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Abstract In this paper, we consider a single-machine
scheduling problem (P) inspired from manufacturing instan-
ces. A release date, a deadline, and a regular (i.e., non-
decreasing) cost function are associated with each job. The
problem takes into account sequence-dependent setup times
and setup costs between jobs of different families. Moreover,
the company has the possibility to reject some jobs/orders, in
which case a penalty (abandon cost) is incurred. Therefore,
the problem at hand can be viewed as an order acceptance and
scheduling problem. Order acceptance problems have gained
interest among the research community over the last decades,
particularly in a make-to-order environment. We propose and
compare a constructive heuristic, local search methods, and
population-based algorithms. Tests are performed on realistic
instances and show that the developed metaheuristics signifi-
cantly outperform the currently available resolution methods
for the same problem.
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1 Introduction

In this paper, we consider the problem of scheduling n
jobs on a single machine in order to minimize regular
(i.e., non-decreasing) objective functions ( f j (C j ), where
C j is the completion time of job j). We also take into
account sequence-dependent setup costs (ci j ) and sequence-
dependent setup times (si j ) between any successively per-
formed jobs i and j of different families. In addition, there
is the possibility to reject some jobs, they are then said to
be unperformed and a penalty cost (u j ) must be paid. For
each job j , a release date (r j ), a deadline (d̄ j ), and a process-
ing time (p j ) are given. Using the three-field notation intro-
duced in Graham et al. (1979), the problem can be denoted as
(1 | r j , si, j , d̄ j | Fl(

∑
f j (C j ),

∑
u j ,

∑
ci, j )). The objec-

tive is not necessarily to minimize the number of rejected
jobs, but rather to minimize a linear combination of the
three above-mentioned components. We design a construc-
tive heuristic, local search algorithms, and population-based
methods for (P). Baptiste and Pape (2005) developed a branch
and bound algorithm in a constraint programming framework
to solve (P). The authors proposed a lower bound and a dom-
inance rule. Their method was able to solve instances with
up to 30 jobs, even if some instances with 24 jobs are still
open. To our knowledge, it is the only paper addressing such
a problem.

In the literature, the two most popular regular objec-
tive functions are the sum of completion times (

∑
C j ) and

the sum of tardiness (
∑

Tj ), with their weighted versions
(
∑

w j · Tj and
∑

w j · C j ). Du and Leung (1990) showed
that the single-machine scheduling problem which aims to
minimize the sum of weighted tardiness (1||∑ w j · Tj )

is NP-hard. As it is a particular case of (P), the latter is
NP-hard too. The one machine scheduling problem which
aims to minimize the sum of completion times with release
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dates (1|r j | ∑ C j ) is strongly NP-hard (Pinedo 2008), unless
the release dates are all equal, whereas the same problem
without release dates (1||∑ C j ) and its weighted version
(1||∑ w j · C j ) are solvable in polynomial time.

This paper is a significant extension of Thevenin et al.
(2012), where a greedy algorithm and a tabu search are pro-
posed for (P). A key feature of the proposed tabu search is
the joint use of different moves. Metaheuristics using several
neighborhoods are common, we can for instance mention
the variable neighborhood search and oscillation strategy. In
most cases, neighborhoods are sequentially used either in
a random fashion or a strategic one. Using jointly multiple
neighborhoods in tabu search was proven to be successful for
the maximum weighted clique problem in Wu et al. (2012).
In Lü et al. (2009), the authors present a comparison of dif-
ferent combinations of moves for the unconstrained binary
quadratic problem. The contributions of this paper are the
following. Several fields of application for (P) are identified;
a mathematic formulation is given and tested on small size
instances. A more efficient tabu search is proposed, which
includes a diversification strategy. We investigate the use of
hybrid metaheuristics for (P) (namely two adaptive mem-
ory algorithms). We also propose a set of difficult instances
which allows to conduct a better comparative study between
these algorithms.

The paper is organized as follows. A formal description
of (P) is given in Sect. 2 (including a mathematical formula-
tion), as well as possible practical applications of (P). As the
literature review is significant, it is presented in a dedicated
Sect. 3. The constructive and local search methods for (P)
are proposed in Sect. 4, whereas the population-based meth-
ods are designed in Sect. 5. Results and comparisons can be
found in Sect. 6. A conclusion ends up the paper, along with
possible extensions.

2 Description and motivation of problem (P)

We are interested in a one machine scheduling problem with
n jobs. For each job j are given the following data:

– p j : the processing time of job j .
– r j : the release date of job j . It is the time from which

it is possible to start processing job j . In manufacturing
systems, it could be the time at which the raw material is
expected to be delivered to the production system.

– d j : the due date of job j . It represents the time after which
the satisfaction of the customer decreases (this is repre-
sented by a non-decreasing cost function f j (C j )). More
formally, d j can be defined as the date from which f j (.)

starts to be larger than zero.
– d̄ j : the deadline of job j . Scheduling a job j after its

deadline is not possible. It could for instance be the time

after which the penalty cost of scheduling late is higher
than the abandon cost, or the time after which the customer
does not want to be served. Thus, each job j must be
performed within a time window [r j , d̄ j ].

– u j : the abandon cost of job j , which is the penalty encoun-
tered if job j is unperformed.

Jobs belong to different families, which correspond to dif-
ferent types of product. When the machine successively
processes two jobs i and j of different families, a setup must
be performed. This implies a setup time si j , which is the time
to tune the machine, and a setup cost ci j (to pay employees
which setup the machine and the needed material). At the
beginning, the machine is in an initial state, which we repre-
sent by a dummy job 0 such that p0 = 0. s0 j (resp. c0 j ) is
the requested setup time (resp. cost) between the initial state
and job j , which must be taken into account if j is scheduled
first. The objective function

∑
j f j (C j ) is a sum, over all the

jobs, of regular (i.e., non-decreasing) functions depending on
the completion times C j . We consider general cost functions,
allowing our algorithms to tackle different problems, or even
to use different cost functions for the different jobs.

A mathematical formulation of (P) is now presented. The
formulation is linear if for all job j , the cost function f j (C j )

is linear. We assume that x jk = 1 if job k follows job j , 0
otherwise; z j = 1 if j is unperformed, 0 otherwise; and t j is
the starting time of job j . For the need of the formulation, we
artificially add a last job n + 1, with pn+1 = 0, s( j)(n+1) =
0, c( j)(n+1) = 0, ∀ j .

min

⎡

⎣
n∑

j=0

n+1∑

k=1

x jk c jk

n∑

j=1

[
f j (C j ) + z j (u j − f j (r j ))

]
⎤

⎦

(1)

s.t.

C j = t j + p j ∀ j (2)

t j ≥ Ck + sk j xk j + (xk j − 1) d̄k ∀ j, k (3)

t j ≥ r j and C j ≤ d̄ j + z j (r j − d̄ j ) ∀ j (4)

z j +
n+1∑

k=1

x jk = 1 ∀ j �= n + 1 (5)

z j +
n∑

k=0

xk j = 1 ∀ j �= 0 (6)

n+1∑

j=0

x j0 = 0 and
n+1∑

j=0

x(n+1) j = 0 and t0 = 0 (7)

x jk ∈ {0, 1} z j ∈ {0, 1} ∀ j (8)

Equation (1) gives the objective function: it is the sum of
setup costs, and for each job, its cost is f j (C j ) if it is per-
formed, and its unperformed penalty is u j otherwise. The
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completion time of each unperformed job is virtually set to
its release date r j by Eq. (4). For this reason in Eq. (1), for
each unperformed job, we add its unperformed cost u j and
remove the cost f j (r j ) associated with its release date. Equa-
tion (2) gives the completion time. Equation (3) is used to
compute the starting time of each job. If j follows k, j must
start after the end of k plus the required setup time, otherwise
(xk j − 1) is equal to −1, and the resulting constraint is less
restrictive than C j ≥ 0, as d̄k ≥ Ck . Equation (4) enforces
each performed job to be scheduled within its time window
and each unperformed job to be scheduled at r j . Equations
(5) and (6) specify that each job must have a successor and a
predecessor (or it is unperformed). Equation (7) constraints
job 0 to have no predecessor, job n + 1 to have no successor,
and the starting time of the schedule is 0.

