2). In simulations where stationarity was not
reached (T, =2000), only scenarios (c, g, and h) could still
be discriminated from BM and OU (Fig. 2). All other five
scenarios indeed gave relatively high Akaike weights to
either BM or OU (Fig. 2). The number of tips in the tree
did influence discriminatory power between FPK and
BM or OU positively, but its effect was moderate (Fig. 2).

We then looked at whether FPK or BBMV models
with different shapes of the macroevolutionary land-
scape can be statistically distinguished. Discrimination
between alternative versions of the model with different
shapes of the macroevolutionary landscape was also
generally satisfactory. In cases where stationarity was
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FIGURE 3.

Estimation of the macroevolutionary landscape in different versions of the FPK model. Thin lines in each plot show the

macroevolutionary landscapes estimated in 20 simulations, each one in a different color, while the simulated macroevolutionary landscape is
shown by the thick black line. Only results for trees with 100 tips are shown. Top row: simulations with Tc=2,000, in which stationarity was
not reached. Bottom row: simulations with Tc=5, in which stationarity was reached. From left to right, columns show simulation for scenarios

atod.

reached (T, =5), the version of the model that was used
to simulate the data was always the one to receive
the highest AIC weight (Fig. 2). Increasing tree size
generally lead to an increase in the Akaike weight of the
generating model, the effect being substantial this time
(Fig. 2). Scenarios with macroevolutionary landscapes
containing two peaks (i.e., scenarios b, ¢, and h), which
can only be accommodated by the most complex form of
the macroevolutionary landscape (V (x) =ax*4bx? +cx)
always led to more than 95% Akaike weight to this model
(Fig. 2). Importantly, for all four scenarios simulated
under the FPK model, models with a flat (V(x)=0)
and a linear potential (V(x)=cx) always received less
than 2.3e—8 Akaike weight. We have seen above that
these two shapes of the potential do not make sense
in the case of the FPK model (i.e., when there are no
bounds in practice): these simulations confirm that both
of these models are strongly rejected statistically in these
situations. In contrast, when stationarity was not reached

(Tc=2000) different shapes of the macroevolutionary
landscape were difficult to discriminate and simpler
forms were often preferred over more complex ones,
especially so in trees with few tips. This is normal since
in these cases, traits only had time to explore a small
fraction of the macroevolutionary landscape. The only
notable exception to this general observation was for
scenario h (a BBMV model with two peaks), in which
the full BBMV model always received over 85% Akaike
weight, even when T, =2000 and with trees of 50 tips
only (Fig. 2).

Parameter Inference

Accuracy of FPK models in parameter estimation
was assessed by comparing the maximum-likelihood
estimates of parameters with values used in simulations.
We first compared the precision in the estimation of
the macroevolutionary landscape as a whole, and not
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FIGURE 4.

Estimation of the macroevolutionary landscape in different versions of the BBMV model. Thin lines in each plot show the

macroevolutionary landscapes estimated in 20 simulations, each one in a different color, while the simulated macroevolutionary landscape is
shown by the thick black line. Only results for trees with 100 tips are shown. Top row: simulations with Tc=2,000, in which stationarity was not
reached. Bottom row: simulations with Tc =5, in which stationarity was reached. From left to right, columns show simulation for scenarios f to
h. Results for simulations of the flat landscape (BBM, scenario e) are not shown since the macroevolutionary landscape is fixed in this case.

in the estimation of g, b, and c separately. This is because
these three coefficients can sometimes be redundant and
lead to very similar shapes of the macroevolutionary

landscape: for example, a (the coefficient of the x*

term) and b (the coefficient of the x? term) are highly
correlated. Simulations showed that macroevolutionary
landscapes are generally accurately estimated in cases
where stationarity has been reached since the actual
shape that was simulated is most often recovered
(Figs. 3 and 4). Estimation of the macroevolutionary
landscape was even better in simulations of the BBMV
model (Fig. 4) compared to simulations the pure FPK
model (Fig. 3), probably because in the former case
the actual bounds used in simulations were specified
when inferring parameters. In all height scenarios,
accuracy in the estimation of the macroevolutionary
landscape increased with the number of tips in the
phylogeny (Supplementary Appendix VI available on
Dryad). Accuracy was much worse in simulations that
had not reached stationarity (Figs. 3 and 4).

