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Abstract The development of adjoint procedures for gen-
eral compositional flow problems is much more challenging
than for oil-water problems, due to significantly higher
complexity of the underlying physics. The treatment of
nondifferentiable constraints, an example of which is a max-
imum gas rate specification in injection or production wells,
when the control variables are well-bottom-hole pressures,
poses an additional major challenge. A new formal approach
for handling these constraints is presented and compared
against a formal treatment within the optimizer employing
constraint lumping and a simpler heuristic treatment in the
forward model. The three constraint-handling methods are
benchmarked for three example cases of increasing com-
plexity. Moreover, the new approach allows the optimizer
to converge to optimal solutions exhibiting higher objective
values, since unlike the formal lumping-based methods,
where a pressure reduction suggested by the optimizer prop-
agates through the smoothing function to all well rates,
it handles constraints individually on a per well and per
time step basis. The numerical examples show that the new
formal constraint-handling approach allows the optimizer
to converge significantly faster than formal lumping-based
techniques independently of the initial guess used for the
optimization.
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1 Introduction

The optimization of time-varying well settings, like for
example, the bottom-hole pressures (BHPs), injection rates,
or production rates, is an important aspect of optimal reser-
voir management. When the simulator source code is acces-
sible, a gradient-based optimization method, in which the
gradient is computed using an adjoint formulation, is often
the method of choice since it is generally the most efficient.
Although not considered here, derivative-free methods can
also be applied for production optimization problems–see
[13] for discussion and examples.

Adjoint gradient-based optimization techniques have
been used in a reservoir simulation setting both for history
matching (see, e.g., [6, 8, 20, 25, 28]) and for produc-
tion optimization. Much of the early work on their use for
optimization of oil recovery was performed by Ramirez
and coworkers, who considered the optimization of sev-
eral different enhanced oil recovery (EOR) processes [22,
23, 26]. In subsequent work, the focus was on gradient-
based optimization (and in some cases on the optimiza-
tion of “smart wells”) for water flooding [1, 4, 28, 29,
32]. Recent studies have addressed the implementation of
adjoint-based procedures into general purpose simulators,
the treatment of general constraints, and regularization and
other numerical issues [12, 16, 21, 27]. Refer to [17] for
a more complete overview of adjoint-based optimization
methods.
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Although much of the early (1980s) work noted above
focused on the application of adjoint procedures for EOR
problems, there has not been much work on the use of
adjoint techniques for large-scale (practical) compositional
reservoir simulation problems. This is likely due to the com-
plexity entailed in implementing adjoint procedures into a
general purpose compositional reservoir simulator and to
the challenging computational problems that must be solved
to perform the optimizations. Compositional simulation
is inherently more challenging than black-oil simulation
because of the need to perform phase-equilibrium (flash)
calculations for all grid blocks at every iteration of every
time step. Adjoint formulations are challenging to code
because they require analytical derivatives of many vari-
ables, and the increased complexity of compositional simu-
lators renders these derivatives much more cumbersome to
calculate than in the case of a black-oil simulator.

Recently, an adjoint treatment for multicomponent oil-
gas compositional systems was presented in [18]. The for-
mulation included an extensive discussion on engineering
constraints that should usually be taken into account in real-
istic scenarios. These constraints appear either as bounds
(box constraints) on the control variables or as inequality
constraints on nonlinear functions of the controls and states
of the underlying PDEs. Two treatments were proposed for
the nondifferentiable constraints: a formal treatment within
the optimizer performing lumping for all wells and time
steps, and a heuristic approach, where bound constraints are
treated in the optimization and nondifferentiable constraints
are satisfied in the forward model. The investigation showed
that although standard lumping techniques perform well for
simple academic problems, they fail to obtain optimal solu-
tions better than the reference for realistic problems. That
result motivated further developments of formal constraint-
handling techniques. In the present work, we introduce a
new formal treatment for the nondifferentiable constraints
where lumping is avoided to allow for a more realistic dis-
cretization of the nonlinear constraints. The performance of
the new approach is compared to the ones introduced in [18]
for several different examples of increased complexity.

The paper introduces the underlying PDEs in Section 2
and presents the discrete adjoint formulation and the solu-
tion of the adjoint linear systems in Section 3. Heuristic
and formal constraint-handling approaches are presented in
Section 4 along with the new lumping-free treatment, which
is the main contribution of this work. The gradients of the
objective function and the Jacobian of the nonlinear cons-
traints are obtained using the discrete adjoint formulation and
forwarded to a sequential quadratic programming software
package SNOPT described is Section 5. Numerical results
demonstrating the capabilities of our optimization proce-
dure, for a series of two- and three-dimensional problems
involving different numbers of hydrocarbon components

and wells, are presented in Section 6. Conclusions and sug-
gestions for future work are provided in Section 7.

2 Oil-gas compositional simulation equations

The mass conservation equation for component i, which can
exist in any phase j (here j = o, g, where o indicates oil
and g gas), is given by [5, 33, 34]

∂
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j = 0, i = 1, . . . , nc.

In the first (accumulation) term, t is time, φ is porosity,
xij designates the mole fraction of component i in phase j ,
Sj is saturation, and ρj is molar density. In the second (flow)
term, K is the permeability tensor, krj is the relative perme-
ability to phase j , μj is the phase viscosity, and the phase
potential �j is given by �j = pj −ρjg(D−D0), where pj

is phase pressure, D is depth, D0 is a reference depth, and g

is gravitational acceleration. In the third (source/sink) term,
qw
j indicates the phase flow rate for well w. The treatment

of this term will be discussed in Section 4.3. Equation 2.1 is
written for each of the nc components present in the system.