Three possible realistic situations associated with (P) are
described below. First, assume the situation where a company
which produces packaging parts (plastic bottles, cans,…)
wants to schedule its production. Bottles are made by injec-
tion moulding machines, different types of machine are avail-
able in the factory, but each job is dedicated to a single
machine. As a consequence, the problem can be treated as
a series of one machine scheduling problems. Depending on
the products being processed consecutively, different oper-
ations have to be performed: cleaning, changing the plastic
colors and type, changing the mould,…Those operations are
time and cost expensive, and have to be minimized. Obvi-
ously, processing consecutively different orders of the same
package (for the same product) do not incur any setups. More-
over, an order cannot be treated before the delivery of the
associated raw materials, and its duration depends on the
number of units to produce. As products are specific for each
client, production is run only after that the order has been
given. If the production capacity is overloaded, the company
will deliver late. This causes customers dissatisfaction, which
can be modeled by a non-decreasing cost function depend-
ing on the completion time of the job. Instead of being very
late, the company can subcontract an order [note that if only a
part of the jobs can be subcontracted, others can be associated
with infinite rejection penalties in (P)]. Examples of schedul-
ing problem in injection moulding plants can be found in
Nagarur et al. (1997) and Goslawski et al. (2014).

Another possible application occurs in textile dyeing com-
panies. To be colored, textiles are put in dyebath, the dura-
tion of the stay mainly depends on the used coloring method.
Between different jobs, the dyebath must be cleaned. The
cleaning duration depends on the dyes being used consec-
utively. If the same solution is used, no cleaning operation
is needed. If similar colors are processed consecutively, a
fast cleaning occurs, whereas in case of totaly different col-
ors, an heavy cleaning is needed, meaning more time and
cleaning products. Before to start an order, the company
has to wait for the necessary raw material to be delivered

(dies, fabrics, mordants,…). We consider the case of a small
company having only one dyebath. If the production capac-
ity is overloaded, orders are delivered late. In the worst case,
they are canceled and customers have to wait for the next
week to be delivered, which cause dissatisfaction modeled
by a rejection cost depending on the importance of the cus-
tomer. Once an order has been rejected, it is considered again
in the next week planning, but its rejection penalty increases.
For more information on scheduling problems in textile dye-
ing manufacture, readers are referred to the recent paper of
(Hsu et al. 2009).

The last field of application concerns agile satellite
scheduling. Customers ask for a set of images of the Earth.
Images are made of several pixels, each one corresponding to
a snapshot. The required time to get a total picture is related
to the size of the area to be imaged. Customers give a time
window corresponding to the date at which the satellite is at
a good position to take the picture. However, it is possible to
take the picture after the time window, in which case the angle
is not optimal leading to dissatisfaction of the customer. We
can assume that the release date is defined as the earliest pos-
sible time to take the picture. Thus, starting before the release
date is not allowed. To summarize, a possible time window
[r j , d̄ j ] is given, but between d j and d̄ j the quality of the
picture is decreasing. As launching a satellite is expensive,
it is often funded by several companies. As a consequence,
satellites are often overloaded and it is often necessary to
postpone several requests. If it is not possible to take the pic-
ture, a negotiation occurs to schedule the image later, this
incurs a cost of negotiation (phone calls, salary of persons
making negotiations,…) and frustration of customers. This
problem also implies setup times for moving the satellite
from one zone of interest to the next, and setup costs corre-
spond to the energy used during the setup operations (indeed
the energy is a limited resource on satellites). Examples of
satellite scheduling problem can be found in Harrison et al.
(1999), Lemaitre et al. (2002), Wei-Cheng and Chang (2005),
and Zufferey et al. (2008).

3 Literature review

In this section, we present the methods developed for some
problems related to (P). A specific attention is given to dis-
patching rules, local search algorithms, order acceptance
problems (OAP), and evolutionary methods. The readers
are referred to Baptiste and Pape (2005) for an insight of
exact approaches proposed for problems related to (P), and
to Pinedo (2008) for an overview of scheduling problems.

For scheduling problems, we often encounter dispatch-
ing rules, which allow to define a priority order for the jobs.
In some particular cases, dispatching rules give an optimal
sequence of jobs, whereas in other cases they are greedy
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heuristics able to quickly obtain relatively good solutions.
An efficient dispatching rule for the one machine schedul-
ing problem which aims to minimize the weighted tardiness
(1||∑ w j · Tj ) is the ATC (apparent tardiness cost) (Vep-
salainen and Morton 1987). In ATC, at any time t where the
machine is available, the next job j to be scheduled is the

one which maximizes
w j
p j

exp[−max(d j −p j −t,0)

k· p̄ ], where p̄ is
the average processing time, and k is a parameter. Lee et al.
(1997) extend the rule for the case with sequence-dependent
setup times, and Shin et al. (2002) make an adaptation of
the rule where the objective function is the maximum late-
ness (1|r j , si j |Lmax ), which is denoted MATCS (modified
apparent tardiness cost with setups). A MATCS heuristic, is
proposed for a problem related to (P) as well as a dynamic
dispatching rule. Yang and Geunes (2007) were interested in
the single-machine scheduling problem, with the possibility
of not performing some jobs. A global deadline is given and
the jobs cannot be scheduled after it. Moreover, the process-
ing time of each job can be reduced by a compression oper-
ation. The objective function to maximize is the profit of
each performed job, minus the compression and tardiness
costs. The authors propose a GRASP (greedy randomized
adaptive search procedure) algorithm where a schedule is
built by a randomized dispatching rule and an approxima-
tion algorithm obtained by the adaptation of an algorithm for
the intervals selection problem. Akturk and Ozdemir (2001)
tackle the single-machine problem with release dates to mini-
mize the weighted tardiness (1|r j | ∑ j w j ·Tj ). They propose
a dominance rule which provides a sufficient condition for
local optimality. The rule is implemented to improve two dis-
patching rules, a GRASP and a local search algorithm. Note
that for (P), the use of overall regular cost functions makes
it difficult to propose efficient dispatching rules. We rather
propose a constructive heuristic which fits better with the use
of overall cost functions.

Local search methods are often efficient for scheduling
problems. The most used neighborhood structures for single-
machine scheduling problem are Swap and Reinsert (Shin
et al. 2002; Laguna et al. 1991). Reinsert consists in tak-
ing a job in the schedule and moving it to another position.
Swap consists in swapping two jobs in the schedule. The
authors conclude that Reinsert is better than Swap, but that
using a Hybrid neighborhood yields better results (Hybrid
is simply the union of Swap and Reinsert). Jouglet et al.
(2008) consider the one machine scheduling problem with
release dates which consists in minimizing the weighted tar-
diness (1|r j | ∑w j · Tj ). They show that the use of dom-
inance rules allows to improve tabu search for scheduling
problems. Among other metaheuristics for problems related
to (P), we can mention (Bożejko 2010), where a scatter
search is presented to solve the one machine scheduling
problem with setup times to minimize the weighted tardi-

ness (1|si j | ∑w j · Tj ), and Kirlik and Oğuz (2012) propose
a variable neighborhood descent for the same problem. The
main differences between (P) and the above cited problems
are that (P) includes release dates, deadlines, and the possi-
bility of rejecting some jobs, which considerably changes the
way of tackling the problem. Having possible time windows
imposes to define a way of maintaining feasibility. Moreover,
different types of moves must be defined to take into account
rejections. Local search methods have also been proposed
for different scheduling environments. For instance, Angh-
inolfi and Paolucci (2007) propose a local search method
using features of tabu search, simulated annealing, and vari-
able neighborhood search for a parallel machines scheduling
problem where the objective is the weighed tardiness.