As for the other two parameters of the FPK model,
accuracy in the estimation of xy was much less satisfact-
ory and usually had a huge variance, especially so when
T. was small (Supplementary Appendix IV available on
Dryad). The estimation of 62 was very accurate for large
values of T¢ but had much larger variance when T, was
small (Supplementary Appendix IV available on Dryad).
No bias in the estimation of o> was apparent for the
FPK model, but it seemed that the estimation of o2 was

slightly biased towards larger values in the four scenarios
of the BBMV model that we simulated and for T, =5.

Empirical Example: Body Size Evolution in North-American
Watersnakes (Tribe Thamnophiini)

We demonstrate the utility of FPK using an example
of body size evolution in snakes. We decided to study
North-American watersnakes (Colubridea, subfamily
Natricinae, tribe Thamnophiini) because the distribution
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FIGURES. Posterior distribution of the macroevolutionary landscape estimated for body length evolution in watersnakes (tribe Thamnophiini).
This posterior distribution was obtained by concatenating the two MCMC chains after the first 10% of samples were discarded as burnin (800,000
MCMC steps in total). The figure shows the value of the macroevolutionary landscape (N.exp(—V(x))) on the y-axis as a function of log10(total
length) measured in centimeters. The dashed black line shows the median value of the macroevolutionary landscape over the posterior, while
the grey area ranges from the 25% to the 75% quantiles. The solid red line shows the maximum-likelihood estimate of the macroevolutionary

landscape.

of their body length shows a slight bimodality (Burbrink
and Myers, 2014). A time-calibrated phylogeny as well as
measurements of total length (hereafter, TL) for 45 spe-
ciesincluded in this group were obtained from (Burbrink
and Myers, 2014), and TL was log,,-transformed prior to
analysis.

We first fit three alternative models for the evolution
of TL along the watersnake phylogeny using maximum-
likelihood: BM, an OU model with a single optimum, and
the FPK model (with V(x)=ax*+bx%+cx). In addition,
we used our MCMC algorithm to obtain posterior estim-
ates of the shape of the macroevolutionary landscape in
this clade (detailed methods can be found in Supple-
mentary Appendix V available on Dryad). Convergence
of MCMC chains was assessed both visually by looking
at the trace plots of the parameters, likelihood, prior, and
posterior, and by measuring the effective sample sizes
of these different quantities using the R package coda
(Plummer et al., 2006).

Among the three models compared using maximum-
likelihood, the FPK model had by far the lowest AIC,
followed by the OU model (AAIC=13.2), and finally BM

(AAIC=15.1). The macroevolutionary landscape estim-
ated by the FPK model contained two distinct peaks,
the peak corresponding to longer TLs being the highest
(Fig. 5). CIs on the maximum-likelihood estimates of
model parameters confirmed that the coefficient for the

x* term of the potential, 4, was positive (ML estimate: 9.2,

95% CI: [5.8,14.3]), while the coefficient for the x% term, b,
was negative (ML estimate: —3.4, 95% CI: [-4.9,—-1.0]),
which is typical of macroevolutionary landscapes with
two peaks. The linear coefficient of the potential, ¢, was
not significantly different from 0 (ML estimate: —0.34,
95% CI: [-1.9,1.8]). There was large uncertainty as to
the value of TL for the ancestor of watersnakes, the CI
spanning almost the whole distribution of TL in extent
species (ML estimate: 72.9 ¢cm, 95% CI: [39.9,118.1]).
We estimated a characteristic time of 22.4 Myr for the
FPK process, which is slightly higher than the crown
age of Thamnophiini (16.6 Myr, Burbrink and Myers,
2014). Results obtained using MLE were supported
by the two MCMC chains that we ran: the posterior
distribution of the macroevolutionary landscape also
had two peaks of unequal heights, and the mode of
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this distribution closely matched the macroevolution-
ary landscape estimated using maximum-likelihood
(Fig. 5).