For a mixture of nc components in two fluid phases (oil
and gas), thermodynamic equilibrium can be expressed as

fio(po, xio) − fig(pg, xig) = 0, (2.2)

where fio(po, xio) is the fugacity of component i in the oil
phase and fig(pg, xig) is the fugacity of component i in the
gas phase (temperature does not appear because the system
is assumed to be isothermal). We additionally must satisfy
the saturation constraint (So + Sg = 1) and the component
mole fraction constraints

nc∑
i=1

xi0 − 1 = 0,

nc∑
i=1

xig − 1 = 0. (2.3)

A capillary pressure relationship also appears in cases with
nonzero capillary pressure, though here we neglect capillary
pressure so po = pg . For the wells, we adopt the standard
well model relating the pressure of the well pw with the well
rate of phase j qw

j through the formula

(
qw
j

)
l
=

(
Tw

krj

μj

)

l

(pl − pw,l), (2.4)

where Tw is the well index (or well transmissibility), pw,l

is the wellbore pressure for the well in block l, and pl is
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the well-block pressure. Here, pw,l is related to the BHP
through an additional well equation. When the well rate is
specified, equations of the form (2.4) can be used to com-
pute pw,l . For more details on well models, and on the
relationship between pw,l and BHP, see [5].

As discussed by many authors (see, e.g., [5, 10, 33, 36]),
the system described above contains a total of only nc pri-
mary equations and primary variables per grid block. These
equations and variables are coupled (from block to block),
and in a fully implicit method are all computed simultane-
ously at each Newton iteration. The remaining (secondary)
variables can be computed locally (block by block), and thus
very efficiently, once the primary variables are determined.
Various options exist for the choice of primary variables (see
[33] for a discussion). Here, we use the so-called natural
variable set, which includes, for each grid block, one pres-
sure unknown, np −1 saturation unknowns (where np is the
number of phases; here np = 2), and nc − np component
mole fraction unknowns.

2.1 Discretization of the underlying PDEs

In our formulation, the governing equations (2.1) are solved
fully implicitly, using a backward-Euler time discretization,
two-point flux approximation, and single-point upwinding
[2]. These treatments are standard in practical reservoir sim-
ulation. For the solution of the set of nonlinear equations,
we use Newton’s method with the solution at the previ-
ous time step as the initial guess. A limit on the change of
the grid-block saturation and mole fractions over a Newton
iteration is applied [38]. The Newton iterations terminate
when the maximum relative norm of the residual is less than
10−6 (tight convergence criteria are required for the adjoint
solution, discussed below). For the solution of the linear
system at each Newton iteration, we use GMRES precon-
ditioned by the constrained pressure residual method, as
described in [16]. Iteration is terminated when the Euclidean
norm of the initial residual has decreased by five orders of
magnitude.

We employ a simple time stepping strategy. The time step
size at step n + 1 is a multiple of that at n, provided non-
linear convergence was achieved at step n. In this way, the
time step can increase until it reaches the maximum allow-
able value. If the nonlinear solver fails to converge within a
prescribed number of Newton iterations, we divide the time
step by a fixed constant. This process is repeated until the
nonlinear system converges.

3 Adjoint equations for the compositional system

We now present the discrete adjoint equations. Some numer-
ical and coding issues are also discussed.

3.1 Automatic differentiation

Automatic differentiation, or AD, is gaining popularity in
the field of scientific computing as a means of facilitating
the development and enhancement of large code bases. AD
enables, for example, the fast (analytical) determination of
Jacobian matrix elements from the code defining the resid-
ual vector. The use of AD has allowed the fast construction
and assessment of different compositional formulations
within the same code [34]. In this work, we take advantage
of AD to automate the construction of many of the derivati-
ves required for the adjoint formulation. The AD implemen-
tation used in our compositional simulator is the “automatic
differentiation expression templates library” (ADETL),
developed originally by Younis and Aziz [37].

3.2 Discrete adjoint formulation

Following the fully implicit discretization of the governing
equations (using the usual finite volume method, with treat-
ments as noted above), we can express the nonlinear system
as

gn(xn, xn−1, un) = 0, (3.1)

where gn denotes the fully discretized, both in space and
time, set of partial differential equations. Here, xn = x(tn)
and un = u(tn) are the states and controls (well settings),
respectively, at time step n. The controls u, as it can be seen
from Eq. 2.4 appear in the discrete system (3.1) only at the
nth step, since the discretization in time is fully implicit.
The corresponding time step size is designated �tn. We will
use throughout the notation ∂gT /∂x to denote the matrix
(∂g/∂x)T .

We are interested in either maximizing or minimizing an
objective function J that is in general a nonlinear function
of the states xn and the controls un of the forward problem.
We assume that J has the following form:

J (x, u) =
∫ tN

t0

f (x(t), u(t)) dt + ϕ(x(tN )), (3.2)

where f (x(t), u(t)) is a nonlinear function varying with
time and ϕ(x(tN )) is a function of only the last state xN .
After the solution of the forward problem has been obtained,
J may be approximated by

J ≈
N∑

n=1

�tn fn (xn, un) + ϕ(xN). (3.3)

Using (3.3), we can state the optimal control problem as

(NLP) minimize
u

J =
N∑

n=1

�tn fn (xn, un) + ϕ(xN)

subject to gn(xn, xn−1, un) = 0,x0 = x(t0)
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In general, a number of linear and nonlinear constraints
may need to be included in the nonlinear optimal control
problem (NLP). We postpone the discussion of their treat-
ment until Section 4. Now, since gn = 0, we can introduce
the augmented objective function JA by ”adjoining” the
governing equations to the original objective function J .
The new objective JA shares the same extrema as J and is
defined as

JA =
N∑

n=1

(
�tnfn(xn, un) + λλλT

n gn(xn, xn−1, un)
)

+ϕ(xN).