As explained in Slotnick (2011), the problem of minimiz-
ing the penalties incurred by rejected jobs, as it is also defined
in (P), is equivalent to the OAP. In OAP, a company has to
decide which orders to accept in the aim of maximizing its
revenue, which is the sum of the gains associated with each
performed job minus some costs related to the sequence in
which jobs are performed. OAP has been studied in a wide
range of scheduling environments during the last decades,
and it is particularly relevant in a make-to-order production
system (Zorzini et al. 2008). A review is presented in Slot-
nick (2011). Bilgintürk Yalçın et al. (2007) and Oğuz et al.
(2010) tackled an OAP with one machine, release dates, dead-
lines, and sequence-dependent setup times. Their objective
is to maximize the sum of the gains associated with each per-
formed job minus a weighted tardiness penalty. This problem
differs from (P) by the fact that setup costs are not taken into
account, there are no job families, and in (P) we consider
general cost functions. The authors propose a MILP (mixed
integer linear programming) formulation for the problem,
which is only able to solve instances with up to 15 jobs, as
well as constructive and local search heuristics. The local
search works in two steps: select the orders first, then find
a good sequence. The same problem is studied in Cesaret et
al. (2012), where the authors show that making simultane-
ously sequencing and order accepting decisions improves the
results. Their approach consists in a tabu search with Swap
moves. Note that in their version of Swap, it is allowed to
exchange a performed job with a rejected one. Other rele-
vant papers on OAP include Nobibon and Leus (2011) and
Nobibon et al. (2009), where some orders can be rejected
whereas others must be performed, ignoring release dates and
setups, which considerably change the nature of the prob-
lem. Zhang et al. (2009) propose a dynamic programming
algorithm and an approximation algorithm for the single-
machine scheduling problem with rejection and release date.
The objective function is the sum of rejection penalties plus
the makespan. Shabtay et al. (2012) consider the order accep-
tance and scheduling problem in a single-machine environ-
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ment. Each job is available at time 0 and there is no deadline.
By nature, such problems involve two objectives: F1 is related
to the completion times, and F2 is the sum of rejection penal-
ties. If the global objective is the sum of F1 and F2, under
some conditions, they show that the problem can be solved
in polynomial time for different objectives F1. However, the
authors note that the problem of minimizing F1 (resp. F2)
subject to F2 ≤ K (resp. F1 ≤ R) is NP-hard (where K and
R are given bounds). Also, finding the Pareto set correspond-
ing to these two objectives is NP-hard. For these three last
versions, the authors propose approximation methods and
exact methods for some special cases. The OAP has also been
studied in different scheduling environments. For instance,
Xiao et al. (2012) studied the OAP in a flow shop environ-
ment. The objective is to maximize the gains of accepted jobs
minus the weighted tardiness penalties. The authors propose
a simulated annealing which optimizes sequentially the set
of jobs to accept and the sequence of jobs.

Evolutionary metaheuristics (e.g., genetic algorithms,
adaptive memory algorithms) were successfully applied to
scheduling problems. Among applications of genetic algo-
rithms to problems related to (P), we can mention (Ribeiro et
al. 2010; Rom and Slotnick 2009; Sels and Vanhoucke 2011).
To be competitive, all these algorithms use a local search
to intensify the search. Ribeiro et al. (2010) solve a single-
machine scheduling problem minimizing the weighted ear-
liness and tardiness penalties, with due time windows and
setup times (1|si j |h j · E j + w j · Tj ). The solutions are ini-
tialized by a GRASP using five different dispatching rules.
In order to improve the robustness of the algorithm, five dif-
ferent crossovers are proposed. At each iteration, a crossover
operator is chosen randomly, giving higher probabilities to
the ones which produced good solutions in the past genera-
tions. Best solutions are improved by a local search method at
each generation. Path relinking is used every five generations.
Rom and Slotnick (2009) propose a genetic algorithm for the
OAP with tardiness costs, and each solution is represented as
a sequence containing all jobs. The recombination operator is
a double-points crossover, and some jobs are rejected within
the evaluation phase during which the schedule is greed-
ily built from the sequence. Diversification is maintained by
four ways: checking for duplicate solutions (having the same
costs), using mutation, varying the population size, using
two separate populations with migration between them. A
local search is also used to improve solutions. Sels and Van-
houcke (2011) tackle a single-machine scheduling problem
with release dates, while minimizing the maximum lateness
(1|r j |Lmax ), with a genetic algorithm. The authors tested
several settings and obtained the best results with tournament
selection, a position-based crossover (i.e., select randomly a
certain number of positions in the sequence vector of the
initially empty offspring, then fill these positions with jobs
copied from the first parent, finally the jobs of the second par-

ent which are not present in the offspring solution keep their
order and fill the remaining empty positions), a single swap
mutation, and a local search which reinserts the jobs having
the highest costs. Kellegöz et al. (2008) present a compari-
son between different crossover operators for (1||∑w j ·Tj ),
and the best results are obtained by crossovers preserving the
position or order of the jobs [this will also be the case for (P)].
In Zufferey et al. (2008), the authors propose a tabu search
algorithm and an adaptive memory algorithm (AMA) for a
satellite range scheduling problem with time windows, where
the number of unperformed jobs has to be minimized. They
take advantage of the graph coloring literature to tackle the
problem, and show that AMA performs slightly better than
tabu search. Note by the way that several unified views of
evolutionary metaheuristics have been proposed in the lit-
erature (Bo et al. 2011; Hertz and Kobler 2000; Taillard et
al. 2001). AMA is deeply discussed in Taillard et al. (2001).
The main difference between AMA and genetic algorithms
with local search is that AMA uses a simplified evolution
process, but a more important role is given to local search.
Evolutionary methods have proven to be successful in many
domains including scheduling problems. We propose in this
paper to test the efficiency of such methods for (P), and show
how they can be coupled with a tabu search algorithm.

4 Constructive and local search methods for (P)

In this section, we present a greedy algorithm, a descent
method as well as a tabu search for (P). The latter meta-
heuristic contains several powerful ingredients: the use of
four neighborhoods at each iteration, a restriction technique
which accelerates the algorithm by ignoring non-promising
moves, a diversification mechanism, incremental computa-
tion, and a tabu status based on solution values (and not only
on solution attributes).

In our model, a solution s of (P) can be represented by a
pair ŝ = (Π,Ω), where Π gives the sequence of the per-
formed jobs (but not the starting time of each job), and Ω

is the set of the unperformed jobs. Let π(κ) be the index
of job scheduled at position κ . Thus, a sequence Π with n′
elements can be denoted by Π = [π(1), π(2), . . . , π(n′)]
(where n′ ≤ n). Assuming π(0) = 0, the cost function can
therefore be computed by

∑

j∈Ω

u j +
n′

∑

κ=1

fπ(κ)(Cπ(κ)) +
n′−1∑

κ=0

cπ(κ)π(κ+1) (9)

Since the objective functions are regular, we can easily build
the schedule from a given list of jobs by setting the starting
time of a job to the earliest feasible time as follows:

tπ( j) = max{Cπ( j−1) + sπ( j−1)π( j), rπ( j)} (10)
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A timing algorithm takes as input a solution representation
ŝ = (Π,Ω). Its output is a solution s which indicates the
value C j of each performed job j . It builds the schedule from
the first job to the last with Eq. (10), and jobs are rejected
only if they are shifted after their deadlines.