"lghese results suggest that TL might have evolved
toward two different optima in North-American water-
snakes, the first one roughly corresponding to 50 cm and
the second, higher optimum, to 130 cm (Fig. 5). In their
original publication (Burbrink and Myers, 2014) had
proposed that the skewness in the distribution of TL in
watersnakes could be due to higher diversification rates
for longer species. Comparing both explanations would
prove especially interesting but would require extending
the FPK model to account for diversification rates
depending on the value of the evolutionary potential,
for example using the statistical machinery already
developed for state-dependent diversification models
(FitzJohn et al., 2009).

DiscussION

In this article, we have presented equations for a very
general model of evolution for continuous traits, as well
as its implementation. This opens new possibilities for
estimating macroevolutionary landscapes from phylo-
genetic comparative data. Below we discuss the strengths
and weaknesses of this model. We note that (Blomberg,
2017) has recently introduced a family of essentially
similar models for continuous trait evolution, but no
framework exists yet to infer parameters of these models
from phylogenetic comparative data.

New Avenues for Studying Phenotypic Evolution from
Comparative Data

The flexibility of the new model that we propose is its
greatest strength. FPK and its bounded version BBMV
offer the opportunity to estimate a variety of macroe-
volutionary landscapes from phylogenetic comparative
data. FPK can indeed model evolutionary processes like
directional selection or diversifying selection leading
to macroevolutionary landscapes with several peaks,
eventually of varying heights. BBMV accommodates
bounds on phenotypic evolution and as such can model
scenarios like directional selection toward one extreme
trait value or even disruptive selection. All of these
scenarios lie at the core of modern (macro)evolutionary
theory, but could not yet be inferred from phylogenetic
comparative data (O’Meara, 2012). Fitting the FPK model
toempirical data is similar in some aspects to cubic spline
analysis in selection studies (Schluter, 1988): it allows
inferring (and visualizing) the macroevolutionary land-
scape that has been experienced by species in a clade.
As already noted, this model will be especially useful
in situations where one has strong a priori expectations
that all members of a clade have experienced the same
macroevolutionary landscape throughout their history.

One kind of landscapes that can be inferred using FPK
deserve particular mention here: macroevolutionary
landscapes in which multiple peaks exist. This scenario

would be especially interesting to compare to a situation
in which these multiple peaks are available for different
lineages, which is what is implemented in OU models
with multiple optima. In this latter class of models, each
lineage is indeed subject to attraction towards a single
peak at a time, but lineages may shift between different
peaks. These shifts are either determined a priori (Butler
and King, 2004; Beaulieu et al., 2012) or inferred directly
from phylogenetic patterns of trait evolution (Ingram
and Mahler, 2013; Uyeda and Harmon, 2014; Khabbazian
etal., 2016). In FPK with multiple peaks on the contrary,
each lineage is always influenced by the different peaks
in its macroevolutionary landscape, and transitions
between peaks might be frequent if the traits of most
species in the clade are located in a valley of the
macroevolutionary landscape. More theoretically, these
alternatives would represent two very different evolu-
tionary scenarios: OU models with several optima might
be better at describing situations in which a lineage shifts
to another adaptive zone (Simpson, 1944; Landis and
Schraiber, 2017), while FPK with multiple peaks might
represent more genuine diversifying selection towards
alternative phenotypic optima. In the later scenario,
no change in the environment a lineage experiences
or in other aspects of its phenotype (Simpson, 1944)
are required for one lineage to shift between two
phenotypic optima, and one might expect much more
frequent transitions between adaptive peaks within a
clade. The implementation of the FPK that we have
introduced opens the way to discriminate between these
two alternatives using empirical data, although the level
of statistical power required to do so remains an open
question.