(3.4)

In Eq. 3.4, the vectors λλλn are the Lagrange multipliers.
The maximum or minimum of JA (and thus J ) is

achieved when the first variation of JA is zero (δJA = 0).
After performing some index shifting, and grouping terms
multiplied by the same variation (δxn, δxN, δun), δJA can
be written as
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n
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)
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We can simplify δJA by ensuring that δJA/δxn = 0T for
n = 1, 2, . . . , N . We require that the Lagrange multipliers
satisfy the following equations:

∂gT
n

∂xn
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(
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n
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With this choice of the Lagrange multipliers, the total
variation becomes

δJA =
N∑

n=1

(
�tn

∂fn

∂un

+ λλλT
n

∂gn

∂un

)
δun,

and the gradient of the objective function with respect to the
controls is

δJA

δu
=

[
δf1

δu1
,

δf2

δu2
, . . . ,

δfN

δuN

]
. (3.8)

The individual entries of δJA/δu are given by

δfn

δun

= �tn
∂fn

∂un

+ λλλT
n

∂gn

∂un

, n = 1, 2, . . . , N. (3.9)

By driving δJA/δu to zero, we achieve the minimum or
maximum of JA (and thus J ). In practice, δJA/δu, along
with other quantities related to constraints, is provided to a
gradient-based optimization algorithm to determine the next
estimate for the controls u.

In optimization problems, the well-control variables do
not typically change at each time step in the flow simulation.
Rather, they are defined over longer time periods that are
referred to as control steps. Time steps are usually small in
order to capture flow dynamics, reduce time-discretization
error, and facilitate convergence of the Newton iterations.
The gradient at the control period m, δfn/δum, is simply the
sum of the gradients δfn/δun for all time steps that belong
to control period m.

3.3 Solution of adjoint equations

The solution of the linear system of equations that arises
when solving (3.6) constitutes the largest computational
demand in the adjoint problem. The matrix appearing in
this equation at time step n, ∂gT

n /∂xn, is the transpose of
the Jacobian matrix for the converged forward problem,
∂gn/∂xn. In our implementation, the converged states are
written to disk during the solution of the forward problem.
These converged states are then read back, during the solu-
tion of the adjoint problem, and ∂gn/∂xn is reconstructed,
along with all other derivatives appearing in Eqs. 3.6,
3.7, and 3.9. This enables the evaluation of the Lagrange
multipliers λλλn and the gradients ∂fn/∂un.

For the solution of the linear system in Eq. 3.6,
we use GMRES preconditioned by the transpose of the
constrained pressure residual preconditioner (CPR), as
described in [16]. The underlying physics of reservoir
dynamics are of parabolic, due to pressure, and of hyper-
bolic nature, on every other variable. An efficient precon-
ditioner P should consist of two steps each tailored to
the coupled physics of the problem. At first, a pressure
matrix Ap is extracted from the Jacobian A, by cancel-
ing out derivatives corresponding to variables that would
have been treated explicitly, had we assumed an implicit-
pressure explicit-saturation (IMPES) formulation; see [16]
for details. Then the right-hand side of the original system
b after the application of the pressure operator that extracts
Ap from A is restricted to the pressure unknowns, through
the application of a restriction operator CT , and the linear
system Apxp = CT bP is solved for the pressure solution xp

prolongated through the application of C to obtain the solu-
tion of the first stage of the preconditioning x1 = Cxp. Once
the parabolic character of the solution has been captured in
x1 at the first stage, the residual bP −Ax1 can be efficiently
preconditioned by a preconditioner tailored for hyperbolic
problems in an attempt to capture the hyperbolic component
x2. Such a preconditioner is the block-ILU0 (BILU0) [14]
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although any other preconditioner for hyperbolic problems
can be used at this stage. The solution of the two-stage
preconditioning process is the sum of the two individual
solutions x = x1 + x2. The two steps are summarized in
Eq. 3.10:

P −1 b =
BILU0︷︸︸︷
M−1 (b − A

x1︷ ︸︸ ︷
C A−1

p CT b)︸ ︷︷ ︸
residual︸ ︷︷ ︸

x2

+
x1︷ ︸︸ ︷

C A−1
p CT

︸ ︷︷ ︸
pressure system

b.

(3.10)

The preconditioner for the transposed system is obtained in
a similar way. Transposing expression (3.10), we observed
that the two steps required for the solution of the transposed
system are now applied in reverse order:

P −T b = C A−T
p CT (b − A M−T b︸ ︷︷ ︸

x1

)

︸ ︷︷ ︸
x2

+ M−T b.︸ ︷︷ ︸
x1

(3.11)

The first step now captures the hyperbolic part of the solu-
tion and the second step captures its parabolic part. All
operators are transposed. We should mention here that for
the solution of the adjoints systems, we require very high
accuracy to guarantee that residual errors accumulated over
hundreds of time steps do not pollute the gradients (which
would influence the computed optimum). For this reason,
we continue iterating the linear solver until the Euclidean
norm of the initial residual has decreased by 10 orders of
magnitude. This is significantly higher accuracy than the
accuracy required to allow Newton’s method to decrease the
norm of the residual of each nonlinear system solved at each
time step of the forward problem.

4 Nonlinear constraints

Several authors have discussed the incorporation of con-
straints in the optimal control problem for oil recovery
optimization. This includes partial and sometimes heuris-
tic approaches, valid for particular types of constraints [4,
31, 32, 35], and more systematic approaches, valid for a
broader range of constraint equations [7, 11, 19, 27, 30]. An
important feature in simulations involving highly compress-
ible fluids, which we have in the systems considered here
since we inject gas, is the occurrence of transient peaks in
the rate in response to changes in well BHP. These transient
effects impact simulation results in our models because they
occur over time scales that are larger than a time step (this
is in contrast to nearly incompressible systems, where this
type of transient decays very quickly and is not resolved by
the simulator). These transient effects lead to challenges in
constrained optimization of compositional systems because

rate constraints can be easily violated. Here, we will present
and assess three formal constraint handling approaches and
a simpler heuristic procedure for satisfying rate constraints,
which can be used in compressible systems. A variety of
methods have been proposed to incorporate nonlinear con-
straints in the adjoint formulation; see, e.g., [9, 17, 18, 28,
30] for detailed discussion.