A combinatorial optimization problem is defined by a set
of feasible solutions S and an objective function f . A solu-
tion is called feasible if it satisfies all the constraints. The
goal is to minimize (or maximize) f over S. For some prob-
lems, there exists no algorithm able to find an optimal solu-
tion in a polynomial time. In contrast, heuristics are able
to find satisfying solutions in a reasonable amount of time.
Metaheuristics are higher level approaches, which can com-
bine problem-specific methods. There are three main kinds
of (meta)heuristics: constructive heuristics (e.g., the greedy
algorithm), local search methods (e.g., tabu search, simu-
lated annealing), and evolutionary algorithms (e.g., genetic
algorithms, adaptive memory algorithms, ant colonies). The
reader is referred to Gendreau and Potvin (2010) and Zufferey
(2012) to have an overview on metaheuristics and principles
to efficiently adapt such methods.

4.1 Greedy algorithm for (P)

A constructive heuristic builds a solution by starting from
scratch. It adds elements step by step to the solution until it
becomes a complete solution. A greedy heuristic for (P) is
introduced in this subsection. It will then be used to gener-
ate initial solutions for tabu search, which is a local search
method (Sect. 4.2). The latter will then be used as an intensi-
fication operator within some evolutionary algorithms (Sect.
5).

The greedy algorithm for (P) begins with an empty sched-
ule. Jobs are then taken one by one and placed in the sched-
ule. Each step consists in selecting a non-considered job and
inserting it within the schedule at minimum cost (there is
also the possibility of letting the job unperformed). The posi-
tion which minimizes the cost is chosen (ties are broken ran-
domly). As the jobs are scheduled as early as possible with
respect to the sequence, inserting a job before another can
shift the entire schedule, thus it is necessary to be careful
when computing the cost function at each step. By shifting a
part of the schedule to the right, some jobs may end after their
deadlines: they will then enter in the unperformed set. Note
that the cost function is computed after having shifted and
removed the jobs, thus jobs become unperformed only if it is
better to do it. As we have to compute the cost function for
each job and each possible position, the cost function is com-
puted approximately n2 times. Computing the cost function
can be done in O(n) in the worst case. Thus the greedy algo-
rithm runs in O(n3). An incremental cost function is used to
compute the cost of inserting the jobs, which allows to speed
up the algorithm. The order in which jobs are inserted into the

schedule has an influence on the results. After having tested
several possibilities to sort the jobs, we decided to order the
jobs by increasing slack times (d̄ j −r j − p j ). Ties are broken
by decreasing u j ’s, and if there remain ties, they are broken
randomly.

4.2 Local search approaches for (P)

Local search methods need an initial solution as input, and
then explore the solution space by going from the current
solution to a neighbor solution. A neighbor solution is often
obtained by making a slight modification on the current solu-
tion, called a move. The neighborhood N (s) of a solution s
is the set of solutions obtained by applying to s all possi-
ble moves. From a current solution s, the descent algorithm
selects its neighbor solution s′ as the best solution in N (s).
The main issue with this method is that it is likely to bring
the search in a local optimum. To overcome this issue, tabu
search makes use of recent memory, with a so called tabu list.
It forbids to perform the reverse of the moves done during
the last tab (parameter) iterations, where tab is called tabu
tenure.

In order to adapt tabu search for (P), we propose to use
the four following neighborhood structures.

– Reinsert (and shift and drop) moves a job from a position
κ to another position κ ′. Once the move is performed, jobs
are shifted to be scheduled as early as possible. Jobs can
be dropped if they end after their deadlines.

– Swap (and shift and drop) swaps two jobs. Once the move
is performed, the schedule is shifted and jobs can be
dropped if they end after their deadlines. If Swap is jointly
used with Reinsert, swapping two consecutive jobs is for-
bidden, because adjacent pairwise interchange is already
included in Reinsert.

– Add (and shift and drop) adds a job from the unscheduled
set at a position κ , and then the schedule is shifted. Jobs
can be dropped if they end after their deadlines.

– Drop (and shift) drops a job, and then shifts the right part
of the schedule to the left. Because of the shifting process,
dropping a job can reduce the value of the cost function.

While performing these moves, the cost associated with some
of the jobs will not change and incremental computation can
be used. None of these neighborhoods can be used alone,
as a single neighborhood structure does not allow to reach
all the solutions of the solution space (which means that the
search space would not be connected). Several papers (e.g.,
Shin et al. 2002; Laguna et al. 1991) confirmed that using
the union of several types of moves leads to better results.
Therefore, at each iteration, the selected neighbor solution
will be generated from the current solution by performing the
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best move among the four above proposed types of moves
(restrictions will occur for tabu search).

On the one hand, we develop a descent algorithm starting
from an initial solution generated by the greedy algorithm. On
the other hand, we propose a tabu search by adding tabu struc-
tures to the descent algorithm. We design four tabu structures.
(1) When a job has been added into the schedule, it cannot
be dropped during τ1 iterations, and it cannot be moved (by
any of the moves) during τ2 iterations. (2) When a job has
been dropped, it cannot be added during τ3 iterations. Note
that, for this tabu structure, the job is considered dropped
only by the above fourth neighborhood (i.e., Drop) and not
by the shift and drop procedure. (3) When a job has been
reinserted, it cannot be moved during τ2 iterations, and it
cannot return between its two previous adjacent jobs during
τ4 iterations. (4) When a job has been swapped, it cannot be
moved during τ2 iterations, and it cannot return between its
two previous adjacent jobs during τ4 iterations. τ1, τ2, τ3, τ4

are parameters of the algorithm. We propose to have τ2 < τ4

and τ2 < τ1 because the tabu structure associated with τ2 is
more restrictive than the one associated with τ4 and τ1, while
τ3 does not depend on other parameters. Note that the same
parameter τ2 is used in the tabu status (1), (3) and (4), as it
corresponds to a similar restriction, which forbids to move
again the job. A similar remark holds for τ4, which is used
for the tabu status (3) and (4).

We propose now some mechanisms and procedures to
improve the above proposed tabu search approach. First, as
it is time consuming to evaluate all the neighbor solutions
at each iteration, we propose to only evaluate a promising
sample of move. Then, a diversification mechanism and an
additional tabu status are developed.

Restrictions on the neighborhood. On the one hand, we do
not schedule a job j at position κ if the job currently sched-
uled at this position ends before the release date of j (i.e.,
r j > Cπ(κ)). If such a move is performed, j is going to be
shifted to its release date, bringing with it all jobs sched-
uled between position κ and time r j . This leads to useless
idle time, and thus higher cost. As a consequence, such poor
moves will be ignored. On the other hand, to reduce the com-
putational effort needed for a single iteration, each move is
only evaluated with a probability of 25 %. Such a neigh-
borhood reduction technique is commonly used to improve
tabu search approaches, as it usually increases the diversi-
fication skill of the algorithm without much decreasing its
intensification ability.

Diversification mechanism. We make use of a long-term
memory in a diversification procedure consisting in dropping
the oldest jobs of the schedule. We define the age of a job as
the number of iterations since when it is in the schedule (and
not in the unperformed set). The diversification procedure

Fig. 1 Example of equivalent solution

drops the 30 % oldest jobs out of the schedule. It is applied
every 500 iterations of tabu search. When a job is dropped,
it gets the corresponding tabu status.

Additional tabu status. Preliminary experiments showed that
there exist many solutions in the neighborhood with the same
value. In the example depicted in Fig. 1, we assume that
jobs 1, 2, 3, and 4 belong to the same family, thus there is
no setup time and cost between them. We also assume that
these jobs have the same release date a, and that the cost
function of all jobs ( f j ) is constant over [a, b]. Jobs 1 to 4
can be positioned in any order before b without changing
the cost, as the beginning of job 5 will remain the same,
and the remainder of the schedule will be unchanged. Note
that this situation is specific to the case where the f j ’s are
constant over some intervals. This has the effect to bring the
search into a plateau from which it is hard to escape. Once
the solution cannot be improved, only moves leading to an
equivalent solution are performed (i.e., moves with the same
objective function value). To tackle this issue, Jouglet et al.
(2008) propose to associate a tabu status with the value of the
recently visited solutions: the solutions which lead to such
tabu costs are forbidden. We added this new ingredient to the
proposed tabu search for (P), with the associated tabu tenure
τ5.