Statistical Behavior of the FPK Model

FPK is a model that generally retains very little
phylogenetic signal (hereafter, PS): over all simulations
in which stationarity had been reached, the median
value of the \ index of PS (Pagel, 1997) was 1.6e—109
(see Supplementary Appendix VI available on Dryad).
This absence of PS stems from the strong deterministic
component of the FPK model in all scenarios that
we simulated, a result already known for the OU
model (Miinkemdiller et al., 2015), which is a special
case of FPK. As a result, when stationarity is reached
most of the information needed to infer the shape
of the macroevolutionary landscape ultimately comes
from the distribution of the trait for extant species.
For example, evolutionary trends can be recovered
in the absence of fossil data from a highly skewed
trait distribution for contemporaneous species. In the
same vein, the simultaneous presence of two peaks in
the macroevolutionary landscape can be inferred from
a bimodal trait distribution. However, FPK can also
produce trait distributions with higher levels of PS.
First, high PS can be obtained when the deterministic
component of FPK is small or even absent: this is the case
for the BM model, also a special case of FPK. Second,
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intermediate levels of PS can be obtained even under
an FPK model with a strong deterministic component
when stationarity is not reached. FPK should thus not
be seen as a nonphylogenetic model: in the extreme
case where stationarity has been reached PS will be
null and the process will actually behave as if it were
nonphylogenetic, but many intermediate cases exist in
which the deterministic component of FPK influences
trait evolution but PS is still significant (Supplementary
Appendix VI available on Dryad). As already argued for
the OU model (Hansen et al., 2008), fitting the FPK model
is actually the best way to figure out what level of PS is
present in the data and what is the relative importance
of deterministic forces compared to random diffusion.

The characteristic time of the FPK process, T¢, repres-
ents the typical time needed to reach stationarity and
should always be compared to the total depth of the
phylogenetic tree for the clade under study, Tt to get
an idea of the level of PS in the data. Unsurprisingly,
model performance will increase with Tiot/Tc and in
the extreme case where Tyt < T¢, traits will not have
explored much of the macroevolutionary landscape. T
bears much similarity with the phylogenetic half-life
of the OU process, which describes the time necessary
for the trait value to move halfway from its initial
position to the optimum. Supplementary Appendix I
available on Dryad shows that the characteristic time
of an OU process is actually directly proportional to its
phylogenetic half-life: T,=1/a while the phylogenetic
half-life is In(2)/a. In agreement with our findings,
previous studies have shown that accuracy in parameter
estimation of the OU model increases with decreasing
phylogenetic half-lives (Ho and Ané, 2014b; Uyeda and
Harmon, 2014).

Using simulations, we have demonstrated that FPK
can be distinguished from other classic models of
trait evolution, and also that distinct shapes of the
macroevolutionary landscape can be distinguished from
each other based on their likelihoods. This means that
alternative versions of the FPK model can be used for
testing evolutionary hypotheses about trait evolution.
Our simulations also show that the danger of overfitting
is quite low with FPK since simpler models will often
be preferred when stationarity has not been reached.
Our focus on AIC to discriminate between alternative
models was motivated by the fact that it is the most
commonly used in the macroevolutionary community.
However, AIC might be prone to overfitting in parameter
rich macroevolutionary models and other measures that
penalize more for extra parameters, like the Bayesian
Information Criterion or its modified version (Zhang
and Siegmund, 2007), might be preferable (Ho and Ané,
2014b). Another solution to diagnose overfitting would
be to use parametric bootstrapping techniques (Boettiger
etal., 2012), whichis readily implementable for FPK since
we provide an R function to simulate the model.

Our results also show that estimation accuracy under
FPK drastically differs between parameters. Estimation
of the shape of the macroevolutionary landscape is

generally accurate when Tio>T, and increases with
Tiot/Tc. Estimation accuracy also increases with tree
size: our results suggest that trees with 50 tips lead to
reasonable estimation of the general shape of the mac-
roevolutionary landscape (Supplementary Appendix IV
available on Dryad), while trees with 100 tips should
most often be large enough to obtain very reliable estim-
ates (Figs. 3 and 4). Importantly the three coefficients that
determine the shape of the macroevolutionary landscape
should not be analyzed separately since numerous dif-
ferent combinations of 4, b, and c can give similar shapes.
Rather, we recommend to interpret the general shape of
the macroevolutionary landscape by focusing on a few
important features: (i) whether the macroevolutionary
landscape is flat or not, (ii) whether it features a single
trend towards one of the bounds of the trait interval,
(iif) whether it contains one or several peaks, and if
relevant (iv) where are these peaks located in the trait
interval. In contrast, the evolutionary rate ¢* has high
estimation variance when Tio:>T¢, and is accurate when
Tiot<Tc. This same effect had already been observed for
BBM (Boucher and Démery, 2016) and probably reflects
the fact that when the macroevolutionary landscape has
been fully explored by the clade its shape and extent are
easily estimated but the speed at which the landscape is