4.1 Constraint lumping

Many constraints appear as simple bound constraints (e.g.,
BHP limits in a problem where BHPs are the control vari-
ables), but in other cases the constraints are nonlinear since
a (nonlinear) simulation is required to evaluate them. Exam-
ples are weighted integral quantities of the rates like the total
water or gas injected over a period of interest and the net
present value among others. Constraints that are described
by nondifferentiable functions can be challenging to incor-
porate. A constraint of this type that appears frequently
in production optimization problems is the maximum (or
minimum) well flow rate constraint, e.g., for injection con-
straints, the rate of the injected phase (gas and water) is
not allowed to exceed a prescribed upper bound q+ that is
mainly determined by

q
p
jn ≤ q+, j = 1, . . . , Nw, n = 1, . . . , N, (4.1)

where q
p
jn is the rate of the injected phase p (gas or water)

at well j at time step n and q+ is a specified maximum rate.
To satisfy this constraint, we must guarantee that

max
j,n

(qjn) ≤ q+, j = 1, . . . , Nw, n = 1, . . . , N.

(4.2)

However, the max function is not differentiable so it cannot
be used to provide gradient information. The approximation
of the max function by smooth and differentiable functions
is known in the literature as constraint lumping. This lump-
ing can be performed on a well-by-well basis, in which case
O(NwN) linear systems must be solved for the evaluation
of the Lagrange multipliers, or over the entire model, in
which case only O(N) linear systems must be solved [18,
27]. The approximate gradients of the lumped nonlinear
constraints are then obtained in the same manner as the gra-
dient of the objective function, i.e., in terms of time step
contributions.

Exponential smoothing can be used to approximate the
max and min functions as dictated by Bertsekas [3]. For
lumping over the entire model, a smooth function c, approx-
imating the max function, is introduced having the form

c ≈ α

Nw∑
j=1

log
N∑

n=1

eqjn/α, (4.3)

α = 0.05q+. (4.4)
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The smaller the coefficient multiplying q+ in Eq. 4.4, the
more accurate the approximation of max becomes. The
numerical value used here, 0.05, ensures that no overflow
occurs in any of the exponential terms in the summation.
The approximation of max in Eq. 4.4 is always greater than
the maximum of the component well rates, so if this max-
imum is honored, the true constraint is guaranteed to be
satisfied. The derivatives of that function are obtained as
described above. For details, see [18].

It is important to recognize that the approach used for
constraint lumping can impact the performance of the opti-
mization procedure. Bound constraints on the controls do
not require any special treatment as they are readily handled
by the optimizer.

4.2 Constraint handling without lumping

As indicated above, operational constraints in reservoir sim-
ulation are often inequality constraints specified for input
and/or output rates at every time step. In the case no lump-
ing is performed, the constrained optimal control problem
(CNLP) reads

(CNLP) minimize
u

J =
N∑

n=1

�tn fn (xn, un) + ϕ(xN)

subject to gn(xn, xn−1, un) = 0,
x0 = x(t0),
qjn ≤ q+

j ,

j = 1, . . . , Nw, n = 1, . . . , N,

where q+
j is an upper bound specified for each well or

group of wells. In this case, the vector of constrains c(u)

in (CNLP) can be of dimension O(NwN), where N is the
number of time steps and Nw is the number of wells. Com-
puting the gradients for each of the entries of c(u), which
is required by SNOPT, will require N adjoint simulations
and thus, in total, the solution of O(NwN2) linear sys-
tems of equations in addition to each forward simulation.
This may be computationally intractable for realistically
sized problems. Nevertheless, this approach provides sig-
nificantly higher flexibility to the optimizer in achieving
feasible solutions, since the optimizer can manipulate rates
for every single well at the particular time steps where
feasibility is violated.

4.3 Constraint handling in the simulator

Enforcing feasibility from an infeasible solution, when the
constraints are upper and lower bounds on output quantities
(e.g., rates when BHPs are specified), can be readily accom-
plished during the forward simulation. In Eq. 2.4, wells can
be controlled by specifying the rate qw

j instead of the BHP
pw,l . When well rate is specified, equations of the form

of Eq. 2.4 can be used to compute pw,l ; see [5] for the
details. More precisely, if a maximum gas production rate
is specified and a well operating under BHP control vio-
lates this maximum, the well can be switched from BHP
control to rate control and operated at the maximum rate.
A more thorough presentation of the heuristic approach can
be found in [18]. We note finally that if rates are used as
the control variables, then the rate constraints enter the opti-
mization problem as simple bound constraints, which are
easy to satisfy. In this case, however, the BHPs become
nonlinear constraints. Our heuristic treatment would then
entail the switch from rate control to BHP control if the
BHP constraint would otherwise be violated. We did not test
the performance of our procedure using rates as the control
variables, but this should be considered in future work.

5 Gradient-based optimization and related
software

The SNOPT optimizer is used in this work for solving the
general nonlinear constrained optimization problem (GNP)

(GNP) minimize
u∈Rn

f (u)

subject to bl ≤
(

u
c(u)

)
≤ bu,

where f (u) a linear or nonlinear objective function, c(u) is
a vector of nonlinear constraint functions ci(u) with sparse
derivatives, and bl and bu are vectors of lower and upper
bounds. We assume that the nonlinear functions are smooth
and that their first derivatives are available.

We note that the adjoint formulation described in this
paper may also be used in conjunction with other optimiza-
tion packages. SNOPT uses a sparse sequential quadratic
programming (SQP) algorithm that exploits sparsity in the
constraint Jacobian and maintains a limited-memory quasi-
Newton approximation to the Hessian of the Lagrangian.
The QP subproblems are solved using an inertia-controlling
reduced-Hessian active-set method (SQOPT) that allows for
variables appearing linearly in the objective and constraint
functions.

In summary, the basic structure of an SQP method
involves major and minor iterations. The major iterations
generate a sequence of iterates uk that converge to the opti-
mal solution u∗. At each major iterate, a QP subproblem
is solved to generate a search direction towards the next
iterate uk+1. Solving such a subproblem is itself an itera-
tive procedure, and the minor iterations of an SQP method
are the iterations of the QP method. SNOPT requires first-
order derivatives of the nonlinear objective and constraint
functions with respect to the control variables, which are
provided by our adjoint procedure. See [18] for a concise



Comput Geosci (2015) 19:1109–1122 1115

overview of the underlying theory. A much more in-depth
description can be found in [15].