5 Population-based metaheuristics for (P)

In this section, we propose two adaptive memory algo-
rithms for problem (P), which use different recombination
operators. The first, dented AM AMem , uses all solutions of
the memory to produce an offspring, whereas the second,
denoted AM AS P , uses only two solutions and the single-
point crossover.

5.1 Adaptive memory algorithm AM AMem

A basic version of an AMA (Rochat and Taillard 1995) is
summarized in Algorithm 1, where performing steps (1), (2),
and (3) are called a generation. In order to design an AMA
for (P), we have to define a way to initialize the population M
of solutions, a recombination operator, an intensification (or
local search) operator, and the memory update mechanism.
Those elements are presented below.

First, the population M contains a set of m (parameter)
solutions. M is initialized by generating m random ordered
lists of jobs, and from such lists, resulting schedules are built
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Algorithm 1 Adaptive memory algorithm

Initialize the central memory M with solutions.

While a stopping condition is not met, do

1. create an offspring solution s from M with a recombination oper-
ator;

2. apply a local search operator on s and let s� be the resulting solution;

3. update M with the use of s�.

using the timing algorithm described in Sect. 4. Then, such
random solutions are improved by the local search operator,
and finally inserted in M .

The local search operator is the tabu search method
described in Sect. 4.2, which is applied during I (parameter)
iterations. Since we rely on the AMA framework for bringing
diversification, tabu search does not include the diversifica-
tion mechanism. Note that I is a sensitive parameter, as for
a given time limit, the larger is I , the less generations are
performed. But the smaller is I , the less aggressive is the
method. Thus, a good tradeoff has to be found.

The recombination operator generates an offspring solu-
tion s by considering all solutions of M . It is formally
described in Algorithm 2. Solution s is initially empty, and
is built step by step. At each step, a solution of M is ran-
domly chosen, and its first remaining job gives the next job
to be scheduled in s. To be efficient for problem (P), a recom-
bination operator must preserve some characteristics of the
solutions of M to create s. Two important characteristics are
(1) the chosen set of accepted jobs and (2) the order in which
they are sequenced. On the one hand, the proposed recombi-
nation operator conserves the relative order of the jobs: if job
j is often scheduled before job j ′ in M , then job j is likely
to be scheduled before job j ′ in s (this is always true if j and
j ′ are copied from the same solution of M ). On the other
hand, a job j which is often unperformed in the solutions of
M will probably be unperformed in s (this is always true if
j is unperformed in all solutions of M ).

The memory update operator relies on the following idea.
If s� (the solution provided by tabu search at the end of a
generation) is strictly better than sworst (the current worst
solution of the population M ), then s� replaces sworst . Oth-
erwise, s� replaces sdiv (the solution of M which is in aver-
age the most similar to the other solutions of M ; the used
distance measure will be clearly defined below). Formally,
remind that a solution representation ŝ = (Π,Ω) is always
associated with a solution s, and s can be generated from ŝ
by the use of the timing algorithm. Given two solution rep-
resentations ŝ1 = (Π1,Ω1) and ŝ2 = (Π2,Ω2) of solutions
s1 and s2, the Hamming distance d(s1, s2) between s1 and s2

computes the number of positions in Π1 and Π2 which do

Algorithm 2 Recombination operator

Let ŝ = (Π,Ω) be the representation of the offspring solution.

Set Π = ∅ and Ω = ∅.

While there remains a non-empty solution in M , do

1. select randomly a non-empty solution representation ŝ′ = (Π ′,Ω ′)
in M ;

2. add the first job j of Π ′ at the end of the ordered list Π ;

3. remove j from all solutions of M .

Put in Ω all jobs which are not in Π .

Use the timing algorithm to build the schedule s from ŝ.

not contain the same job. The larger is d(s1, s2), the more dif-
ferent solutions are s1 and s2. The distance measure dM (s)
computes the average Hamming distance between a solu-
tion s ∈ M and all other solutions of M . It is defined by
dM (s) = 1

m−1 ·∑s′∈M−{s} d(s, s′). Thus, sdiv is the solution
minimizing dM (s). This strategy is used to maintain some
diversity in M . Preliminary tests confirmed that this mech-
anism gives better results than simply replacing the oldest or
worst solution of M .

5.2 Adaptive memory algorithm AM AS P

Based on the previously defined AM AMem , we propose
another evolutionary strategy to tackle (P). The generation
of the initial population, the local search operator, and the
memory update mechanism are the same as in AM AMem .
Thus, the only difference relies in the recombination oper-
ator. This operator first selects two solutions s1 and s2 in
M by using a roulette wheel selection, where the fitness of
each solution is related to its associated cost. The single-point
crossover is applied to the sequence of performed jobs: we
first select a random index κ , then the offspring sequence is
composed of jobs at position 1 to κ in solution s1, followed
by jobs at position κ + 1 to the end of s2 (except jobs which
have already been taken from s1). All jobs which are not
part of the generated sequence are unperformed. From the so
obtained ordered list of jobs, a schedule is built by the timing
algorithm. The single-point crossover operator is illustrated
in Fig. 2, where the dotted line represents the selected index
κ . This crossover operator conserves the position of the jobs
taken from s1, and the relative order of the jobs taken from s2.
Also, jobs which are unperformed in both parent solutions
are unperformed in the offspring solution.

6 Experiments

In this section, we compare the different algorithms presented
in the paper over two sets of instances. The first subsection
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Fig. 2 Single-point crossover

presents the algorithms and indicates the used parameters.
In the second subsection, we use the benchmark instances of
the literature to compare our algorithms, and show that they
are competitive with existing methods. In the last subsection,
additional instances are introduced to conduct a more accu-
rate comparison between the proposed algorithms, since this
was not possible with the benchmark instances.

6.1 Compared algorithms

First, we indicate the tested algorithms and give the values
of their associated parameters found by a preliminary tuning
phase. In the purpose of having a fair comparison, we use
a same time limit T (in seconds) for each method. Unless
specified, T is 30 · n seconds for each instance, where n
is the number of jobs. The algorithms were implemented in
C++ and ran on a computer with processor Intel i7 Quandcore
(2.93 GHz RAM, 8 Go DDR3). Tests have been performed
by running five times each algorithm on each instance.

The greedy algorithm (described in Sect. 4.1), denoted
Greedy, makes some decisions randomly. More precisely, in
front of two equivalent options, it break ties randomly. As a
consequence, two runs of the method are very likely to result
in different solutions. If Greedy stops before the time limit
T , it is restarted from scratch as long as T is not reached.
The provided solution is then the best encountered solution
within T seconds. The same restarting process is used for
Descent (the descent local search method presented in Sect.
4.2).

Tabu is the tabu search proposed in Sect. 4.2, without the
diversification procedure. The used tabu tenures are τ1 =
15, τ2 = 40, τ3 = 12, τ4 = 120, τ5 = 40 for the large
instances (more than 50 jobs), and τ1 = 1, τ2 = 3, τ3 =
1, τ4 = 2, τ5 = 4 for the small ones. These values have been
set by a preliminary tuning phase. Note that τ1 and τ3 were
tested in interval [2, 20] for every two values, τ2 was tested
in interval [0, 50] by steps of five, τ4 was tested for every ten
values in [0, 200], and τ5 was tested in [10, 100] for every
ten values. The tuning phase also showed that using more
refined tabu tenures (e.g., dynamic instead of constant) did
not improve the results. TabuDiv is an extension of Tabu by
adding to it the diversification procedure.