travelled is not. Given this limitation, the estimate of o2
is difficult to interpret when fitting FPK to an empirical
data set. Rather, the characteristic time of the process, T¢,
should be the quantity that is interpreted in comparison
with tree depth. Finally, we found that the estimation
of the trait value at the root of the tree, xg, is poor
as soon as the macroevolutionary landscape has been
moderately explored, a result that generalizes the one
already obtained for BBM (Boucher and Démery, 2016).
This stems from the fact that FPK is a model that retains
low PS since it includes strong deterministic forces and
wipes out any hope of confidently inferring ancestral
trait values in empirical data sets.

These differences in the quality of the estimation of
the shape of the macroevolutionary landscape versus

o? generalize results that have been obtained for the

OU model. Indeed, in this model ¢? and especially o,
the attraction strength, are difficult to estimate (Butler
and King, 2004; Ho and Ané, 2014b) while it seems that
the stationary variance of the OU process, o2/2a, and
the trait optimum, p, generally have higher estimation
accuracy (Ho and Ané, 2014b; Miinkemidiller et al., 2015).
This is in agreement with our results since j and 2/2a
respectively determine the mean and variance of the
stationary distribution of the OU process, what we have
called the macroevolutionary landscape in this article.

Interpretation of Macroevolutionary Landscapes Inferred
from FPK

We have introduced FPK as a method for the inference
of macroevolutionary landscapes from phylogenetic
comparative data. The adaptive landscape is a fruitful
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metaphor to understand phenotypic evolution on a
variety of evolutionary scales (Wright, 1932; Simpson,
1944; Arnold et al., 2001) but care must be taken when
interpreting inferences made from phylogenetic com-
parative data in the light of adaptive landscape theory,
which was mainly developed for population genetics
(Hansen and Martins, 1996; Uyeda and Harmon, 2014).
Some of the models of trait evolution on phylogenies
include deterministic forces that influence trait evolution
in an attempt to mimic selection: the OU model includes
a term that was designed to resemble stabilizing selec-
tion towards a given trait value (Hansen, 1997), and FPK
can imitate a large variety of selection shapes. However,
all macroevolutionary models for trait evolution, includ-
ing OU and FPK, are phenomenological by nature since
they rely on probabilistic diffusion equations and model
evolution over long time-scales (typically thousands to
million years) that are not amenable to direct observa-
tion. In other words, these models recover patterns from
the data, which researchers have to interpret in terms of
evolutionary processes. One example of such a confusion
between long-term patterns and short-term processes
has been highlighted when interpreting the good fit
of an OU model to empirical data sets: several studies
have indeed shown that neutral evolution between
bounds produces patterns closely resembling the ones
obtained under an OU process (Revell et al., 2008;
Boucher et al., 2014). Development of the BBM model
has now rendered possible to distinguish between these
two scenarios (Boucher and Démery, 2016), but many
such cases in which two different microevolutionary
processes produce the same macroevolutionary pattern
remain.

Macroevolutionary landscapes estimated using FPK
should thus be interpreted with extreme caution: they
reflect the general shape of deterministic forces that
have been acting on the evolution of a continuous trait
in a clade, but are agnostic regarding the nature of
these deterministic forces, that is they are not actual
measurements of the relation between individuals’ traits
and fitness. The most obvious limitation of FPK is that
it makes the hypothesis that the macroevolutionary
landscape is constant through time. This is likely to
be wrong in a majority of cases since environmental
change or interactions with other species will lead
to changes in the intensity and shape of the selec-
tion gradient acting on one trait in a given clade
(Simpson, 1944; Hansen, 2012). Macroevolutionary land-
scapes inferred using FPK will thus necessarily reflect
some kind of average macroevolutionary landscape
experienced by the clade throughout its evolutionary
history.