6 Numerical results

The optimization framework introduced in the previous
sections will be applied for optimizing cumulative oil pro-
duction subject to bound and nonlinear constraints. We will
present results for three different cases of increased com-
plexity. The aim of the following benchmarks is to reveal
the most robust approach for treating nonlinear constraints
with respect to the quality of optimal solutions and speed of
convergence.

Gradient-based algorithms are usually trapped in local
optima. To allow for a more fair comparison, we start the
optimization from nine different initial guesses for the well
controls. Each initial guess corresponds to a combination of
BHPs from the set {pu

I , pl
I , p

a
I } for the injectors and from

the set {pu
P , pl

P , pa
P } for the producers, where pu, pl , and

pa designate the upper and lower limits on the initial BHPs,
and the average between these limits, respectively. We set
pl = pinit +1 bar for the injectors and pu = pinit −1 bar for
the producers, where pinit is the initial reservoir pressure.
Note that these “limits” are simply used to prescribe ini-
tial guesses for the optimization—they are not related to the
actual BHP bound constraints. For clarity, we will refer to
each case by the number of the corresponding run, as listed
in Table 1. For all examples presented, the permeability is
described by a diagonal tensor: K = diag(Kx,Ky,Kz).

In the results below, we apply the formal constraint
handling approaches introduced in Sections 4.1, 4.2 for
maximizing cumulative oil recovery, and we compare them
against the treatment introduced in Section 4.3, which we
refer to as “heuristic constraint handling”. The heuristic
approach is realized in two steps. First, we perform the
optimization without including the nonlinear constraints.
Bound (linear) constraints are honored during the optimiza-
tion. Then, after this initial optimization has converged, we

Table 1 Initial guesses for the optimizations for all cases considered

Run Initial guess

1 [pl
I , p

l
P ]

2 [pl
I , p

a
P ]

3 [pl
I , p

u
P ]

4 [pa
I , pl

P ]
5 [pa

I , pa
P ]

6 [pa
I , pu

P ]
7 [pu

I , pl
P ]

8 [pu
I , pa

P ]
9 [pu

I , pu
P ]

run the forward problem once more using the “optimized”
BHPs, but this time the simulator is allowed to switch to rate
control when required to satisfy the nonlinear constraints.
Thus, the computational effort for this approach is little
more than that required for optimizing the bound (and lin-
early) constrained problem, as just one additional simulation
run is performed.

6.1 Example 1: � obstacle

In the first example, cumulative oil recovery is maximized
under CO2 injection. The two-dimensional (2D) geological
model used is depicted in Fig. 1. A �-shaped practically
impermeable region is introduced at the center of a homo-
geneous reservoir. The model is discretized on a 2D 80×80
grid. The permeability for the red cells is set to 4000 mD,
while the permeability for the blue cells that comprise the
�-shaped region is set to 10−4 mD. Four injection wells are
placed at the corners of the model, and the single production
well is located inside the �-shaped region. The fluid con-
sists of a four component (three hydrocarbon components
plus CO2) mixture, as specified in Table 2. Further details
on the reservoir model are provided in Table 3.

The well BHPs are constrained to lie between a lower
bound of 90 bar and an upper bound of 120 bar. A maximum
(per well) gas injection rate of 500 m3/d at reservoir condi-
tions is additionally specified. The total simulation period is
set to 256 days, and the well controls are determined at the
initial time and for every subsequent 32-day interval. There
are thus a total of eight control steps and consequently 40
control parameters.

Two reference solutions are generated. The first is
obtained by running the forward simulation with the pro-
duction wells operating at the minimum BHP (90 bar) and

Fig. 1 Injection wells (blue) and production well (green) for exam-
ple 1. Background shows Kx (Kx = Ky )
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Table 2 Fluid description for example 1

Component CO2 C1 C4 C10

Initial composition (%) 1 20 29 50

Injection composition (%) 100 – – –

the injection wells at the maximum BHP (120 bar) and is
infeasible since it violates the maximum gas injection rate.
Next, we apply the heuristic constraint handling approach
described above, with the maximum gas injection rate set
to 500 m3/d. This is the well-scheduling approach that is
usually applied in real-life fields, and it is usually nearly
optimal and does not make any assumptions on the geo-
logical properties of the subsurface. The cumulative oil
production for these two cases is given in the first row
(“Ref.”) of Table 4. The table headings refer to the treatment
of the nonlinear constraints—bound constraints are satisfied
in all cases.

We next perform optimizations that honor the bound con-
straints but not the nonlinear constraints. The results for the
nine runs, starting from different initial guesses, are pre-
sented in Table 4 in the column labeled “Unc.” The best opti-
mum achieved is a cumulative oil production of 190,200 m3,

Table 3 Model parameters for example 1

Parameter Value Units

Grid size 80 × 80 × 1 –

�x 6 m

�y 6 m

�z 4 m

Depth 4000 m

Initial pressure 100 bar

Temperature 100 ◦C

Rock compressibility 7.2 × 10−5 1 / bar

Simulation time 256 d

Pressure upper bound 120 bar

Pressure lower bound 90 bar

Residual gas saturation 0 –

Residual oil saturation 0 –

End point rel perm gas 1 –

End point rel perm oil 1 –

Corey exponent gas 2 –

Corey exponent oil 2 –

Well locations [grid block no.] i j

Injector 1 1 1

Injector 2 1 80

Injector 3 80 1

Injector 4 80 80

Producer 1 40 48

Table 4 Oil production in 103 m3 (example 1, 40 control variables)
for the optimized objective function without satisfying the nonlin-
ear constraints (“Unc.”), satisfying the nonlinear constraints using the
heuristic treatment (“Hrst.”), using the formal lumping-based approach
applied to the entire model (“Frm. 1”) and using the lumping-free
approach (“Frm. 2”)