AM AMem is the adaptive memory algorithm presented
in Sect. 5.1. Preliminary experiments showed that using a
population of 20 solutions, and performing tabu search for

I = 500 iterations (with I tested in interval [100, 10000]),
leads to the best results. AM AS P is the adaptive memory
algorithm with single-point crossover presented in Sect. 5.2.
The used parameters are the same as in AM AMem .

Finally, LP denotes the linear programming formulation
proposed in Sect. 2 and implemented with CPLEX 12. For
this method, the time limit was fixed to one hour for all
instances. LP was tested only on instances having at most
25 jobs, as for larger instances, the use of heuristics is
necessary.

6.2 Results on the benchmark instances

In this subsection, we first describe and discuss the exper-
iments performed with instances of the Manufacturing
Scheduling Library (Le Pape 2007; Nuijten et al. 2004).
For sake of simplicity, we call it MaScLib in the remain-
der of the paper. It is a library containing instances which
are inspired from real manufacturing cases. Such bench-
mark instances have been made available to the research
community by ILOG. The cost functions for each j are
f j (C j ) = w j · Tj , where Tj is the tardiness cost (i.e.,
Tj = max{0, C j − d j }). Each instance contains between
8 and 500 jobs. Thirty of them do not consider setup costs or
times (category NCOS), whereas fourteen assume setup costs
and times (STC_NCOS). Note that instances STC_NCOS are
not obtained by simply adding setup cost to NCOS instances:
both types of instances were independently generated. The
instances ending by a “a” assume no weight (i.e.,w j = 1∀ j).

Results are presented in Table 1 (resp. Table 2) for the
MaScLib instances without (resp. with) setups. Let Best
be the best solution value encountered by the set of com-
pared methods on the considered instance, and Result be
the result obtain by running an algorithm on the same
instance. We define the percentage Gap as Gap = 100 ·
Result−Best

Best . For each algorithm, the average (Avg), min-
imum (Min) and maximum (Max) percentage gap (over
five runs) are reported, with the format: Avg (Min − Max).
As only one run per instance is performed with LP (dur-
ing a maximum of one hour), only the percentage Gap is
reported.

Firstly, the tests clearly demonstrate the superiority of
Tabu over Descent, and that the latter outperforms Greedy,
since the average gaps by considering all the MaScLib
instances (both tables) are 8.14 % for Greedy, 6.40 % for
Descent, and 1.37 % for Tabu. Secondly, as TabuDiv has an
average gap of 0.41 %, the diversification procedure included
in TabuDiv is obviously useful. The gap is even more impor-
tant by taking only into account instances with setups: 1.17 %
for TabuDiv vs 4.19 % for Tabu, whereas it is 0.06 % for
both algorithms when there are no setups. Additional infor-
mal tests confirmed that the smaller are the setups, the lower
is the gap between Tabu and TabuDiv. The minimum and
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Table 1 Results on the MaScLib instances without setups

Instance Best Size LP Greedy Descent Tabu TabuDiv AM AMem AM AS P

NCOS_01 800 8 0.00 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_01a 800 8 0.00 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_02 2570 10 0.00 12.8 (12.8–12.8) 12.8 (12.8–12.8) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_02a 1210 10 0.00 0.8 (0.8–0.8) 0.8 (0.8–0.8) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_03 6460 10 0.00 11.1 (11.1–11.1) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_03a 1690 10 0.00 3 (3–3) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_04 1011 10 0.00 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_04a 1008 10 0.00 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_05 1500 15 0.00 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_05a 1500 15 0.00 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_11 2022 20 0.00 6.1 (6.1–6.1) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_11a 2006 20 0.95 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_12 6844 24 2.73 10 (10–10) 10 (10–10) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_12a 4270 24 1.17 11.1 (11.1–11.1) 11.1 (11.1–11.1) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_13 3912 24 4.81 18.6 (18.6–18.6) 18.6 (18.6–18.6) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_13a 3441 24 17.58 9.6 (9.6–9.6) 9.6 (9.6–9.6) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_14 6990 25 51.65 1.7 (1.7–1.7) 1.7 (1.7–1.7) 0.3 (0–1.7) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_14a 3195 25 15.81 1.1 (1.1–1.1) 0.6 (0–0.9) 0.1 (0–0.6) 0.1 (0–0.6) 0 (0–0) 0 (0–0)

NCOS_15 3052 30 0.33 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_15a 3035 30 0.56 0.5 (0.5–0.5) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_31 9510 75 156.68 0 (0–0) 0 (0–0) 0.3 (0–0.8) 0.4 (0–1.1) 4.9 (4.4–5.5) 1.1 (0.7–1.9)

NCOS_31a 8715 75 95.75 4.5 (4.4–4.8) 4.7 (4.4–4.8) 0.4 (0.3–0.6) 0.7 (0.5–0.9) 0.2 (0–0.3) 0.9 (0.7–1.1)

NCOS_32 17310 75 313.06 4.2 (4.2–4.2) 4.2 (4.2–4.2) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_32a 14720 75 281.86 1.4 (1.4–1.4) 1.4 (1.4–1.4) 0.2 (0–0.3) 0.3 (0–0.3) 0.3 (0.3–0.3) 0.2 (0–0.3)

NCOS_41 13484 90 273.75 22.2 (22–22.7) 22.1 (20.9–23.5) 0.2 (0–0.4) 0.2 (0–0.3) 0.1 (0.1–0.2) 0.1 (0–0.2)

NCOS_41a 10539 90 44.23 8.2 (8–8.4) 10.3 (9.5–10.7) 0.1 (0.1–0.2) 0.1 (0–0.2) 0.1 (0–0.1) 0 (0–0.1)

NCOS_51 36170 200 * 5.8 (5.8–5.8) 4.1 (4.1–4.1) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_51a 36170 200 * 6.1 (6.1–6.1) 4.1 (4.1–4.1) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_61 1269365 500 * 0.2 (0.2–0.2) 0.2 (0.2–0.2) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

NCOS_61a 1485232 500 * 0.1 (0.1–0.1) 0.1 (0.1–0.1) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

Average 4.6 (4.6–4.7) 3.9 (3.8–4) 0.1 (0–0.2) 0.1 (0–0.1) 0.2 (0.2–0.2) 0.1 (0–0.1)

maximum gap values are close to the average for all algo-
rithms, which indicates they are reliable. Finally, LP is only
able to solve instances with at most 20 jobs. For the instances
having between 20 and 90 jobs, LP is only able to give an
upper bound. For larger instances, the number of variables
and constraints becomes too large and the model cannot be
loaded, thus no result can be found, which is indicated with
a star (*) in the column LP of the tables.

We now compare the results obtained by Tabu with the
upper bounds U B found in Baptiste and Pape (2005), where
tests were running during 30 minutes on a 1.4 GHz PC. Since
we do not use the same processor and we want the compar-
ison to be fair, Tabu was stopped as soon as it obtained a
solution with the same cost or a lower cost as U B. Table
3 presents the time (in seconds) needed by Tabu to obtain
such solution values. If no time is indicated (which occurs

for two instances), better or equal solutions have not been
found for the corresponding instance. Except for instances
STC_NCOS_31 and STC_NCOS_31a, Tabu reaches U B very
quickly. This clearly indicates that Tabu is a more efficient
algorithm. In counterpart, the algorithm presented in Bap-
tiste and Pape (2005) allows to demonstrate the optimality of
the obtained solutions for small instances. When compared
to U B, the percentage improvements (100 · U B−Result

Result ) are
on average 8.08 % for Greedy, 9.67 % for Descent, 12.78 %
for Tabu, 13.26 % for TabuDiv, 13.23 % for AM AMem and
AM AS P .