Even though it is difficult to connect microevolution-
ary processes to macroevolutionary patterns, there is
one promising way in which FPK could be used to do
so. Indeed, the Bayesian implementation of the model
enables the use of informative priors based on quant-
itative genetic parameters. (Uyeda and Harmon, 2014)
have demonstrated how this could be done for the OU

model: using the quantitative genetic model of (Lande,
1976), they showed how measurements of heritability,
phenotypic variance, and effective population size can
inform priors on the parameters of the OU model. By
connecting the parameters in Eq. 1 to quantitative genetic
models, the same procedure could be carried out for
FPK.

Finally, FPK need not be restricted to infer mac-
roevolutionary landscapes. This model indeed has its
roots in spatial diffusion theory and as such could be
used in phylogeographic studies to model the dispersal
of a set of individuals or populations for which the
phylogeny is known (e.g., Grollemund et al., 2015). This
field of research has indeed seen huge methodological
advances in recent years (Lemey et al., 2010; Bloomquist
et al., 2012). In this context, FPK could be used to infer
preferred directions of dispersal (i.e., directional trends)
or even to infer particular regions that act as geographic
attractors for the taxon under study (i.e., one or several
peaks). Hard bounds on the distribution of organisms
(e.g., oceans for terrestrial organisms) could even be
taken into account explicitly using the BBMV model.

Limitations of the FPK Model

Our implementation of FPK does not come without
limitations. The main technical limitation is that our
implementation of the model is restricted to single traits.
We are fully aware that extending it to multivariate data
sets would be very convenient, since multiple traits are
expected to often evolve in a correlated fashion (Arnold,
1992). However, this is for the moment hampered by
computational time. Indeed, the most time-consuming
part in the calculation of the likelihood is to invert the
instantaneous transition matrix, M. If we were to study
two traits simultaneously, we would need to discretize
the plane that they define into a regular grid of points,
and computing time would not be multiplied by two but
rather raised to the power two. The only possible solution
that we can envision would be to use algorithmic tricks
that avoid inverting the entire transition matrix, but
rather a matrix describing transitions between a given
point on the grid and its immediate neighbors, as
recently proposed for inference of ancestral areas (Landis
et al., 2013). This would require much development and
is out of the scope of this article.

The fact that our implementation of FPK can only
accommodate a maximum of two peaks in the mac-
roevolutionary landscape might also seem frustrating
for some users. Extending the model so that three
peaks or more can be simultaneously present is rather
straightforward: the most obvious solution would be
to use polynomial functions with more terms for V(x).
However, this would increase computational time, and
more importantly would probably yield likelihood
functions that are extremely difficult to optimize. This is
why we have not implemented it yet. We however note
thatin our code to infer the FPK model, we have left open
the possibility to specify a given shape for V(x): users can



318

SYSTEMATIC BIOLOGY

VOL. 67

thus experiment with more complex macroevolutionary
landscapes if they feel this is relevant to their specific
study system.

As already discussed above, the fact that the macroe-
volutionary landscape is constant across time and across
different clades in the phylogeny is another limitation.
Further developments of the FPK model could aim at
extending it to cases in which the macroevolutionary
landscape differs among clades or among specified time
periods across the phylogeny.

The last limitation of FPK perhaps lies in its very
formulation. FPK is indeed based on a constant-rate
diffusion model and as such cannot model accelerating
or decelerating trait evolution (Harmon et al., 2010)
or sudden jumps in the value of the trait, as would
be expected under quantum evolution (Simpson, 1944;
Kirkpatrick, 1982) or punctuated equilibrium (Gould
and Eldredge, 1977).

CONCLUSION

Our development and implementation of FPK gen-
eralizes the BM and OU models and greatly expands
the set of models available for studying the evolution
of continuous characters on phylogenies, thus enabling
estimation of macroevolutionary landscapes of various
shapes. We have shown that the model generally
achieves good performance both in terms of parameter
estimation and in terms of discrimination from altern-
ative macroevolutionary models. R code for fitting FPK
(and its special case BBMV) to empirical data is freely
available from https://github.com/fcboucher/BBMYV,
and this repository also contains a detailed tutorial to
the different functions for simulating and inferring the
model.
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