Run Unc. Hrst. Frm. 1 Frm. 2

Ref. 163.9 152.2

1 187.5 156.6 158.2 166.6

2 189.1 162.0 146.2 164.8

3 177.3 149.0 149.2 167.0

4 183.4 150.2 160.6 166.5

5 186.1 152.2 152.9 166.9

6 185.0 158.9 160.2 166.6

7 190.2 162.3 142.5 159.3

8 190.1 163.5 158.5 159.8

9 190.1 162.0 155.0 164.7

Average 186.5 (26) 157.4 (27) 154.0 (49) 164.7 (42)

Last row shows the average recovery from all nine runs per case fol-
lowed in parentheses by the average number of iterations the optimizer
needed to converge. Best feasible results shown in bold

obtained in run 7. This clearly exceeds the feasible reference
result of 152,200 m3. Results using heuristic constraint han-
dling are shown in the third column. Here, the best result is
a cumulative oil production of 163,500 m3 (run 8), which
exceeds the reference solution by 7.4 %. In the next set
of runs, we apply the formal constraint handling treatment,
where lumping is applied for the entire model (“Frm. 1”).
For these runs, the best optimum is 160,600 m3 of oil
(run 4). This value exceeds the reference solution by 5.5 %,
but it is about 2 % less than that achieved using heuristic
constraint handling. Finally, we apply the formal lumping-
free constraint handling approach and report the results in
the fifth column (“Frm. 2”). We see that this approach out-
performs the previous two in terms of the objective value
achieved. The best optimum 167.0 m3 of oil was essentially
achieved from two different initial guesses (run 3 and 5).
This is an improvement of 9.7 % over the reference solu-
tion and 2.2 % more than the best solution obtained with the
heuristic approach.

The oil production profiles for the best runs, along with
the reference (heuristic) case, are shown in Fig. 2. Recall
that we are maximizing cumulative oil, so the fact that early
time production in the reference case exceeds that of the
optimized cases is not of concern.

In the convergence of the optimization algorithm, for this
case, the formal approach required 49 forward simulations
(on average) to converge to the optimal solution, while the
heuristic procedure needed only an average of 27 forward
simulations. This difference results from the need to enforce
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Fig. 2 Oil production versus time (example 1, 40 control variables).
Results are for the feasible reference case (black curve), best heuristi-
cally constrained solution (run 8, red curve), best solution from formal
lumping-based approach (run 6, blue curve), and best solution from
formal lumping-free approach (run 2, green curve)

feasibility within the optimizer in the formal constraint
handling approach. The new formal approach required 42
iterations on average.

6.2 Example 2: twelve-well channelized system.

Our second example uses the three-dimensional geologi-
cal model introduced by Van Essen et al. [31]. We again
consider CO2 injection. This model contains a total of six
components, defined in Table 5. Further details are given in
Table 6. A map of the x-component of permeability (here
Kx = Ky = 10Kz), along with the locations of the wells, is
shown in Fig. 3.

The control parameters of our optimization problem are
again the well BHPs. The wells are constrained to operate
between a lower bound of 90 bar and an upper bound of
120 bar. We also specify nonlinear constraints on both injec-
tion and production in the form of maximum gas flow rates
of 200,000 m3/d for the injectors and 40,000 m3/d for the
producers (both at reservoir conditions). This model is run
for a total of 100 days, and we control the BHPs at initial
time and then every ten days (the simulation time frame is
short in this case because the problem specification is such
that oil is produced quickly). There are a total of 120 con-
trol parameters in this problem, and our objective is again to
maximize cumulative oil production.

We simulate this model using the same procedures as in
the previous examples. Results for the nine runs for each
case are presented in Table 7. The feasible reference case

Table 5 Fluid description for example 2

Component CO2 C1 C2 C3 C4 C10

Initial comp. (%) 1 20 30 19 10 20

Injection comp. (%) 95 1 1 1 1 1

Table 6 Model parameters for example 2

Parameter Value Units

Grid size 60 × 60 × 7 –

�x 24 m

�y 24 m

�z 4 m

Depth 2538 m

Initial pressure 100 bar

Temperature 372 ◦C

Rock compressibility 10−5 1 / bar

Simulation time 300 d

Pressure upper bound 120 bar

Pressure lower bound 90 bar

Residual gas saturation 0 –

Residual oil saturation 0 –

End point rel perm gas 1 –

End point rel perm oil 1 –

Corey exponent gas 2 –

Corey exponent oil 2 –

Well locations [grid block no.] i j

Injector 1 5 57

Injector 2 30 53

Injector 3 2 35

Injector 4 27 29

Injector 5 50 35

Injector 6 8 9

Injector 7 32 2

Injector 8 57 6

Producer 1 16 43

Producer 2 35 40

Producer 3 23 16

Producer 4 43 18

53.90 108.0 216.5 433.9 569.6 1743 3493 7000

Fig. 3 Reservoir model and wells for example 2 (from [31]). Back-
ground shows logKx
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Table 7 Oil production in 106m3 (example 2, 120 control variables)
for the optimized objective function without satisfying the nonlin-
ear constraints (“Unc.”), satisfying the nonlinear constraints using
the heuristic treatment (“Hrst.”), satisfying the nonlinear constraints
using the lumping-based formal approach (“Frm. 1”), and using the
lumping-free formal approach (“Frm. 2”)

Run Unc. Hrst. Frm. 1 Frm. 2

Reference 5.030 5.030

1 5.450 5.449 5.284 5.485

2 5.467 5.457 5.294 5.496

3 5.171 5.171 5.306 5.485

4 5.288 5.287 5.132 5.440

5 5.424 5.423 5.224 5.413

6 5.344 5.348 5.260 5.402

7 5.321 5.230 4.994 5.414

8 5.207 5.205 5.196 5.414

9 5.353 5.349 4.986 5.409

Average 5.336 (25) 5.324 (26) 5.186 (48) 5.440 (29)