The performances of AM AS P , AM AMem and TabuDiv on
the MaScLib instances (both tables) are very similar (the gaps
are, respectively, 0.37, 0.45, and 0.41 %) and do not allow
a relevant comparison. We thus generate below additional
instances, with more jobs.
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Table 2 Results on the MaScLib instances with setups

Instance Best Size LP Greedy Descent Tabu TabuDiv AM AMem AM AS P

STC_NCOS_01 700 8 0.00 5.7 (5.7–5.7) 5.7 (5.7–5.7) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_01a 610 8 0.00 1.6 (1.6–1.6) 1.6 (1.6–1.6) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_15 17611 30 16.03 0.2 (0.2–0.2) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_15a 5584 30 0.38 0.1 (0.1–0.1) 0 (0–0) 0 (0–0) 0 (0–0) 1.5 (0.2–5.1) 0 (0–0)

STC_NCOS_31 6615 75 88.13 15.3 (15.1–15.4) 3.8 (3.8–3.8) 4.5 (3.8–7.6) 4.5 (3.8–7.6) 3 (0–3.8) 4.8 (3.8–7.6)

STC_NCOS_31a 7590 75 216.60 25.8 (25.6–26) 3.3 (3.3–3.3) 4.7 (3.3–6.6) 3.3 (3.3–3.3) 1.8 (0–3.3) 6.6 (4.2–8.9)

STC_NCOS_32 24068 75 70.57 4.7 (4.7–4.7) 2.8 (2.2–3) 0.3 (0–0.8) 0.9 (0.3–1.9) 1.6 (1.3–1.9) 1.3 (0.2–1.9)

STC_NCOS_32a 16798 75 174.81 3.9 (3.9–3.9) 0 (0–0) 0.5 (0–0.7) 0 (0–0) 1.2 (0.8–2.1) 0.4 (0.2–0.8)

STC_NCOS_41 43201 90 324.99 12.8 (12.8–12.9) 3.4 (3.4–3.4) 3.4 (3.3–3.4) 1.8 (0–3.4) 2.2 (0.2–3.5) 0.1 (0.1–0.1)

STC_NCOS_41a 18579 90 37.39 7.1 (7–7.1) 2.8 (2.8–2.8) 2.9 (2.8–3.4) 0.1 (0–0.4) 2.7 (2.4–3) 0.1 (0.1–0.1)

STC_NCOS_51 139675 200 * 74.7 (74.7–74.7) 74.7 (74.7–74.7) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_51a 148230 200 * 67.2 (67.2–67.2) 67.2 (67.2–67.2) 42.3 (42.3–42.3) 5.9 (2–21.3) 0 (0–0) 0.8 (0–2)

STC_NCOS_61 1495045 500 * 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0.1)

STC_NCOS_61a 1814605 500 * 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

Average 15.6 (15.6–15.7) 11.8 (11.8–11.8) 4.2 (4–4.6) 1.2 (0.7–2.7) 1 (0.3–1.6) 1 (0.3–1.6)

Table 3 Time needed by Tabu to reach U B

Instance Time Instance Time Instance Time

NCOS_01 0.01 NCOS_13a 0.01 STC_NCOS_01 0.01

NCOS_01a 0.01 NCOS_14 0.01 STC_NCOS_01a 0.01

NCOS_02 0.01 NCOS_14a 13.53 STC_NCOS_15 0.01

NCOS_02a 0.01 NCOS_15 0.01 STC_NCOS_15a 0.01

NCOS_03 0.04 NCOS_15a 0.01 STC_NCOS_31 –

NCOS_03a 0.01 NCOS_31 0.01 STC_NCOS_31a –

NCOS_04 0.01 NCOS_31a 0.01 STC_NCOS_32 0.01

NCOS_04a 0.01 NCOS_32 0.01 STC_NCOS_32a 66.99

NCOS_05 0.01 NCOS_32a 0.01 STC_NCOS_41 0.01

NCOS_05a 0.01 NCOS_41 0.01 STC_NCOS_41a 4.12

NCOS_11 0.1 NCOS_41a 4.14 STC_NCOS_51 0.03

NCOS_11a 0.01 NCOS_51 0.06 STC_NCOS_51a 0.03

NCOS_12 3.97 NCOS_51a 0.1 STC_NCOS_61 0.63

NCOS_12a 3.89 NCOS_61 0.72 STC_NCOS_61a 0.64

NCOS_13 0.01 NCOS_61a 0.54

6.3 Results on the random instances

We have built a set of 90 random instances. A parameter α

is used to control the interval of time in which release dates
and due dates are generated. More precisely, a value End
is randomly chosen in interval [∑ j p j , (1 + α) · ∑

j p j ].
Then, the release date r j of each job j is randomly picked
in [0, End − p j ]. Its due dates d j are randomly taken in
[r j + p j , End]. One can observe that α allows to influence
the rate of rejected jobs, as it controls the size of the interval
of time where all jobs have to be scheduled.

The number n of jobs belongs to the set {10, 15, 20, 25, 50,

100, 200, 300, 400, 500}, andα is chosen in the set {0.5, 1, 2}.
For each couple (n, α), three instances are generated (labeled
with a, b, and c). The instances are named STC_NCOS_n_α_
label. The used cost function is again f j (C j ) = w j · Tj ,
where w j is an integer chosen at random in [1, 5]. The aban-
don cost u j of job j is related to its processing time p j , since
we believe a longer job brings more benefit to the company.
Thus, we set u j = β j · p j , where β j is an integer chosen
at random between 10 and 60. The deadline d̄ j of job j is
defined such that f j (d̄ j ) = u j . A random number of fami-
lies between 10 and 20 are generated. A family is randomly
assigned to each job. Setup times and costs are dependent
because it seems realistic to pay a high setup cost for a long
setup time (it is for instance related with the salary of employ-
ees). The setup time sgh between two families g and h is an
integer randomly chosen in [50, 200], and the setup cost is
defined as cgh = γgh · sgh , with γgh ∈ [0.5, 2]. Note that we
always have cgh ≤ cgk + ckh and sgh ≤ sgk + skh, ∀ k (all
the setup values which do not respect this triangle inequality
are regenerated). If such a triangle inequality is not satisfied,
the involved employees have better to tune the machine from
state g to k, and then from state k to h, rather than directly
from g to h.

Note that a different generation method was proposed in
Cesaret et al. (2012), Potts and Wassenhove (1985), Akturk
and Ozdemir (2000). The method uses two parameters to
define the instances: the average tardiness factor and the due
dates range. We propose here to use a single parameter α

controlling the size of the time window in which all jobs have
to be scheduled. It thus allows to directly have an influence on
the rate of accepted jobs in a feasible solution. Note that α has
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Table 4 Results on small size random instances