Last row shows the average recovery from all nine runs per case fol-
lowed in parenthesis by the average number of iterations the optimizer
needed to converge. Best feasible results shown in bold

yields 5.030×106 m3 of oil, while the best heuristically
constrained case (run 2) provides 5.457×106 m3 of oil, an
improvement of 8.5 %. The best formally constrained case
(run 3) achieves an optimum of 5.306×106 m3 of oil, which
exceeds the reference case by 5.5 % but is less than the
best heuristic case. The highest objective was achieved by
the lumping-free approach where 5.496×106 m3 of oil were
produced (run 2), a solution exceeding the reference one by
9.2 %. Moreover, we see that the objective achieved by the
lumping-free formal approach exceeds for almost every run
(with the exception of run 5) the corresponding solutions
obtained by the heuristic treatment, and even the objectives
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Fig. 4 Oil production versus time (example 2, 120 control variables).
Results are for the feasible reference case (black curve), best heuristi-
cally constrained solution (run 2, red curve), best solution from formal
lumping-based approach (run 3, blue curve), and best solution from
formal lumping-free approach (run 2, green curve)

obtained by the unconstrained runs, which are not restricted
by the satisfaction of the rate constraints. The oil production
profiles for the best runs, along with the feasible refer-
ence case, are shown in Fig. 4. We again see that the early
time production in the reference case exceeds that of the
optimized cases, though the cumulative oil produced in the
optimized cases is of course higher.

In this example, convergence of the optimizations using
the formal lumping-based constraint handling approach typ-
ically required about 48 forward simulations, while the for-
mal lumping-free approach required only 29. The heuristic
treatment required about 26. Our findings for this exam-
ple clearly illustrate the potential advantages of the for-
mal lumping-free approach for complex optimization prob-
lems involving multiple wells operating under nonlinear
constraints.

6.3 Example 3: Norne model

In our final example, we consider the Norne benchmark
problem, which is a model of a real field located at off-
shore Norway [24]. The actual Norne model involves a
three-phase black-oil system. Here, we use the prescribed
Norne geological model and well positions (for wells that
were operational in January 2005 in the original model). The
Norne model contains 29 wells, as shown in Fig. 5, though

0.66 2.275 7.963 27.45 95.36 331.2 1151 3997

0 0.143 0.286 0.429 0.571 0.714 0.857 1

Fig. 5 Injection wells (blue) and production wells (red). Background
at top shows the logarithm of the x-component of the permeability
tensor, log(Kx), and at the bottom the porosity, φ
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Table 8 Fluid description for example 3

Component CO2 NC4 C8 C1 C15

Initial composition (%) 1 9 40 10 40

Injection composition (%) 90 7 1 1 1

our model involves only 28 of these wells (we do not include
the injector C-4H because it does not operate from 2005–
2008). Instead of black oil, we consider a five-component
compositional system with CO2 injection (see Table 8 for
the fluid description). The model contains a total of 113,344
grid blocks, though only 44,431 of these blocks are active.
Other model parameters are provided in Table 9.

The control parameters for the optimization are again the
well BHPs, constrained to lie between 50 and 150 bar. The
nonlinear constraints are the maximum gas injection rate of
105 m3/day at reservoir conditions for each injector. The
simulation is run for 300 days, and we control the BHPs at
initial time and then every 30 days thereafter. Because this
problem involves 28 wells, there are 280 control parameters.
Our objective is to maximize cumulative oil production.

Results for the four sets of runs are reported in Table 10.
It is evident from the large differences between the uncon-
strained runs (second column) and the constrained runs
(third and fourth columns) that the consideration of non-
linear constraints significantly restrains oil production. The
heuristic approach performs one additional forward sim-
ulation, starting from the optimal solution obtained from
the unconstrained runs (second column) enforcing the rate

Table 9 Model parameters for example 3

Parameter Value Units

Grid size 46 × 112 × 22 –

�x 24 m

�y 24 m

�z 4 m

Depth 3000 m

Initial pressure 100 bar

Temperature 372 ◦C

Rock compressibility 8 × 10−5 1 / bar

Simulation time 300 d

Pressure upper bound 150 bar

Pressure lower bound 50 bar

Residual gas saturation 0 –

Residual oil saturation 0 –

End point rel perm gas 1 –

End point rel perm oil 1 –

Corey exponent gas 2 –

Corey exponent oil 2 –

Table 10 Oil production in 106 m3 (example 3, 280 control variables)
for the optimized objective function without satisfying the nonlin-
ear constraints (“Unc.”), satisfying the nonlinear constraints using
the heuristic treatment (“Hrst.”), satisfying the nonlinear constraints
using the formal lumping-based approach (“Frm. 1”), and the formal
lumping-free approach (“Frm. 2”)

Run Unc. Hrst. Frm. 1 Frm. 2

Reference 252.0 142.0

1 270.2 146.0 138.5 153.1

2 266.7 143.3 138.3 149.5

3 261.6 124.3 129.3 132.6

4 270.3 147.8 137.5 153.5

5 270.7 146.5 138.0 146.7

6 268.8 146.8 137.8 139.2

7 270.4 146.2 129.7 150.8

8 270.8 146.8 129.9 149.5

9 270.6 146.2 136.6 135.2

Average 268.9 (35) 143.8 (36) 135.1 (178) 145.6 (37)

Last row shows the average recovery from all nine runs per case fol-
lowed in parentheses by the average number of iterations the optimizer
needed to converge. Best feasible results shown in bold

constraints whenever they are violated. With the excep-
tion of run 3 (third column), the rest of the initial guesses
allowed the heuristic approach to converge to a higher max-
imum, than the reference feasible case. The best maximum
obtained was 147.8×106 m3 (run 4), an improvement of
4.2 % over the heuristically constrained reference case. This
level of improvement is less than that observed for the other
examples. We also see that the formal constraint handling
approach leads to a result for cumulative oil production
(138.5×106 m3 in the best case, run 1) that is lower than
that for the heuristic reference case, which does not involve
any optimization. The results using the formal treatment
when lumping is performed for the entire model illustrate
the potential challenges that can arise in complex problems
with realistic geological configurations, large numbers of
control parameters, and many active nonlinear constraints.

On the contrary, the formal lumping-free approach (fifth
column), converges to higher optima than the optima
obtained with the heuristic approach (run 4), from almost
every initial guess with the exception of run 6, and 9 where
the heuristic approach obtained higher objectives. We also
observe that apart from run 3, run 6, and 9, all other runs
converged to an optimal solution of higher objective than the
best optimal solution obtained with the heuristic approach
(run 4). The best solution of the new formal approach was
153.5 ×106 m3 (run 4), an improvements of 8.1 % over
the reference case. The success of the new formal lumping-
free approach stems from the discretization of the nonlinear
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constraints. Usually, feasibility is violated by one or more
wells only at particular time steps and not throughout
the simulation. Constraint lumping replaces individual well
rates by a single function for the whole time history, and
as a result, a descent step suggested by the optimizer aim-
ing to reduce constraint violation, constrains inevitably all
well rates involved in the lumping function. On the contrary,
discretizing the constraints both per well and per time step
allows the optimizer to control the rate of the particular well
at the particular time step where feasibility is violated, at
the cost of more expensive to compute constraint Jacobian
matrices.

The plots of oil production versus time are shown
in Fig. 6, and the detailed BHP and gas injection rates (for
the injection wells) versus time for the three cases are shown
in Figs. 7, 8, and 9. For the reference (Fig. 7), the pressure
of the injectors D-3AH, F-2H, and F-4H is kept constant
throughout because the corresponding gas rates do not vio-
late the upper bound. For the rest of the wells, the BHP had
to be adjusted in order to obtain a feasible solution, how-
ever, as we see both BHPs and gas rates are smooth slowly
varying functions of time. The best solution obtained with
the heuristic approach (Fig. 8) reduces the BHP of wells
D-1H, F-3H, and F-4H approximately at the end of the sim-
ulation allowing for higher oil production. In the formally
constrained lumping-free case (Fig. 9), the BHPs of wells
D-1H, D-2H, D-3H, F-1H, and F-3H jump in the beginning
simulation, vary slowly, and decrease again gradually close
to the end of the simulation causing frequent jumps to the
corresponding gas injection rates.

For the results presented here, the optimizations using
formal constraint handling required about 178 iterations on
average. Optimizations using the heuristic constraint han-
dling, by contrast, required about 36 iterations on average,
while the new formal constraint handling approach required
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Fig. 6 Oil production versus time (example 3, 280 control variables).
Results are for the feasible reference case (black curve), best heuristi-
cally constrained solution (run 4, red curve), best solution from formal
lumping-based approach (run 3, blue curve), and best solution from
formal lumping-free approach (run 2, green curve)

0 50 100 150 200 250 300

Time (day)

50 

60 

70 

80 

90 

100 

110 

120 

130 

140 

150 

B
H

P 
(b

ar
)

D-1H
D-2H
D-3H
D-3AH
F-1H
F-2H
F-3H
F-4H

0 50 100 150 200 250 300

Time (day)

0 

20 

40 

60 

80 

100 

G
as

 r
at

e 
(1

03 m
/d

ay
)

Fig. 7 Injector BHPs (top) and gas injection rates (bottom) for the
feasible reference solution (example 3).

on average about 37 iterations. Thus, we again observe sig-
nificant improvements in terms of convergence using the
formal lumping-free approach.
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Fig. 8 Injector BHPs (top) and gas injection rates (bottom) for the best
heuristically constrained solution (example 3, run 4).
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Fig. 9 Injector BHPs (top) and gas injection rates (bottom) for the best
formally constrained solution (example 3, run 1).

7 Concluding remarks

A new formal nonlinear constraint-handling method was
suggested for the optimization of compositional reservoir
flow and was applied on several benchmark cases including
a realistic oil field for maximizing cumulative oil recov-
ery. In contrast to computationally efficient lumping-based
techniques where a smooth function is introduced to replace
the nondifferentiable max on a per well basis or over the
entire model, the new approach relaxes the demands on
computational efficiency, discretizing output constraints per
well and per time step of the forward simulation. This way,
many more constraints are introduced slowing down the
evaluation of the constraints Jacobian, but providing more
flexibility to the optimizer to restore feasibility, by con-
straining only the individual rates of particular wells at the
particular time steps where the prescribed upper bound is
violated. This is in contrast to lumping-based approaches
where a reduction suggested by the optimizer propagates
through the smoothing function to all well rates even if fea-
sibility is not directly violated there, reducing rates that need
to be kept as high as possible in order to increase the oil
recovery.

The new approach being theoretically superior than the
efficient heuristic one was also demonstrated to converge to
higher optima from most of the initial guesses. This is due to
the fact that the new formal method optimizes directly in the
feasible space in contrast to the heuristic one that optimizes

in the infeasible space at first and through one additional for-
ward simulation it projects the optimal infeasible solution
obtained in the first step onto the feasible space. As a result,
the best optimal solution found by the new approach almost
doubled the increase of the cumulative oil recovery obtained
by the heuristic approach over the reference solution, for the
realistic benchmark case (example 3, Norne field).

There exist several areas in which future research should
be directed. Since numerical evidence shows that better
well scheduling techniques than the one applied in the field
do exist, the next logical step is to embed the suggested
approach in a robust optimization framework to account for
geological uncertainty.

It will be of interest to apply the general optimization
framework to larger and more realistic simulation models.
We realize that for sufficiently fine geological models direct
sparse solution methods may become prohibitively expensive
and then iterative techniques may be the only possible candi-
dae. Preconditioners based on domain decomposition tech-
niques seem to be particularly attractive for such problems,
since they are designed for parallel architectures and the
direct sparse solvers used for the inversion of the diagonal
blocks can efficiently handle systems with many right-hand
sides. These could either replace the entire CPR approach
or the preconditioners applied at its two individual steps.
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