Instance Best LP Greedy Descent Tabu TabuDiv AM AMem AM AS P

STC_NCOS_10_0.5_a 13315 0.00 9.5 (9.5–9.5) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_10_0.5_b 19536 0.00 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_10_0.5_c 12199 0.00 4 (4–4) 1.2 (1.2–1.2) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_10_1_a 8344 0.00 26.7 (26.7–26.7) 26.7 (26.7–26.7) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_10_1_b 14492 0.00 0.8 (0.8–0.8) 0.8 (0.8–0.8) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_10_1_c 10905 0.00 11.8 (11.8–11.8) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_10_2_a 12435 0.00 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_10_2_b 22306 0.00 5.3 (5.3–5.3) 5.3 (5.3–5.3) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_10_2_c 11777 0.00 3.9 (3.9–3.9) 3.9 (3.9–3.9) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_15_0.5_a 21924 0.86 17.5 (17.5–17.5) 14.2 (14.2–14.2) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_15_0.5_b 38240 6.12 11.8 (11.8–11.8) 2.1 (2.1–2.1) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_15_0.5_c 33316 4.00 1.9 (1.9–1.9) 1.5 (1.5–1.5) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_15_1_a 14368 2.16 37.1 (37.1–37.1) 24.3 (24.3–24.3) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_15_1_b 23752 0.08 0.3 (0.3–0.3) 0.3 (0.3–0.3) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_15_1_c 29952 1.48 3.4 (3.4–3.4) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_15_2_a 23779 4.88 7.9 (7.9–7.9) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_15_2_b 11881 5.71 11.7 (11.7–11.7) 10.5 (10.5–10.5) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_15_2_c 11252 7.34 42.1 (42.1–42.1) 0.3 (0.3–0.3) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_20_0.5_a 64907 13.36 6.8 (6.8–6.8) 6.8 (6.8–6.8) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_20_0.5_b 54313 2.82 0.8 (0.8–0.8) 0.8 (0.8–0.8) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_20_0.5_c 58346 1.51 8.2 (8.2–8.2) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_20_1_a 63399 1.50 15.4 (15.4–15.4) 1.5 (1.5–1.5) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_20_1_b 42789 5.18 2.2 (2.2–2.2) 0.8 (0.8–0.8) 0.4 (0.4–0.4) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_20_1_c 48019 0.92 0.2 (0.2–0.2) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_20_2_a 47358 55.47 6.4 (6.4–6.4) 6.2 (6.2–6.2) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_20_2_b 55484 0.59 17.8 (17.8–17.8) 16.6 (16.6–16.6) 2.8 (0–7.7) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_20_2_c 14883 50.93 29.1 (29.1–29.1) 7.4 (7.4–7.4) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_25_0.5_a 55749 4.74 8.3 (8.3–8.3) 7.2 (7.2–7.2) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_25_0.5_b 59758 10.27 21.4 (21.4–21.4) 7.9 (7.9–7.9) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_25_0.5_c 60756 2.21 18.5 (18.5–18.5) 4.5 (4.5–4.5) 4.5 (4.5–4.5) 0 (0–0) 0.2 (0–0.5) 0 (0–0)

STC_NCOS_25_1_a 62302 12.51 21.3 (21.3–21.3) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_25_1_b 54952 8.90 32.5 (32.5–32.5) 9.1 (9.1–9.1) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_25_1_c 67897 3.30 19.7 (19.7–19.7) 4.4 (4.4–4.4) 1.6 (1.6–1.6) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_25_2_a 16484 24.97 53.7 (53.7–53.7) 25 (23.5–30.9) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_25_2_b 29921 32.56 35.9 (35.9–35.9) 1 (1–1) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

STC_NCOS_25_2_c 6807 36.30 56.4 (56.4–56.4) 3.6 (0–8.9) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

Average 8.4 15.3 (15.3–15.3) 5.4 (5.2–5.7) 0.3 (0.2–0.4) 0 (0–0) 0 (0–0) 0 (0–0)

also a direct impact on the average tardiness. In contrast with
other papers, we do not control the slack time value, neither
the range of due dates (for a problem similar to (P); Oğuz et
al. (2010) observed no influence of this latter parameter on
the results).

We first present results for small size instances in Table
4. Except for LP, five runs were performed on each instance
by each algorithm. LP is only able to solve all instances
with 10 jobs, and allows to obtain good upper bounds for
instances with up to 20 jobs. The average gap obtained

by LP is greater for instances generated with α = 200,
which shows that those instances are harder: the average
gaps are, respectively, 3.82, 3.00, and 18.23 % when α

is equal to 50, 100, and 200. As it was the case for the
MaScLib instances, Tabu outperforms Descent, and the lat-
ter is better than Greedy, since their average gaps are,
respectively, 0.3, 5.4, and 15.3 %. TabuDiv and AM AS P

obtain best results for all instances and all runs. Excepts
for instance STC_25_0.5c, AM AMem also gets the best
results.
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Table 5 presents the results, as defined before, on large size
instances for all the presented algorithms. LP was not tested
on such instances, as its limited performance was already
showed on the MaScLib instances. Each algorithm has been
run five times on each instance. On this set of instances,
results confirm that Tabu is better than Descent, and the latter
is better than Greedy, since their average gaps are, respec-
tively, 9.5, 17.7, and 104.6 %. Regarding the results on all
the instances (i.e., associated with the four tables), it can
be noticed that Greedy often gives the same results for the
five runs (as the minimum and maximum percentage gaps
are equal). This can be explained by the restarting process
of the method. Depending on random decisions (due to ties
occurring during the job ordering phase or during the choice
of a position to insert each job), two runs of the construc-
tive heuristic are likely to produce different solutions. How-
ever, the number of equivalent solutions is small in com-
parison with the number of generated solutions within an
hour. Regarding the random instances, such equalities usu-
ally occur on the small instances, since with larger instances,
the number of random decisions increases and the number
of generated solutions within the time limit decreases. The
same kind of behavior holds for Descent.

When comparing AM AS P and AM AMem , the results
show that AM AS P performs better. The average gap is 4.9 %
for AM AS P , whereas it is 19.8 % for AM AMem . We can thus
conclude that for (P), it is preferable to use AM AS P rather
than AM AMem . We give three ideas which could explain the
disappointing behavior of AM AMem . Firstly, on the contrary
to AM AS P , the AM AMem recombination operator does not
conserve jobs adjacency (i.e., a job is not likely to have the
same neighbors as one of its parents). A second weakness
could be the use of all the memory to build an offspring solu-
tion, instead of only two parent solutions. The recombination
operator defined in AM AMem conserves the relative order of
jobs: two jobs j and k copied from the same solution will have
the same order in the offspring solution. The more there are
parent solutions involved to build an offspring solution, the
less such relations are maintained, since less jobs are taken
from the same solution. As a consequence, we can assume
that trying to recombine too many solutions is not likely to
capture relevant information contained in the parents. A third
drawback is that when the offspring solution is built, more
importance is given to the jobs which are at the beginning of
the parents, as the first not already added job of the selected
parent is added to the offspring solution.

The difference gap between Tabu and TabuDiv (around
7 %) outlines again that the diversification mechanism
designed for tabu search is suitable for (P). TabuDiv is
an efficient metaheuristic which outperforms on average
the other proposed algorithms. Regarding all instances,
population-based methods are not as powerful. It can, how-
ever, be noticed that AM AS P performs slightly better on

instances for which a lot of jobs have to be rejected (i.e.,
with α = 0.5). AM AS P often obtains the best perfor-
mance on such instances: its average gap is 0.62, and
0.93 % for TabuDiv. But TabuDiv performs better on other
instances.

7 Conclusion

In this paper, we studied the one machine scheduling problem
(P) introduced in Baptiste and Pape (2005), which involves
release dates, setups, deadlines, and the possibility to reject
some jobs. To the best of our knowledge, there is no other lit-
erature on (P), which is, however, relevant in practice. An
integer linear formulation, a greedy heuristic, and a tabu
search are first presented. We show that tabu search is com-
petitive, and that the proposed diversification technique is
useful. Two adaptive memory algorithms are also proposed.
Tests show that the method using the single-point crossover
(with two parent solutions) is more efficient than generating
an offspring with all the solutions of the memory. On the
studied set of instances, the tabu search approach is on aver-
age more powerful. However, the adaptive memory algorithm
allows to improve tabu search when more jobs are likely to
be rejected.

Future works are two folds: the design of other meth-
ods, and the study of extensions of (P). Among the possible
new metaheuristics for the problem, we can be interested
in methods mimicking social behaviors (e.g., particle swarm
optimization, ant system algorithms), or in the use of the pro-
posed neighborhoods within a variable neighborhood search
framework (which means that the neighborhoods would be
sequentially used, instead of jointly). Among the possible
extensions of (P), we could use non-regular cost functions
which are often encountered in a just-in-time environment
(e.g., with weighted earliness and tardiness penalties), and
we could tackle some additional constraints (e.g., precedence
constraints). We can finally mention the consideration of the
same types of costs, but with several machines.
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